Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 910
Filter
1.
Bioact Mater ; 40: 88-103, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38962658

ABSTRACT

Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.

2.
J Nippon Med Sch ; 91(3): 285-295, 2024.
Article in English | MEDLINE | ID: mdl-38972741

ABSTRACT

BACKGROUND: The standard treatment for Kawasaki disease is immunoglobulin therapy, but the high frequency of coronary sequelae in immunoglobulin-refractory cases indicates a need for further improvement in treatment. METHODS: Kawasaki disease-like vasculitis was induced in 5-week-old DBA/2 mice by intraperitoneal administration of 0.5 mg Candida albicans water-soluble fraction (CAWS) daily for 5 days followed by daily administration of candesartan, an angiotensin receptor blocker. The vasculitis suppression effect was confirmed histologically and serologically in mice sacrificed at 28 days after the start of candesartan. RESULTS: The area of inflammatory cell infiltration at the aortic root was 2.4±1.4% in the Control group, 18.1±1.9% in the CAWS group, and 7.1±2.3%, 5.8±1.4%, 7.6±2.4%, and 7.9±5.0% in the CAWS+candesartan 0.125-mg/kg, 0.25-mg/kg, 0.5-mg/kg, and 1.0-mg/kg groups, respectively (p=0.0200, p=0.0122, p=0.0122, and p=0.0200 vs. CAWS, respectively). The low-dose candesartan group also showed significantly reduced inflammatory cell infiltration. A similar trend was confirmed by immunostaining of macrophages and TGFß receptors. Measurement of the inflammatory cytokines IL-1ß, IL-6, and TNF-α confirmed the anti-vasculitis effect of candesartan. CONCLUSIONS: Candesartan inhibited vasculitis even at clinical doses used in children, making it a strong future candidate as an additional treatment for immunoglobulin-refractory Kawasaki disease.


Subject(s)
Benzimidazoles , Biphenyl Compounds , Candida albicans , Disease Models, Animal , Mucocutaneous Lymph Node Syndrome , Tetrazoles , Animals , Benzimidazoles/pharmacology , Benzimidazoles/administration & dosage , Mucocutaneous Lymph Node Syndrome/drug therapy , Tetrazoles/pharmacology , Tetrazoles/administration & dosage , Candida albicans/drug effects , Biphenyl Compounds/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Mice, Inbred DBA , Solubility , Water , Vasculitis/drug therapy , Male , Mice , Cytokines/metabolism , Interleukin-6/metabolism
3.
Zebrafish ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963004

ABSTRACT

The 4th Italian Zebrafish Meeting took place in Palermo from February 7 to 9, 2024. The primary aim of this meeting was to bring together a diverse group of principal investigators, young researchers, facility managers, commercial vendors, and others to provide an important forum for presentation and discussion of the most innovative and exciting scientific research currently ongoing in Italy using the zebrafish model. Nonetheless, the meeting program has been conceived to allow the dissemination of cutting-edge scientific research across a wide range of topics and to shed light on its future directions, without geographical boundaries. Indeed, people from various parts of the world joined the meeting, and 210 participants presented their latest work in talks and posters. Importantly, the meeting had designated time to foster open scientific exchange and informal networking opportunities among participants of all career stages, thus allowing initiation of new collaborations and strengthening of existing partnerships. The meeting was a tremendous success as testified by the highest participation ever since the first meeting of the series in 2017, coupled with the highly positive satisfaction rating expressed by the attendants. The full program and detailed information about the meeting can be found on the dedicated website at https://itazebrafishmeeting.wixsite.com/izm2024.

4.
Value Health ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977190

ABSTRACT

OBJECTIVES: Effective healthcare planning, resource allocation, and budgeting require accurate predictions of the number of patients needing treatment at specific cancer stages and treatment lines. The PRedicting the population health economic IMpact of current and new Cancer Treatments Colorectal Cancer (PRIMCAT-CRC) simulation model was developed to meet this requirement for all CRC stages and relevant molecular profiles in Australia. METHODS: Real-world data was used to estimate treatment utilisation and time-to-event distributions. This populated a discrete-event simulation, projecting the number of patients receiving treatment across all disease stages and treatment lines for CRC and forecasting the number of patients likely to utilise future treatments. Illustrative analyses were undertaken, estimating treatments across disease stages and treatment lines over a 5-year period (2022-2026). We demonstrated the model's applicability through a case study introducing pembrolizumab as a first-line treatment for mismatch-repair deficient stage IV. RESULTS: Clinical registry data from 7,163 patients informed the model. The model forecasts 15,738 incident and 2,821 prevalent cases requiring treatment in 2022, rising to 15,921 and 2,871 respectively by 2026. Projections show that over 2022-2026, there will be a total of 116,752 treatments initiated, with 43% intended for stage IV disease. The introduction of pembrolizumab is projected for 706 patients annually, totalling 3,530 individuals starting treatment with pembrolizumab over the forecasted period, without significantly altering downstream utilisation of subsequent treatments. CONCLUSIONS: PRIMCAT-CRC is a versatile tool that can be used to estimate the eligible patient populations for novel cancer therapies, thereby reducing uncertainty for policymakers in decisions to publicly reimburse new treatments.

5.
Turk J Ophthalmol ; 54(3): 159-169, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940358

ABSTRACT

Tissue engineering (TE) is a field of science that combines biological, engineering, and medical sciences and allows the development of disease models, drug development and gene therapy studies, and even cellular or tissue-based treatments developed by engineering methods. The eye is an organ that is easily accessible and amenable to engineering applications, paving the way for TE in ophthalmology. TE studies are being conducted on a wide range of topics, including the tear film, eyelids, cornea, optic nerve, glaucoma, and retinal diseases. With the rapid scientific advances in the field, it seems that TE is radically modifying the management of ocular disorders.


Subject(s)
Eye Diseases , Ophthalmology , Tissue Engineering , Tissue Engineering/methods , Humans , Ophthalmology/methods , Eye Diseases/therapy
6.
J Psychoactive Drugs ; : 1-14, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909286

ABSTRACT

Opioid misuse continues to cause significant harm. To investigate current research, we conducted a scoping literature review of disease spread models of opioid misuse from January 2000 to December 2022. In total, 85 studies were identified and examined for the opioids modeled, model type, data sources used and model calibration and validation. Most of the studies (58%, 49) only modeled heroin; the next largest categories were prescription opioids and unspecified opioids which accounted for 9% (8) each. Most models were theoretical compartmental models (57) or applied compartmental models (21). Previously published research was the most used data source (38), and a majority of the model validation involved the researchers setting initial conditions to verify theoretical results (30). To represent typical opioid use more accurately, multiple opioids need to be incorporated into the disease spread models, and applying different modeling techniques may allow other insights into opioid misuse spread.

7.
BMC Public Health ; 24(1): 1540, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849785

ABSTRACT

OBJECTIVE: To assess the impact of self-medication on the transmission dynamics of COVID-19 across different age groups, examine the interplay of vaccination and self-medication in disease spread, and identify the age group most prone to self-medication. METHODS: We developed an age-structured compartmentalized epidemiological model to track the early dynamics of COVID-19. Age-structured data from the Government of Gauteng, encompassing the reported cumulative number of cases and daily confirmed cases, were used to calibrate the model through a Markov Chain Monte Carlo (MCMC) framework. Subsequently, uncertainty and sensitivity analyses were conducted on the model parameters. RESULTS: We found that self-medication is predominant among the age group 15-64 (74.52%), followed by the age group 0-14 (34.02%), and then the age group 65+ (11.41%). The mean values of the basic reproduction number, the size of the first epidemic peak (the highest magnitude of the disease), and the time of the first epidemic peak (when the first highest magnitude occurs) are 4.16499, 241,715 cases, and 190.376 days, respectively. Moreover, we observed that self-medication among individuals aged 15-64 results in the highest spreading rate of COVID-19 at the onset of the outbreak and has the greatest impact on the first epidemic peak and its timing. CONCLUSION: Studies aiming to understand the dynamics of diseases in areas prone to self-medication should account for this practice. There is a need for a campaign against COVID-19-related self-medication, specifically targeting the active population (ages 15-64).


Subject(s)
COVID-19 , Self Medication , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Adolescent , South Africa/epidemiology , Adult , Middle Aged , Young Adult , Self Medication/statistics & numerical data , Aged , Child , Prevalence , Child, Preschool , Infant , Infant, Newborn , Epidemiological Models , SARS-CoV-2 , Age Factors , Male , Markov Chains , Female
8.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915620

ABSTRACT

Obesity is a leading risk factor of pancreatic ductal adenocarcinoma (PDAC) that contributes to poor disease prognosis and outcomes. Retrospective studies have identified this link, but interactions surrounding obesity and PDAC are still unclear. Research has shifted to contributions of fibrosis (desmoplasia) on malignancy, which involves increased deposition of collagens and other extracellular matrix (ECM) molecules and increased ECM crosslinking, all of which contribute to increased tissue stiffening. However, fibrotic stiffening is underrepresented as a model feature in current PDAC models. Fibrosis is shared between PDAC and obesity, and can be leveraged for in vitro model design, as current animal obesity models of PDAC are limited in their ability to isolate individual components of fibrosis to study cell behavior. In the current study, methacrylated type I collagen (PhotoCol®) was photo-crosslinked to pathological stiffness levels to recapitulate fibrotic ECM stiffening. PANC-1 cells were encapsulated within PhotoCol®, and the tumor-tissue constructs were prepared to represent normal (healthy) (~600 Pa) and pathological (~2000 Pa) tissues. Separately, human mesenchymal stem cells were differentiated into adipocytes representing lean (2D differentiation) and obese fat tissue (3D collagen matrix differentiation), and conditioned media was applied to PANC-1 tumor-tissue constructs. Conditioned media from obese adipocytes showed increased vimentin expression, a hallmark of invasiveness and progression, that was not seen after exposure to media from lean adipocytes or control media. Characterization of the obese adipocyte secretome suggested that some PANC-1 differences may arise from increased interleukin-8 and -10 compared to lean adipocytes. Additionally, high matrix stiffness associated induced an amoeboid morphology in PANC-1 cells that was not present at low stiffness. Amoeboid morphology is an accessory to epithelial-to-mesenchymal transition and is used to navigate complex ECM environments. This plasticity has greater implications for treatment efficacy of metastatic cancers. Overall, this work 1) highlights the importance of investigating PDAC-obesity interactions to study the effects on disease progression and persistence, 2) establishes PhotoCol® as a matrix material that can be leveraged to study amoeboid morphology and invasion in PDAC, and 3) emphasizes the importance of integrating both biophysical and biochemical interactions associated within both pathologies for in vitro PDAC models.

9.
Genes (Basel) ; 15(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38927642

ABSTRACT

Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease mainly caused by mutations in the X-linked CYBB gene that abrogate reactive oxygen species (ROS) production in phagocytes and microbial defense. Gene repair using the CRISPR/Cas9 system in hematopoietic stem and progenitor cells (HSPCs) is a promising technology for therapy for CGD. To support the establishment of efficient and safe gene therapies for CGD, we generated a mouse model harboring a patient-derived mutation in the CYBB gene. Our CybbC517del mouse line shows the hallmarks of CGD and provides a source for Cybb-deficient HSPCs that can be used to evaluate gene-therapy approaches in vitro and in vivo. In a setup using Cas9 RNPs and an AAV repair vector in HSPCs, we show that the mutation can be repaired in 19% of treated cells and that treatment restores ROS production by macrophages. In conclusion, our CybbC517del mouse line provides a new platform for refining and evaluating novel gene therapies and studying X-CGD pathophysiology.


Subject(s)
CRISPR-Cas Systems , Disease Models, Animal , Genetic Therapy , Granulomatous Disease, Chronic , NADPH Oxidase 2 , Granulomatous Disease, Chronic/therapy , Granulomatous Disease, Chronic/genetics , Animals , Genetic Therapy/methods , Mice , NADPH Oxidase 2/genetics , Reactive Oxygen Species/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Macrophages/metabolism , Mutation
10.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928356

ABSTRACT

The topology of the basement membrane (BM) affects cell physiology and pathology, and BM thickening is associated with various chronic lung diseases. In addition, the topology of commercially available poly (ethylene terephthalate) (PET) membranes, which are used in preclinical in vitro models, differs from that of the human BM, which has a fibrous and elastic structure. In this study, we verified the effect of BM thickness on the differentiation of normal human bronchial epithelial (NHBE) cells. To evaluate whether the thickness of poly-ε-carprolactone (PCL) mesh affects the differentiation of NHBE cells, cells were grown on thin- (6-layer) and thick-layer (80-layer) meshes consisting of electrospun PCL nanofibers using an air-liquid interface (ALI) cell culture system. It was found that the NHBE cells formed a normal pseudostratified epithelium composed of ciliated, goblet, and basal cells on the thin-layer PCL mesh; however, goblet cell hyperplasia was observed on the thick-layer PCL mesh. Differentiated NHBE cells cultured on the thick-layer PCL mesh also demonstrated increased epithelial-mesenchymal transition (EMT) compared to those cultured on the thin-layer PCL mesh. In addition, expression of Sox9, nuclear factor (NF)-κB, and oxidative stress-related markers, which are also associated with goblet cell hyperplasia, was increased in the differentiated NHBE cells cultured on the thick-layer PCL mesh. Thus, the use of thick electrospun PCL mesh led to NHBE cells differentiating into hyperplastic goblet cells via EMT and the oxidative stress-related signaling pathway. Therefore, the topology of the BM, for example, thickness, may affect the differentiation direction of human bronchial epithelial cells.


Subject(s)
Basement Membrane , Cell Differentiation , Epithelial Cells , Polyesters , Humans , Polyesters/chemistry , Basement Membrane/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Nanofibers/chemistry , Cells, Cultured , Bronchi/cytology , Bronchi/metabolism
11.
ACS Nano ; 18(24): 15332-15357, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38837178

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of mortality and therefore pose a significant threat to human health. Cardiac electrophysiology plays a crucial role in the investigation and treatment of CVDs, including arrhythmia. The long-term and accurate detection of electrophysiological activity in cardiomyocytes is essential for advancing cardiology and pharmacology. Regarding the electrophysiological study of cardiac cells, many micronano bioelectric devices and systems have been developed. Such bioelectronic devices possess unique geometric structures of electrodes that enhance quality of electrophysiological signal recording. Though planar multielectrode/multitransistors are widely used for simultaneous multichannel measurement of cell electrophysiological signals, their use for extracellular electrophysiological recording exhibits low signal strength and quality. However, the integration of three-dimensional (3D) multielectrode/multitransistor arrays that use advanced penetration strategies can achieve high-quality intracellular signal recording. This review provides an overview of the manufacturing, geometric structure, and penetration paradigms of 3D micronano devices, as well as their applications for precise drug screening and biomimetic disease modeling. Furthermore, this review also summarizes the current challenges and outlines future directions for the preparation and application of micronano bioelectronic devices, with an aim to promote the development of intracellular electrophysiological platforms and thereby meet the demands of emerging clinical applications.


Subject(s)
Myocytes, Cardiac , Humans , Electrophysiological Phenomena , Animals
12.
J Math Biol ; 89(2): 21, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926228

ABSTRACT

For some communicable endemic diseases (e.g., influenza, COVID-19), vaccination is an effective means of preventing the spread of infection and reducing mortality, but must be augmented over time with vaccine booster doses. We consider the problem of optimally allocating a limited supply of vaccines over time between different subgroups of a population and between initial versus booster vaccine doses, allowing for multiple booster doses. We first consider an SIS model with interacting population groups and four different objectives: those of minimizing cumulative infections, deaths, life years lost, or quality-adjusted life years lost due to death. We solve the problem sequentially: for each time period, we approximate the system dynamics using Taylor series expansions, and reduce the problem to a piecewise linear convex optimization problem for which we derive intuitive closed-form solutions. We then extend the analysis to the case of an SEIS model. In both cases vaccines are allocated to groups based on their priority order until the vaccine supply is exhausted. Numerical simulations show that our analytical solutions achieve results that are close to optimal with objective function values significantly better than would be obtained using simple allocation rules such as allocation proportional to population group size. In addition to being accurate and interpretable, the solutions are easy to implement in practice. Interpretable models are particularly important in public health decision making.


Subject(s)
COVID-19 , Computer Simulation , Endemic Diseases , Immunization, Secondary , Mathematical Concepts , Vaccination , Humans , Immunization, Secondary/statistics & numerical data , Endemic Diseases/prevention & control , Endemic Diseases/statistics & numerical data , COVID-19/prevention & control , COVID-19/epidemiology , Vaccination/statistics & numerical data , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/supply & distribution , Models, Biological , Influenza, Human/prevention & control , SARS-CoV-2/immunology , Quality-Adjusted Life Years , Influenza Vaccines/administration & dosage , Communicable Diseases/epidemiology
13.
J Genet Genomics ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825039

ABSTRACT

Mitochondrial dysfunction is a critical factor leading to a wide range of clinically heterogeneous and often severe disorders due to its central role in generating cellular energy. Mutations in the TUFM gene are known to cause combined oxidative phosphorylation deficiency 4 (COXPD4), a rare mitochondrial disorder characterized by a comprehensive quantitative deficiency in mitochondrial respiratory chain (MRC) complexes. The development of a reliable animal model for COXPD4 is crucial for elucidating the roles and mechanisms of TUFM in disease pathogenesis and benefiting its medical management. In this study, we construct a zebrafish tufm-/- mutant that closely resembles the COXPD4 syndrome, exhibiting compromised mitochondrial protein translation, dysfunctional mitochondria with oxidative phosphorylation (OXPHOS) defects, and significant metabolic suppression of the tricarboxylic acid (TCA) cycle. Leveraging this COXPD4 zebrafish model, we comprehensively validate the clinical relevance of TUFM mutations and identify probucol as a promising therapeutic approach for managing COXPD4. Our data offer valuable insights for understanding mitochondrial diseases and developing effective treatments.

14.
Genes Cells ; 29(7): 525-531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38845473

ABSTRACT

The 36th International Mammalian Genome Conference (IMGC) was held in a hybrid format at the Tsukuba International Congress Center in Tsukuba, Ibaraki, Japan, for 4 days from March 28 to 31, 2023. This international conference on functional genomics of mouse, human, and other mammalian species attracted 246 participants in total, of which 129 were from outside Japan, including Europe, the United States and Asia, and 117 participants were from Japan. The conference included three technical workshops, keynote lectures by domestic researchers, commemorative lectures for the conference awards, 57 oral presentations, and 97 poster presentations. The event was a great success. Topics included the establishment and analysis of disease models using genetically engineered or spontaneous mutant mice, systems genetic analysis using mouse strains such as wild-derived mice and recombinant inbred mouse strains, infectious diseases, immunology, and epigenetics. In addition, as a joint program, a two-day RIKEN Symposium was held, and active discussions continued over the four-day period. Also, there was a trainee symposium, in which young researchers were encouraged to participate, and excellent papers were selected as oral presentations in the main session.


Subject(s)
Genomics , Animals , Humans , Mice , Genome , Genomics/methods , Japan , Mammals/genetics
15.
AAPS PharmSciTech ; 25(5): 119, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816667

ABSTRACT

Loteprednol etabonate (LE) is a topical corticosteroid for the symptomatic management of ocular conditions, encompassing both allergic and infectious etiologies. Owing to the dynamic and static barriers of the eye, LE exhibits significantly low bioavailability, necessitating an increase in the frequency of drug administration. The objective of this study is to overcome the limitations by developing niosomal systems loaded with LE. Design of Experiments (DoE) approach was used for the development of optimal niosome formulation. The optimal formulation was characterized using DLS, FT-IR, and DSC analysis. In vitro and ex vivo release studies were performed to demonstrate drug release patterns. After that HET-CAM evaluation was conducted to determine safety profile. Then, in vivo studies were carried out to determine therapeutic activity of niosomes. Zeta potential (ZP), particle size, polydispersity index (PI), and encapsulation efficacy (EE) were -33.8 mV, 89.22 nm, 0.192, and 89.6%, respectively. Medicated niosomes had a broad distribution within rabbit eye tissues and was absorbed by the aqueous humor of the bovine eye for up to 6 h after treatment. Cumulative permeated drug in the bovine eye and rabbit eye were recorded 52.45% and 54.8%, respectively. No irritation or hemorrhagic situation was observed according to the results of HET-CAM study. Thus, novel LE-loaded niosomal formulations could be considered as a promising treatment option for the dry-eye-disease (DED) due to enhanced bioavailability and decreased side effects.


Subject(s)
Delayed-Action Preparations , Dry Eye Syndromes , Liposomes , Loteprednol Etabonate , Animals , Rabbits , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Loteprednol Etabonate/administration & dosage , Loteprednol Etabonate/pharmacokinetics , Dry Eye Syndromes/drug therapy , Cattle , Drug Liberation , Particle Size , Disease Models, Animal , Administration, Ophthalmic , Biological Availability , Drug Delivery Systems/methods , Eye/metabolism , Eye/drug effects , Aqueous Humor/metabolism , Chemistry, Pharmaceutical/methods , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/pharmacokinetics
16.
J Genet Genomics ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777118

ABSTRACT

LAMA2-related congenital muscular dystrophy (LAMA2-CMD), characterized by laminin-α2 deficiency, is debilitating and ultimately fatal. To date, no effective therapy has been clinically available. Laminin-α1, which shares significant similarities with laminin-α2, has been proven as a viable compensatory modifier. To evaluate its clinical applicability, we establish a Lama2 exon-3 deletion mouse model (dyH/dyH). The dyH/dyH mice exhibit early lethality and typical LAMA2-CMD phenotypes, allowing the evaluation of various endpoints. In dyH/dyH mice treated with synergistic activation mediator-based CRISPRa-mediated Lama1 upregulation, a nearly doubled median survival is observed, as well as improvements in weight and grip. Significant therapeutical effects are revealed by MRI, serum biochemical indices, and muscle pathology studies. Treating LAMA2-CMD with LAMA1 upregulation is feasible and that early intervention can alleviate symptoms and extend lifespan. Additionally, we reveal limitations of LAMA1 upregulation, including high-dose mortality and non-sustained expression, which require further optimization in future studies.

17.
Zool Res ; 45(3): 617-632, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766745

ABSTRACT

The Chinese tree shrew ( Tupaia belangeri chinensis) has emerged as a promising model for investigating adrenal steroid synthesis, but it is unclear whether the same cells produce steroid hormones and whether their production is regulated in the same way as in humans. Here, we comprehensively mapped the cell types and pathways of steroid metabolism in the adrenal gland of Chinese tree shrews using single-cell RNA sequencing, spatial transcriptome analysis, mass spectrometry, and immunohistochemistry. We compared the transcriptomes of various adrenal cell types across tree shrews, humans, macaques, and mice. Results showed that tree shrew adrenal glands expressed many of the same key enzymes for steroid synthesis as humans, including CYP11B2, CYP11B1, CYB5A, and CHGA. Biochemical analysis confirmed the production of aldosterone, cortisol, and dehydroepiandrosterone but not dehydroepiandrosterone sulfate in the tree shrew adrenal glands. Furthermore, genes in adrenal cell types in tree shrews were correlated with genetic risk factors for polycystic ovary syndrome, primary aldosteronism, hypertension, and related disorders in humans based on genome-wide association studies. Overall, this study suggests that the adrenal glands of Chinese tree shrews may consist of closely related cell populations with functional similarity to those of the human adrenal gland. Our comprehensive results (publicly available at http://gxmujyzmolab.cn:16245/scAGMap/) should facilitate the advancement of this animal model for the investigation of adrenal gland disorders.


Subject(s)
Adrenal Glands , Steroids , Animals , Adrenal Glands/metabolism , Humans , Steroids/biosynthesis , Steroids/metabolism , Transcriptome , Mice , Tupaiidae , Female , Multiomics
18.
J Mol Med (Berl) ; 102(7): 859-874, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802517

ABSTRACT

The liver is a major metabolic organ of the human body and has a high incidence of diseases. In recent years, the annual incidence of liver disease has increased, seriously endangering human life and health. The study of the occurrence and development mechanism of liver diseases, discovery of new therapeutic targets, and establishment of new methods of medical treatment are major issues related to the national economy and people's livelihood. The development of stable and effective research models is expected to provide new insights into the pathogenesis of liver diseases and the search for more effective treatment options. Organoid technology is a new in vitro culture system, and organoids constructed by human cells can simulate the morphological structure, gene expression, and glucose and lipid metabolism of organs in vivo, providing a new model for related research on liver diseases. This paper reviews the latest research progress on liver organoids from the establishment of cell sources and application of liver organoids and discusses their application potential in the field of liver disease research.


Subject(s)
Liver Diseases , Liver , Organoids , Regenerative Medicine , Organoids/metabolism , Humans , Liver/metabolism , Liver/pathology , Liver Diseases/therapy , Liver Diseases/metabolism , Liver Diseases/pathology , Animals , Regenerative Medicine/methods , Models, Biological , Liver Regeneration
19.
Heliyon ; 10(9): e30457, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720734

ABSTRACT

Organoids are three-dimensional structures derived from primary tissue or tumors that closely mimic the architecture, histology, and function of the parental tissue. In recent years, patient-derived organoids (PDOs) have emerged as powerful tools for modeling tumor heterogeneity, drug screening, and personalized medicine. Although most cancer organoids are derived from primary tumors, the ability of organoids from metastatic cancer to serve as a model for studying tumor biology and predicting the therapeutic response is an area of active investigation. Recent studies have shown that organoids derived from metastatic sites can provide valuable insights into tumor biology and may be used to validate predictive models of the drug response. In this comprehensive review, we discuss the feasibility of culturing organoids from multiple metastatic cancers and evaluate their potential for advancing basic cancer research, drug development, and personalized therapy. We also explore the limitations and challenges associated with using metastasis organoids for cancer research. Overall, this review provides a comprehensive overview of the current state and future prospects of metastatic cancer-derived organoids.

20.
Part Fibre Toxicol ; 21(1): 25, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760786

ABSTRACT

Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.


Subject(s)
Air Pollution, Indoor , Cell Survival , Particulate Matter , Humans , Air Pollution, Indoor/adverse effects , Particulate Matter/toxicity , Cell Survival/drug effects , A549 Cells , Cytokines/metabolism , THP-1 Cells , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Air Pollutants/toxicity , Inflammation/chemically induced , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology
SELECTION OF CITATIONS
SEARCH DETAIL