Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230130, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913060

ABSTRACT

The spread of parasites and the emergence of disease are currently threatening global biodiversity and human welfare. To address this threat, we need to better understand those factors that determine parasite persistence and prevalence. It is known that dispersal is central to the spatial dynamics of host-parasite systems. Yet past studies have typically assumed that dispersal is a species-level constant, despite a growing body of empirical evidence that dispersal varies with ecological context, including the risk of infection and aspects of host state such as infection status (parasite-dependent dispersal; PDD). Here, we develop a metapopulation model to understand how different forms of PDD shape the prevalence of a directly transmitted parasite. We show that increasing host dispersal rate can increase, decrease or cause a non-monotonic change in regional parasite prevalence, depending on the type of PDD and characteristics of the host-parasite system (transmission rate, virulence, and dispersal mortality). This result contrasts with previous studies with parasite-independent dispersal which concluded that prevalence increases with host dispersal rate. We argue that accounting for host dispersal responses to parasites is necessary for a complete understanding of host-parasite dynamics and for predicting how parasite prevalence will respond to changes such as human alteration of landscape connectivity. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Animal Distribution , Host-Parasite Interactions , Models, Biological , Animals , Prevalence , Humans , Parasites/physiology , Parasitic Diseases/epidemiology , Parasitic Diseases/parasitology , Population Dynamics
2.
Proc Biol Sci ; 286(1908): 20191177, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31362639

ABSTRACT

Habitat fragmentation threatens global biodiversity. To date, there is only limited understanding of how the different aspects of habitat fragmentation (habitat loss, number of fragments and isolation) affect species diversity within complex ecological networks such as food webs. Here, we present a dynamic and spatially explicit food web model which integrates complex food web dynamics at the local scale and species-specific dispersal dynamics at the landscape scale, allowing us to study the interplay of local and spatial processes in metacommunities. We here explore how the number of habitat patches, i.e. the number of fragments, and an increase of habitat isolation affect the species diversity patterns of complex food webs (α-, ß-, γ-diversities). We specifically test whether there is a trophic dependency in the effect of these two factors on species diversity. In our model, habitat isolation is the main driver causing species loss and diversity decline. Our results emphasize that large-bodied consumer species at high trophic positions go extinct faster than smaller species at lower trophic levels, despite being superior dispersers that connect fragmented landscapes better. We attribute the loss of top species to a combined effect of higher biomass loss during dispersal with increasing habitat isolation in general, and the associated energy limitation in highly fragmented landscapes, preventing higher trophic levels to persist. To maintain trophic-complex and species-rich communities calls for effective conservation planning which considers the interdependence of trophic and spatial dynamics as well as the spatial context of a landscape and its energy availability.


Subject(s)
Biodiversity , Conservation of Natural Resources , Food Chain , Animals , Ecosystem , Models, Biological , Plants
3.
Mov Ecol ; 4: 9, 2016.
Article in English | MEDLINE | ID: mdl-27087978

ABSTRACT

BACKGROUND: Dispersal is a key process in the response of insect populations to rapidly changing environmental conditions. Variability among individuals, regarding the timing of dispersal initiation and travelled distance from source, is assumed to contribute to increased population success through risk spreading. However, experiments are often limited in studying complex dispersal interactions over space and time. By applying a local-scaled individual-based simulation model we studied dispersal and emerging infestation patterns in a host - bark beetle system (Picea abies - Ips typgraphus). More specifically, we (i) investigated the effect of individual variability in beetle physiology (flight capacity) and environmental heterogeneity (host susceptibility level) on population-level dispersal success, and (ii) elucidated patterns of spatial and/or temporal variability in individual dispersal success, host selectivity, and the resulting beetle density within colonized hosts in differently susceptible environments. RESULTS: Individual variability in flight capacity of bark beetles causes predominantly positive effects on population-level dispersal success, yet these effects are strongly environment-dependent: Variability is most beneficial in purely resistant habitats, while positive effects are less pronounced in purely susceptible habitats, and largely absent in habitats where host susceptibility is spatially scattered. Despite success rates being highest in purely susceptible habitats, scattered host susceptibility appeared most suitable for dispersing bark beetle populations as it ensures population spread without drastically reducing success rates. At the individual level, dispersal success generally decreases with distance to source and is lowest in early flight cohorts, while host selectivity increased and colonization density decreased with increasing distance across all environments. CONCLUSIONS: Our modelling approach is demonstrated to be a powerful tool for studying movement ecology in bark beetles. Dispersal variability largely contributes to risk spreading among individuals, and facilitates the response of populations to changing environmental conditions. Higher mortality risk suffered by a small part of the dispersing population (long-distance dispersers, pioneers) is likely paid off by reduced deferred costs resulting in fitness benefits for subsequent generations. Both, dispersal variability in space and time, and environmental heterogeneity are characterized as key features which require particular emphasis when investigating dispersal and infestation patterns in tree-killing bark beetles.

SELECTION OF CITATIONS
SEARCH DETAIL
...