Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.682
Filter
1.
Front Mol Neurosci ; 17: 1444629, 2024.
Article in English | MEDLINE | ID: mdl-39092202

ABSTRACT

The Ca2+-dependent activator protein for secretion (CAPS/CADPS) family protein facilitates catecholamine release through the dense-core vesicle exocytosis in model neuroendocrine cell lines. However, it remains unclear if it induces dopamine release in the central neurons. This study aimed to examine the expression and function of CADPS2, one of the two CADPS paralogs, in dopamine neurons of the mouse midbrain. This study shows that CADPS2 was expressed in tyrosine hydroxylase and the vesicular monoamine transporter 2 (VMAT2)-positive dopaminergic neurons of the midbrain samples and primary mesencephalic cell cultures. Subcellular fractions rich in dopamine were collected using immunoaffinity for CADPS2 from midbrain protein extracts. Cell imaging using fluorescent false neurotransmitter FFN511 as a substrate for VMAT2 showed decreased activity-dependent dopamine release in Cadps2-deficient cultures, compared to that in wild-type cultures. These results suggest that CADPS2 is involved in dopamine release from the central neurons, indicating its involvement in the central dopamine pathway.

2.
Neuron ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39094559

ABSTRACT

Understanding the kinetics of LSD in receptors and subsequent induced signaling is crucial for comprehending both the psychoactive and therapeutic effects of LSD. Despite extensive research on LSD's interactions with serotonin 2A and 2B receptors, its behavior on other targets, including dopamine receptors, has remained elusive. Here, we present cryo-EM structures of LSD/PF6142-bound dopamine D1 receptor (DRD1)-legobody complexes, accompanied by a ß-arrestin-mimicking nanobody, NBA3, shedding light on the determinants of G protein coupling versus ß-arrestin coupling. Structural analysis unveils a distinctive binding mode of LSD in DRD1, particularly with the ergoline moiety oriented toward TM4. Kinetic investigations uncover an exceptionally rapid dissociation rate of LSD in DRD1, attributed to the flexibility of extracellular loop 2 (ECL2). Moreover, G protein can stabilize ECL2 conformation, leading to a significant slowdown in ligand's dissociation rate. These findings establish a solid foundation for further exploration of G protein-coupled receptor (GPCR) dynamics and their relevance to signal transduction.

3.
R Soc Open Sci ; 11(7): 240604, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39086833

ABSTRACT

Social isolation causes profound changes in social behaviour in a variety of species. However, the genetic and molecular mechanisms modulating behavioural responses to social isolation and social recovery remain to be elucidated. Here, we quantified the behavioural response of vinegar flies to social isolation using two distinct protocols (social space preference and sociability, the spontaneous tendencies to form groups). We found that social isolation increased social space and reduced sociability. These effects of social isolation were reversible and could be reduced after 3 days of group housing. Flies with a loss of function of neuroligin3 (orthologue of autism-related neuroligin genes) with known increased social space in a socially enriched environment were still able to recover from social isolation. We also show that dopamine (DA) is needed for a response to social isolation and recovery in males but not in females. Furthermore, only in males, DA levels are reduced after isolation and are not recovered after group housing. Finally, in socially enriched flies mutant for neuroligin3, DA levels are reduced in males, but not in females. We propose a model to explain how DA and neuroligin3 are involved in the behavioural response to social isolation and its recovery in a dynamic and sex-specific manner.

4.
Article in English | MEDLINE | ID: mdl-39088648

ABSTRACT

Intrarenal dopamine plays a protective role against the development of diabetic nephropathy during the early stages of the disease. In streptozotocin-induced diabetic mice with a renal-specific catechol-O-methyl transferase knockout, intrarenal dopamine was found to suppress glomerular hyperfiltration, reduce oxidative stress and inflammation, and inhibit fibrosis. However, while dopamine activation in streptozotocin-induced diabetic models has been shown to provide renal protection, the role of dopamine in models of naturally induced diabetes mellitus is still unclear. In the present study, we administered 10 mg/kg p.o. benserazide, a peripheral decarboxylase inhibitor, to Spontaneously Diabetic Torii rats daily, in order to investigate the activation of the renal dopaminergic system during diabetic nephropathy progression. Our findings show that peripheral dopamine decreased urinary 8-iso-prostaglandin F2a and suppressed increases in plasma cystatin C levels. This study demonstrates that a reduction in peripheral dopamine can exacerbate renal dysfunction, even in the early stages of diabetic nephropathy characterized by glomerular hyperfiltration, thereby clarifying the pivotal role of endogenous peripheral dopamine in modulating oxidative stress and kidney performance.

5.
Brain Struct Funct ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096390

ABSTRACT

Emotional arousal is caused by the activity of two parallel ascending systems targeting mostly the subcortical limbic regions and the prefrontal cortex. The aversive, negative arousal system is initiated by the activity of the mesolimbic cholinergic system and the hedonic, appetitive, arousal is initiated by the activity of the mesolimbic dopaminergic system. Both ascending projections have a diffused nature and arise from the rostral, tegmental part of the brain reticular activating system. The mesolimbic cholinergic system originates in the laterodorsal tegmental nucleus and the mesolimbic dopaminergic system in the ventral tegmental area. Cholinergic and dopaminergic arousal systems have converging input to the medial prefrontal cortex. The arousal system can modulate cortical EEG with alpha rhythms, which enhance synaptic strength as shown by an increase in long-term potentiation (LTP), whereas delta frequencies are associated with decreased arousal and a decrease in synaptic strength as shown by an increase in long-term depotentiation (LTD). It is postulated that the medial prefrontal cortex is an adaptable node with decision making capability and may control the switch between positive and negative affect and is responsible for modifying or changing emotional state and its expression.

6.
Brain Res Bull ; : 111038, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097033

ABSTRACT

Cannabidiol (CBD) is a non-psychoactive drug extracted from marijuana. It is well established that CBD attenuates the reinforcing effects of drugs of abuse, although its mechanism of action is not fully understood. The current study tries to clarify the role of D1-like dopamine receptors (D1R) in the ventral tegmental area (VTA) in the inhibitory effects of the CBD on the acquisition and expression of methamphetamine (METH)-conditioned place preference (CPP). In the CPP training, adult male Wistar rats were conditioned with subcutaneous administration of METH (1mg/kg) for five days. Three groups of animals were treated with multiple doses of SCH23390 (as a D1R antagonist; 0.25, 1, and 4µg/0.3µl saline) in the VTA, respectively, before intracerebroventricular (ICV) injection of CBD (10µg/5µl DMSO) in the acquisition phase. In the second experiment of the study, rats received SCH23390 in the VTA before ICV administration of CBD (50µg/5µl DMSO) in the expression of METH CPP. Here, the current study demonstrated that CBD inhibits the acquisition and expression of METH CPP, while microinjection of D1R antagonists (1 and 4µg) into the VTA significantly reduced CBD's suppressive effect on the acquisition and expression of METH place preference. Furthermore, this research demonstrated that either SCH23390 or CBD alone does not lead to place preference in the CPP paradigm. Based on these data, this study suggests that pharmacological manipulations of D1R may alter the CBD's effect on METH-conditioned preference.

7.
J Transl Med ; 22(1): 719, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103832

ABSTRACT

With the increasing age of the population worldwide, the incidence rate of Parkinson's disease (PD) is increasing annually. Currently, the treatment strategy for PD only improves clinical symptoms. No effective treatment strategy can slow down the progression of the disease. In the present study, whole transcriptome sequencing was used to obtain the mRNA and miRNA expression profiles in a PD mouse model, which revealed the pathogenesis of PD. The transcription factor RUNX3 upregulated the miR-186-3p expression in the PD model. Furthermore, the high miR-186-3p expression in PD can be targeted to inhibit the DAT expression, resulting in a decrease in the dopamine content of dopaminergic neurons. Moreover, miR-186-3p can be targeted to inhibit the IGF1R expression and prevent the activation of the IGF1R-P-PI3K-P-AKT pathway, thus increasing the apoptosis of dopaminergic neurons by regulating the cytochrome c-Bax-cleaved caspase-3 pathway. Our research showed that the RUNX3-miR-186-3p-DAT-IGF1R axis plays a key role in the pathogenesis of PD, and miR-186-3p is a potential target for the treatment of PD.


Subject(s)
Core Binding Factor Alpha 3 Subunit , Disease Models, Animal , MicroRNAs , Parkinson Disease , Receptor, IGF Type 1 , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Mice, Inbred C57BL , Male , Apoptosis/genetics , Signal Transduction , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Mice , Base Sequence
8.
Heliyon ; 10(14): e34355, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108921

ABSTRACT

Parkinson's disease (PD) is associated with a reduction in 26/20S proteasome and mitochondrial function and depletion of dopamine. Activation of mitochondrial function with the NAD+ precursor nicotinamide riboside (NR) is a potential therapeutic for PD. However, despite recently started clinical trials, analysis of NR in mammalian animal PD models is lacking and data in simpler PD models is limited. We analyzed the effect of NR in C. elegans and in mouse 26/20S proteasome inhibition models of PD. In C. elegans, NR rescued α-synuclein overexpression induced phenotypes likely by activating the mitochondrial unfolded protein response. However, in a proteasome inhibitor-induced mouse model of PD, NR first partially rescued behavioural dysfunction, but later resulted in decrease in dopamine and its related gene expression in the substantia nigra. Our results suggest that reduction in 26/20S function with long term NR treatment may increase risk for developing reduced nigrostriatal DA function.

9.
Adv Sci (Weinh) ; : e2308974, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099402

ABSTRACT

Dopaminergic (DA) neurons are known to play a key role in controlling behaviors. While DA neurons in other brain regions are extensively characterized, those in zona incerta (ZITH or A13) receive much less attention and their function remains to be defined. Here it is shown that optogenetic stimulation of these neurons elicited intensive self-grooming behaviors and promoted place preference, which can be enhanced by training but cannot be converted into contextual memory. Interestingly, the same stimulation increased DA release to periaqueductal grey (PAG) neurons and local PAG antagonism of DA action reduced the elicited self-grooming. In addition, A13 neurons increased their activity in response to various external stimuli and during natural self-grooming episodes. Finally, monosynaptic retrograde tracing showed that the paraventricular hypothalamus represents one of the major upstream brain regions to A13 neurons. Taken together, these results reveal that A13 neurons are one of the brain sites that promote appetitive self-grooming involving DA release to the PAG.

10.
Cogn Neurodyn ; 18(4): 1895-1911, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39104680

ABSTRACT

Dopamine modulates working memory in the prefrontal cortex (PFC) and is crucial for obsessive-compulsive disorder (OCD). However, the mechanism is unclear. Here we establish a biophysical model of the effect of dopamine (DA) in PFC to explain the mechanism of how high dopamine concentrations induce persistent neuronal activities with the network plunging into a deep, stable attractor state. The state develops a defect in working memory and tends to obsession and compulsion. Weakening the reuptake of dopamine acts on synaptic plasticity according to Hebbian learning rules and reward learning, which in turn affects the strength of neuronal synaptic connections, resulting in the tendency of compulsion and learned obsession. In addition, we elucidate the potential mechanisms of dopamine antagonists in OCD, indicating that dopaminergic drugs might be available for treatment, even if the abnormality is a consequence of glutamate hypermetabolism rather than dopamine. The theory highlights the significance of early intervention and behavioural therapies for obsessive-compulsive disorder. It potentially offers new approaches to dopaminergic pharmacotherapy and psychotherapy for OCD patients.

11.
Cogn Neurodyn ; 18(4): 1913-1929, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39104688

ABSTRACT

Working memory (WM) is considered as the scratchpad for reading, writing, and processing information necessary to perform cognitive tasks. The Basal Ganglia (BG) and Prefrontal Cortex are two important parts of the brain that are involved in WM functions, and both structures receive projections from dopaminergic nuclei. In this modelling study, we specifically focus on modelling the WM functions of the BG, the WM deficits in Parkinson's disease (PD) conditions, and the impact of dopamine deficiency on different kinds of WM functions. Though there are many experimental and modelling studies of WM properties, there is a paucity of models of the BG that provide insights into the contributions of the BG in WM functions. The proposed model of BG uses bistable flip-flop neurons to model striatal up-down neurons, a network of nonlinear oscillators to model the oscillations of the Indirect Pathway of BG and race-model for action selection. Five different WM tasks are used to demonstrate the generalisation ability of the proposed model. Experimental data from the four tasks are compared with model performance in both control and PD conditions. The model is extended to predict the response time of subjects and in the PD version of the model, the effect of dopaminergic medication on WM performance is also simulated. The proposed model of BG is a unified model that can explain the WM functions of the BG over a wide variety of tasks in both normal and PD conditions, and can be used to understand why specific WM functions are impaired whereas others remain intact in PD. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-10056-y.

12.
J Neurophysiol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108212

ABSTRACT

Co-transmission, meaning the release of multiple neurotransmitters from one synapse, allows for increased diversity of signaling in the brain. Dopamine (DA) and γ-Aminobutyric acid (GABA) are known to co-express in many regions such as the olfactory bulb and the ventral tegmental area. Tuberoinfundibular dopaminergic neurons (TIDA) in the arcuate nucleus of the hypothalamus (Arc) project to the median eminence (ME) and regulate prolactin release from the pituitary, and prior work suggests dopaminergic Arc neurons also co-transmit GABA. However, the extent of co-transmission, and the projection patterns of these neurons have not been fully revealed. Here we used a genetic intersectional reporter expression approach to selectively label cells that express both tyrosine hydroxylase (TH), and vesicular GABA transporter (Vgat). Through this approach, we identified cells capable of both dopamine (DA) and GABA co-transmission in the Arc, periventricular (Pe), paraventricular (Pa), ventromedial, and the dorsolateral hypothalamic nuclei, in addition to a novel population in the caudate putamen. The highest density of labeled cells was in the Arc, 6.68% of DAPI-labeled cells at -2.06mm Bregma, and in the Pe, 2.83% of DAPI-labeled cells at -1.94mm Bregma. Next, we evaluated the projections of these DA/GABA cells by injecting an mCherry virus that fluoresces in DA/GABA cells. We observed a co-transmitting DA/GABA population, with projections within the Arc, and to the Pa and ME. These data suggest DA/GABA Arc neurons are involved in prolactin release as a subset of TIDA neurons. Further investigation will elucidate the interactions of dopamine and GABA in the hypothalamus.

13.
Mol Neurobiol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110391

ABSTRACT

Brain development may be influenced by both genetic and environmental factors, with potential consequences that may last through the lifespan. Alterations during neurogenesis are linked to neurodevelopmental cognitive disorders. Many neurotransmitters and their systems play a vital role in brain development, as most are present prior to synaptogenesis, and they are involved in the aetiology of many neurodevelopmental disorders. For instance, dopamine (DA) receptor expression begins at the early stages of development and matures at adolescence. The long maturation period suggests how important it is for the stabilisation and integration of neural circuits. DA and dopaminergic (DAergic) system perturbations have been implicated in the pathogenesis of several neurological and neuropsychiatric disorders. The DAergic system controls key cognitive and behavioural skills including emotional and motivated behaviour through DA as a neurotransmitter and through the DA neuron projections to major parts of the brain. In this review, we summarise the current understanding of the DAergic system's influence on neurodevelopment and its involvement in the aetiology and progression of major disorders of the developing brain including autism, schizophrenia, attention deficit hyperactivity disorder, down syndrome, and fragile X syndrome.

14.
Adv Sci (Weinh) ; : e2310244, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099429

ABSTRACT

The most pronounced neuropathological feature of Parkinson's disease (PD) is the loss of dopamine (DA) neurons in the substantia nigra compacta (SNc), which depletes striatal DA. Hypothalamic oxytocin is found to be reduced in PD patients and closely interacts with the DA system, but the role of oxytocin in PD remains unclear. Here, the disturbances of endogenous oxytocin level and the substantia nigra (SN) oxytocin receptor expression in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model is observed, correlated with the striatal tyrosine hydroxylase (TH) expression reduction. Killing/silencing hypothalamic oxytocin neurons aggravates the vulnerability of nigrostriatal DA signal to MPTP, whereas elevating oxytocin level by intranasal delivery or microinjecting into the SN promotes the resistance. In addition, knocking out SN oxytocin receptors induces the time-dependent reductions of SNc DA neurons, striatal TH expression, and striatal DA level by increasing neuronal excitotoxicity. These results further uncover that oxytocin dampens the excitatory synaptic inputs onto DA neurons via activating oxytocin receptor-expressed SN GABA neurons, which target GABA(B) receptors expressed in SNc DA neuron-projecting glutamatergic axons, to reduce excitotoxicity. Thus, besides the well-known prosocial effect, oxytocin acts as a key endogenous factor in protecting the nigrostriatal DA system.

15.
Article in English | MEDLINE | ID: mdl-39102007

ABSTRACT

Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, affecting millions of people and rapidly increasing over the last decades. Even though there is no intervention yet to stop the neurodegenerative pathology, many efficient treatment methods are available, including for patients with advanced PD. Neuroplasticity is a fundamental property of the human brain to adapt both to external changes and internal insults and pathological processes. In this paper we examine the current knowledge and concepts concerning changes at network level, cellular level and molecular level as parts of the neuroplastic response to protein aggregation pathology, synapse loss and neuronal loss in PD. We analyse the beneficial, compensatory effects, such as augmentation of nigral neurons efficacy, as well as negative, maladaptive effects, such as levodopa-induced dyskinesia. Effects of physical activity and different treatments on neuroplasticity are considered and the opportunity of biomarkers identification and use is discussed.

16.
Article in English | MEDLINE | ID: mdl-39102031

ABSTRACT

Dopamine receptors have been claimed not to directly increase contractility in the human heart. Therefore, we performed contraction experiments in isolated electrically driven human atrial preparations (HAP). For comparison, we performed contraction experiments with left atrial preparations of transgenic mice which harbor a cardiac overexpression of human D1-dopamine receptors (D1-TG). In D1-TG, first we noted that dopamine (10 nM-10 µM cumulatively applied) in the presence of propranolol exerted a concentration- and time-dependent positive inotropic effect in D1-TG. In a similar fashion, dopamine increased force of contraction in the presence of 0.4 µM propranolol in HAP and these effects were amplified by pre-treatment with inhibitor of phosphodiesterase III (1 µM) cilostamide. Moreover, contractile effects of dopamine in the presence of propranolol 0.4 µM in HAP were antagonized by odapipam, haloperidol, or raclopride. Ten micromolars of fenoldopam in the presence of cilostamide increased force of contraction in HAP and this effect was antagonized by SCH 23390. We conclude that stimulation of human D1-dopamine receptors can increase force of contraction in the HAP.

17.
J Psychiatr Res ; 178: 59-65, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39121708

ABSTRACT

Ventral tegmental area (VTA) dopamine (DA) neurons have been found to substantially associate with post-traumatic stress disorder (PTSD) pathology, however, whether and how these DA neurons affect fear memory management in PTSD individuals remains largely unknown. In this study, we utilized auditory conditioned foot-shock to evaluate the fear memory retrieval and retention characteristics in a single prolonged stress-induced PTSD rat model. We employed chemogenetic technology to specifically activate VTA DA neurons to examine the freezing behaviors responding to the conditioned stimuli. In vivo extracellular electrophysiological analyses were used to identify VTA DA neuronal firing alterations due to the chemogenetic activation. The results demonstrated that PTSD model rats showed comparable fear memory retrieval (Day 2 after the conditioned foot-shock), but significant enhancements in fear memory retention (Day 8 after the conditioned foot-shock), compared to normal control rats. Chemogenetic activation of VTA DA neurons markedly diminished the retention of fear memory in PTSD model rats, which appeared concomitantly with increases in the firing activities of the DA neurons. These findings revealed that PTSD induced the persistence of fear memory, which could be attenuated by activation of VTA DA neurons. It is presumed that VTA dopaminergic signals may serve as a prospective option for PTSD treatment.

18.
Neuroimage ; : 120778, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122057

ABSTRACT

BACKGROUND: Clinical and translational research has identified deficits in the dopaminergic neurotransmission in the striatum in Alzheimer's disease (AD) and this could be related to the pathophysiology of psychiatric symptoms appearing even at early stages of the pathology. HYPOTHESIS: We hypothesized that AD pathology in the hippocampus may influence dopaminergic neurotransmission even in the absence of AD-related lesion in the mesostriatal circuit. METHODS: We chemogenetically manipulated the activity of hippocampal neurons and astrocytes in wild-type and hemizygous TgF344-AD (Tg) rats, an animal model of AD pathology. We assessed the brain-wide functional output of this manipulation using in vivo Single Photon Emission Computed Tomography to measure cerebral blood flow and D2/3 receptor binding, in response to acute (3mg/kg i.p.) and chronic (0.015 mg/ml in drinking water, 28 days) stimulation of neurons or astrocytes with clozapine N-oxide. We also assessed the effects of the chronic chemogenetic manipulations on D2 receptor density, low or high aggregated forms of amyloid Aß40 and Aß42, astrocytes and microglial reactivity, and the capacity of astrocytes and microglia to surround and phagocytize Aß both locally and in the striatum. RESULTS: We showed that acute and chronic neuronal and astrocytic stimulation induces widespread effects on the brain regional activation pattern, notably with an inhibition of striatal activation. In the Tg rats, both these effects were blunted. Chemogenetic stimulation in the hippocampus increased microglial density and its capacity to limit AD pathology, whereas these effects were absent in the striatum perhaps as a consequence of the altered connectivity between the hippocampus and the striatum. CONCLUSIONS: Our work suggests that hippocampal AD pathology may alter mesostriatal signalling and induce widespread alterations of brain activity. Neuronal and astrocytic activation may induce a protective, Aß-limiting phenotype of microglia, which surrounds Aß plaques and limits Αß concentration more efficiently.

19.
J Neurochem ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118406

ABSTRACT

The nematode Caenorhabditis elegans is well known for its ability to support forward genetic screens to identify molecules involved in neuronal viability and signaling. The proteins involved in C. elegans dopamine (DA) regulation are highly conserved across evolution, with prior work demonstrating that the model can serve as an efficient platform to identify novel genes involved in disease-associated processes. To identify novel players in DA signaling, we took advantage of a recently developed library of pre-sequenced mutant nematodes arising from the million mutation project (MMP) to identify strains that display the DA-dependent swimming-induced-paralysis phenotype (Swip). Our screen identified novel mutations in the dopamine transporter encoding gene dat-1, whose loss was previously used to identify the Swip phenotype, as well as multiple genes with previously unknown connections to DA signaling. Here, we present our isolation and characterization of one of these genes, bbs-1, previously linked to the function of primary cilia in worms and higher organisms, including humans, and where loss-of-function mutations result in a human disorder known as Bardet-Biedl syndrome. Our studies of C. elegans BBS-1 protein, as well as other proteins that are known to be assembled into a higher order complex (the BBSome) reveal that functional or structural disruption of this complex leads to exaggerated C. elegans DA signaling to produce Swip via a cell-autonomous mechanism. We provide evidence that not only does the proper function of cilia in C. elegans DA neurons support normal swimming behavior, but also that bbs-1 maintains normal levels of DAT-1 trafficking or function via a RHO-1 and SWIP-13/MAPK-15 dependent pathway where mutants may contribute to Swip independent of altered ciliary function. Together, these studies demonstrate novel contributors to DA neuron function in the worm and demonstrate the utility and efficiency of forward genetic screens using the MMP library.

20.
Ann Med Surg (Lond) ; 86(8): 4613-4623, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118737

ABSTRACT

This narrative review provides a succinct exploration of prolactinoma, the most common pituitary adenoma, focusing on its epidemiology, clinical manifestations, and therapeutic interventions. Beginning with an overview of its prevalence and aetiology, the review delves into the gender distribution and familial associations of prolactinoma. Clinical presentations, including endocrine disruptions, reproductive health issues, and metabolic disturbances, are examined, emphasizing their impact on hormonal regulation and cardiovascular health. The narrative then navigates through pharmacological treatments, surgical interventions, and radiation therapy, highlighting their efficacy, side effects, and long-term management challenges. Strategies to mitigate side effects and optimize treatment outcomes are discussed, emphasizing the importance of multidisciplinary collaboration in prolactinoma management. This review is a concise yet comprehensive resource for healthcare professionals and researchers, providing insights into prolactinoma's clinical complexities and therapeutic nuances to guide optimal patient care strategies.

SELECTION OF CITATIONS
SEARCH DETAIL