Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Nanotechnology ; 33(15)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34965515

ABSTRACT

Based on the reported nucleation mechanisms for CsPbX3and II-VI/IV-VI quantum dots, CsPbBr3nanoparticles with a higher reaction-yield (up to 393% mass-increment) were synthetized by the hot-injection method. The introduction of diphenylphosphine (DPP) as a reducing agent improved nanoparticle nucleation and growth, giving out evidence for Pb-seeding in CsPbBr3nanoparticles formation. Additionally, a clear influence of the DPP in a CsPbBr3-Cs4PbBr6incomplete phase transformation was observed, marked by the appearance of several PbBr2nanoparticles. This indicated the need for an improved ratio between the stabilizing agents and the precursors, due to the increased number of nucleation sites produced by DPP. The resulting CsPbBr3nanoparticles showed high quality, as they displayed 70%-90% photoluminescence quantum yield; narrow size distribution with an average nanoparticle size of∼10 nm; and the characteristic cubic morphology reported in previous works. This increment in CsPbBr3nanoparticles' reaction yield will contribute to making them a more attractive option for different optoelectronic applications.

2.
Molecules ; 26(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34946656

ABSTRACT

The reaction of diethyl α-oxoethylphosphonate and diethyl oxobenzylphosphonate with diethyl phosphite, dimethyl phosphite, and diphenylphosphine oxide affords, depending on the substrates and conditions (nature and quantity of the amine catalyst, temperature, and solvent), the Pudovik adduct and/or the corresponding >P(O)-CH-O-P(O)< product formed by rearrangement. The nature of the substituent on the central carbon atom (a methyl or phenyl group) influences the inclination for the rearrangement. The asymmetric products (either adducts or rearranged species) with different P(O)Y functions (Y = RO or Ph) exhibit interesting NMR features.

3.
Polymers (Basel) ; 13(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540697

ABSTRACT

The presented paper concerns current knowledge of commercial and alternative photoinitiator systems used in dentistry. It discusses alternative and commercial photoinitiators and focuses on mechanisms of polymerization process, in vitro measurement methods and factors influencing the degree of conversion and hardness of dental resins. PubMed, Academia.edu, Google Scholar, Elsevier, ResearchGate and Mendeley, analysis from 1985 to 2020 were searched electronically with appropriate keywords. Over 60 articles were chosen based on relevance to this review. Dental light-cured composites are the most common filling used in dentistry, but every photoinitiator system requires proper light-curing system with suitable spectrum of light. Alternation of photoinitiator might cause changing the values of biomechanical properties such as: degree of conversion, hardness, biocompatibility. This review contains comparison of biomechanical properties of dental composites including different photosensitizers among other: camphorquinone, phenanthrenequinone, benzophenone and 1-phenyl-1,2 propanedione, trimethylbenzoyl-diphenylphosphine oxide, benzoyl peroxide. The major aim of this article was to point out alternative photoinitiators which would compensate the disadvantages of camphorquinone such as: yellow staining or poor biocompatibility and also would have mechanical properties as satisfactory as camphorquinone. Research showed there is not an adequate photoinitiator which can be as sufficient as camphorquinone (CQ), but alternative photosensitizers like: benzoyl germanium or novel acylphosphine oxide photoinitiators used synergistically with CQ are able to improve aesthetic properties and degree of conversion of dental resin.

4.
Beilstein J Org Chem ; 16: 1974-1982, 2020.
Article in English | MEDLINE | ID: mdl-32831954

ABSTRACT

A variety of chroman-4-ones bearing phosphine oxide motifs were conveniently synthesized from readily available diphenylphosphine oxides and alkenyl aldehydes via a metal-free tandem phosphinoylation/cyclization protocol. The reaction utilizes K2S2O8 as oxidant and proceeds in DMSO/H2O at environmentally benign conditions with a broad substrate scope and afforded the title compounds in moderate yields.

5.
Anal Chim Acta ; 1101: 135-140, 2020 Mar 08.
Article in English | MEDLINE | ID: mdl-32029104

ABSTRACT

Nitrous oxide is an important greenhouse gas and there is a need for sensitive techniques to study its distribution in the environment at concentrations near equilibrium with the atmosphere (9.6 nM in water at 20 °C). Here we present an electrochemical sensor that can quantify N2O in the nanomolar range. The sensor principle relies on a front guard cathode placed in front of the measuring cathode. This cathode is used to periodically block the flux of N2O towards the measuring cathode, thereby creating an amplitude in the signal. This signal amplitude is unaffected by drift in the baseline current and can be read at very high resolution, resulting in a sensitivity of 2 nM N2O for newly constructed sensors. Interference from oxygen is prevented by placing the front guard cathode in oxygen-consuming electrolyte. The sensor was field tested by measuring an N2O profile to a depth of 120 m in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean (ETNP) off the coast of Mexico.

6.
ACS Appl Mater Interfaces ; 11(29): 26474-26482, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31259524

ABSTRACT

The study describes the synthesis of two porous hybrid polymers (abbreviated as DPPF-HPP and DPPOF-HPP) from the Friedel-Crafts reaction of octavinylsilsesquioxane with 1,1'-bis(diphenylphosphine)ferrocene (DPPF) and 1,1'-bis(diphenylphosphine oxide)ferrocene (DPPOF), respectively. DPPF-HPP and DPPOF-HPP possess surface areas of about 890 and 780 m2 g-1, respectively, as well as similar pore structures of the coexisting micropores and mesopores. They are excellent materials for high adsorption of different dyes with adsorption capacities of 2280 mg g-1 for Congo Red and 1440 mg g-1 for Crystal Violet. DPPF-HPP also shows a strong affinity to adsorb Hg2+ ions (300 mg g-1). These materials show no sign of degradation under repeated cycles and thus offer potential for wastewater treatment.

7.
Polymers (Basel) ; 11(6)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181709

ABSTRACT

Protection of polymeric materials from the atomic oxygen erosion in low-earth orbit spacecrafts has become one of the most important research topics in aerospace science. In the current research, a series of novel organic/inorganic nanocomposite films with excellent atomic oxygen (AO) resistance are prepared from the phosphorous-containing polyimide (FPI) matrix and trisilanolphenyl polyhedral oligomeric silsesquioxane (TSP-POSS) additive. The PI matrix derived from 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,5-bis[(4-amino- phenoxy)phenyl]diphenylphosphine oxide (BADPO) itself possesses the self-healing feature in AO environment. Incorporation of TSP-POSS further enhances the AO resistance of the FPI/TSP composite films via a Si-P synergic effect. Meanwhile, the thermal stability of the pristine film is maintained. The FPI-25 composite film with a 25 wt % loading of TSP-POSS in the FPI matrix exhibits an AO erosion yield of 3.1 × 10-26 cm3/atom after an AO attack of 4.0 × 1020 atoms/cm2, which is only 5.8% and 1.0% that of pristine FPI-0 film (6FDA-BADPO) and PI-ref (PMDA-ODA) film derived from 1,2,4,5-pyromellitic anhydride (PMDA) and 4,4'-oxydianline (ODA), respectively. Inert phosphorous and silicon-containing passivation layers are observed at the surface of films during AO exposure.

8.
Molecules ; 23(6)2018 May 23.
Article in English | MEDLINE | ID: mdl-29882878

ABSTRACT

An efficient and practical approach towards bifunctional phosphorus phenols has been developed through a reaction of diphenylphosphine oxide and the o-quinone methides in situ generated from 2-tosylalkyl phenols under basic conditions. This protocol features simple experimental procedures under mild conditions and is easily scaled up. With this method, a variety of diarylmethyl phosphine oxides can be produced with up to 92% yield.


Subject(s)
Indolequinones/chemistry , Phenols/chemical synthesis , Phosphines/chemistry , Phosphorus/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Hydrogen-Ion Concentration , Phenols/chemistry , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
9.
Mol Cell Biochem ; 438(1-2): 199-217, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28795366

ABSTRACT

The aim of this work was the synthesis, characterization, and cytotoxicity evaluation of three new Ru(II) complexes with a general formula [Ru(Spy)(bipy)(P-P)]PF6 [Spy = pyridine-6-thiolate; bipy = 2,2'-bipyridine; P-P = 1,2-bis(diphenylphosphine)ethane (1); 1,3-bis(diphenylphosphine) propane (2); and 1,1'-bis(diphenylphosphino)ferrocene] (4). Complex (3) with the 1,4-bis(diphenylphosphine)butane ligand, already known from the literature, was also synthesized, to be better studied here. The cytotoxicities of the complexes toward two kinds of cancerous cells (K562 and S-180 cells) were evaluated and compared to normal cells (L-929 and PBMC) by MTT assay. The complex [Ru(Spy)(bipy)(dppb)]PF6 (3) was selected to study both the cellular and molecular mechanisms underlying its promising anticancer action in S-180 cells. The results obtained from this study indicated that complex (3) induces cell cycle arrest in the G0/G1 phase in S-180 cells associated with a decrease in the number of cells in S phase. After 24 and 48 h of exposure to complex (3), the cell viability decreased when compared to the negative control. Complex (3) does not appear to be involved in the DNA damage, but induced changes in the mitochondrial membrane potential in S-180 cells. Furthermore, there was also an increase in the gene expression of Bax, Caspase 9, and Tp53. According to our results, complex (3) induces cell apoptosis through p53/Bax-dependent intrinsic pathway and suppresses the expression of active antiapoptotic Bcl-2 protein.


Subject(s)
Apoptosis/drug effects , Coordination Complexes , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Ruthenium , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , K562 Cells , Mice , Mitochondria/pathology , Ruthenium/chemistry , Ruthenium/pharmacology
10.
J Dent Res ; 95(3): 334-41, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26635279

ABSTRACT

Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process.


Subject(s)
Dental Etching/methods , Durapatite/chemistry , Light-Curing of Dental Adhesives/methods , Resin Cements/chemistry , Self-Curing of Dental Resins/methods , Darkness , Dental Enamel/chemistry , Elastic Modulus , Humans , Light , Materials Testing , Methacrylates/chemistry , Methacrylates/radiation effects , Organophosphates/chemistry , Organophosphates/radiation effects , Phosphines/chemistry , Phosphines/radiation effects , Photoinitiators, Dental/chemistry , Photoinitiators, Dental/radiation effects , Pliability , Polymerization , Resin Cements/radiation effects , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Young Adult , para-Aminobenzoates/chemistry , para-Aminobenzoates/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL