Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; : e16292, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439575

ABSTRACT

Autopolyploidy is taxonomically defined as the presence of more than two copies of each genome within an organism or species, where the genomes present must all originate within the same species. Alternatively, "genetic" or "cytological" autopolyploidy is defined by polysomic inheritance: random pairing and segregation of the four (or more) homologous chromosomes present, with no preferential pairing partners. In this review, we provide an overview of methods used to categorize species as taxonomic and cytological autopolyploids, including both modern and obsolete cytological methods, marker-segregation-based and genomics methods. Subsequently, we also investigated how frequently polysomic inheritance has been reliably documented in autopolyploids. Pure or predominantly polysomic inheritance was documented in 39 of 43 putative autopolyploid species where inheritance data was available (91%) and in seven of eight synthetic autopolyploids, with several cases of more mixed inheritance within species. We found no clear cases of autopolyploids with disomic inheritance, which was likely a function of our search methodology. Interestingly, we found seven species with purely polysomic inheritance and another five species with partial or predominant polysomic inheritance that appear to be taxonomic allopolyploids. Our results suggest that observations of polysomic inheritance can lead to relabeling of taxonomically allopolyploid species as autopolyploid and highlight the need for further cytogenetic and genomic investigation into polyploid origins and inheritance types.

2.
Ecol Evol ; 11(13): 8640-8653, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34257920

ABSTRACT

Knowing species' breeding system and mating processes occurring in populations is important not only for understanding population dynamics, gene flow processes, and species' response to climate change, but also for designing control plans of invasive species. Geranium robertianum, a widespread biennial herbaceous species showing high morphological variation and wide ecological amplitude, can become invasive outside its distribution range. A mixed-mating system may be expected given the species' floral traits. However, autonomous selfing is considered as a common feature. Genetic variation and structure, and so population mating processes, have not been investigated in wild populations. We developed 15 polymorphic microsatellite markers to quantify genetic variation and structure in G. robertianum. To investigate whether selfing might be the main mating process in natural conditions, we sampled three generations of plants (adult, F1, and F2) for populations from the UK, Spain, Belgium, Germany, and Sweden, and compared open-pollinated with outcrossed hand-pollinated F2 progeny. The highly positive Wright's inbreeding coefficient (F IS) values in adults, F1, and open-pollinated F2 progeny and the low F IS values in outcross F2 progeny supported autonomous selfing as the main mating process for G. robertianum in wild conditions, despite the presence of attractive signals for insect pollination. Genetic differentiation among samples was found, showing some western-eastern longitudinal trend. Long-distance seed dispersal might have contributed to the low geographic structure. Local genetic differentiation may have resulted not only from genetic drift effects favored by spontaneous selfing, but also from ecological adaptation. The presence of duplicate loci with disomic inheritance is consistent with the hypothesis of allotetraploid origin of G. robertianum. The fact that most microsatellite markers behave as diploid loci with no evidence of duplication supports the hypothesis of ancient polyploidization. The differences in locus duplication and the relatively high genetic diversity across G. robertianum range despite spontaneous autonomous selfing suggest multiple events of polyploidization.

3.
Plant Cell Rep ; 39(3): 335-349, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31781856

ABSTRACT

KEY MESSAGE: Tetraploid `Moncada´ mandarin, used as male and female in interploidy hybridizations, displays mainly tetrasomic inheritance for most LGs, with slight variations according to the direction of the crossing. Triploid-breeding programs in citrus are key tool to develop seedless cultivars. Obtaining triploid citrus hybrids may be achieved through different strategies, such as the exploitation of female unreduced gamete in crosses between diploid parents and diploid by tetraploid sexual hybridizations, in which tetraploid genotypes can be used as male or female parents. Genetic configuration of triploid populations from interploid crosses greatly depends on the chromosomic segregation mode of the tetraploid parent used. Here, we have analyzed the inheritance of the tetraploid 'Moncada' mandarin and compared the genetic structures of the resulting gametes when used as male and as female parent. The preferential chromosome pairing rate is calculated from the parental heterozygosity restitution (PHR) of codominant molecular markers, indicating the proportion between disomic and tetrasomic segregation. Tetraploid 'Moncada' both as female and male parent largely exhibited tetrasomic segregation. However, as female parent, one linkage group (LG8) showed intermediate segregation with tendency towards tetrasomic inheritance, while another linkage group (LG4) evidenced a clear intermediate segregation. On the other hand, when used as male parent two linkage groups (LG5 and LG6) showed values that fit an intermediate inheritance model with tetrasomic tendency. Significant doubled reduction (DR) rates were observed in five linkage groups as female parent, and in six linkage groups as male parent. The new knowledge generated here will serve to define crossing strategies in citrus improvement programs to efficiently obtain new varieties of interest in the global fresh consumption market.


Subject(s)
Citrus/genetics , Germ Cells, Plant/metabolism , Inheritance Patterns/genetics , Tetraploidy , Diploidy , Genetic Markers , Genotype , Heterozygote , Microsatellite Repeats/genetics , Plant Breeding , Polymorphism, Single Nucleotide/genetics
4.
J Plant Res ; 131(5): 879-885, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29687245

ABSTRACT

Codominant marker systems are better suited to analyze population structure and assess the source of an individual in admixture analyses. Currently, there is no codominant marker system using microsatellites developed for the sea sandwort, Honckenya peploides (L.) Ehrh., an early colonizer in island systems. We developed and characterized novel microsatellite loci from H. peploides, using reads collected from whole genome shotgun sequencing on a 454 platform. The combined output from two shotgun runs yielded a total of 62,669 reads, from which 58 loci were screened. We identified 12 polymorphic loci that amplified reliably and exhibited disomic inheritance. Microsatellite data were collected and characterized for the 12 polymorphic loci in two Alaskan populations of H. peploides: Fossil Beach, Kodiak Island (n = 32) and Egg Bay, Atka Island (n = 29). The Atka population exhibited a slightly higher average number of alleles (3.9) and observed heterozygosity (0.483) than the Kodiak population (3.3 and 0.347, respectively). The overall probability of identity values for both populations was PID = 2.892e-6 and PIDsib = 3.361e-3. We also screened the 12 polymorphic loci in Wilhelmsia physodes (Fisch. ex Ser.) McNeill, the most closely related species to H. peploides, and only one locus was polymorphic. These microsatellite markers will allow future investigations into population genetic and colonization patterns of the beach dune ruderal H. peploides on new and recently disturbed islands.


Subject(s)
Caryophyllaceae/genetics , Microsatellite Repeats/genetics , Polymorphism, Genetic/genetics , Alleles , Genetic Loci/genetics , Heterozygote , High-Throughput Nucleotide Sequencing
5.
New Phytol ; 213(2): 487-493, 2017 01.
Article in English | MEDLINE | ID: mdl-28000935
6.
Mol Ecol ; 25(2): 616-29, 2016 01.
Article in English | MEDLINE | ID: mdl-26607306

ABSTRACT

Polyploidization is a dominant feature of flowering plant evolution. However, detailed genomic analyses of the interpopulation diversification of polyploids following genome duplication are still in their infancy, mainly because of methodological limits, both in terms of sequencing and computational analyses. The shepherd's purse (Capsella bursa-pastoris) is one of the most common weed species in the world. It is highly self-fertilizing, and recent genomic data indicate that it is an allopolyploid, resulting from hybridization between the ancestors of the diploid species Capsella grandiflora and Capsella orientalis. Here, we investigated the genomic diversity of C. bursa-pastoris, its population structure and demographic history, following allopolyploidization in Eurasia. To that end, we genotyped 261 C. bursa-pastoris accessions spread across Europe, the Middle East and Asia, using genotyping-by-sequencing, leading to a total of 4274 SNPs after quality control. Bayesian clustering analyses revealed three distinct genetic clusters in Eurasia: one cluster grouping samples from Western Europe and Southeastern Siberia, the second one centred on Eastern Asia and the third one in the Middle East. Approximate Bayesian computation (ABC) supported the hypothesis that C. bursa-pastoris underwent a typical colonization history involving low gene flow among colonizing populations, likely starting from the Middle East towards Europe and followed by successive human-mediated expansions into Eastern Asia. Altogether, these findings bring new insights into the recent multistage colonization history of the allotetraploid C. bursa-pastoris and highlight ABC and genotyping-by-sequencing data as promising but still challenging tools to infer demographic histories of selfing allopolyploids.


Subject(s)
Biological Evolution , Capsella/genetics , Genetics, Population , Hybridization, Genetic , Asia , Bayes Theorem , Europe , Genotype , Middle East , Models, Genetic , Plant Weeds/genetics , Polymorphism, Single Nucleotide , Polyploidy , Sequence Analysis, DNA , Spatial Analysis
7.
Mol Ecol ; 24(5): 1047-59, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25585898

ABSTRACT

Many eukaryote organisms are polyploid. However, despite their importance, evolutionary inference of polyploid origins and modes of inheritance has been limited by a need for analyses of allele segregation at multiple loci using crosses. The increasing availability of sequence data for nonmodel species now allows the application of established approaches for the analysis of genomic data in polyploids. Here, we ask whether approximate Bayesian computation (ABC), applied to realistic traditional and next-generation sequence data, allows correct inference of the evolutionary and demographic history of polyploids. Using simulations, we evaluate the robustness of evolutionary inference by ABC for tetraploid species as a function of the number of individuals and loci sampled, and the presence or absence of an outgroup. We find that ABC adequately retrieves the recent evolutionary history of polyploid species on the basis of both old and new sequencing technologies. The application of ABC to sequence data from diploid and polyploid species of the plant genus Capsella confirms its utility. Our analysis strongly supports an allopolyploid origin of C. bursa-pastoris about 80 000 years ago. This conclusion runs contrary to previous findings based on the same data set but using an alternative approach and is in agreement with recent findings based on whole-genome sequencing. Our results indicate that ABC is a promising and powerful method for revealing the evolution of polyploid species, without the need to attribute alleles to a homeologous chromosome pair. The approach can readily be extended to more complex scenarios involving higher ploidy levels.


Subject(s)
Biological Evolution , Capsella/genetics , Models, Genetic , Polyploidy , Bayes Theorem , Genome, Plant
SELECTION OF CITATIONS
SEARCH DETAIL