Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Drug Test Anal ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433478

ABSTRACT

The use of dried blood spot (DBS) in anti-doping can be advantageous in terms of collection, transportation, and storage compared with the traditional anti-doping testing matrices urine and venous blood. There could, nonetheless, be disadvantages such as shorter detection windows for some substances compared with urine, but real-life comparison of the detectability of prohibited substances in DBS and urine is lacking. Herein, we present a liquid chromatography-high resolution mass spectrometry (LC-HRMS)-based screening method for simultaneous detection of 19 target analytes from the doping substance categories S1-S5 in a single spot. Ninety-eight urine and upper-arm DBS (Tasso-M20) sample pairs were collected from fitness centers customers notified for doping control by Anti Doping Denmark, and three sample pairs were collected from active steroid users undergoing clinical evaluation and treatment at a Danish hospital. The analytical findings were cross compared to evaluate the applicability of the developed DBS testing menu in terms of feasibility and analytical performance. To our knowledge, this is the first study to compare the detectability of prohibited substances in DBS and urine samples collected in a doping control setting. Twenty-seven of the urine samples and 23 DBS samples were positive, and we observed a very high concordance (95%) in the overall analytical results (i.e., positive or negative samples for both urine and DBS). Collectively, these results are very promising, and DBS seems suitable as a stand-alone matrix in doping control in fitness centers likely because of the high analyte concentration levels in these samples.

2.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513354

ABSTRACT

The illicit utilization of performance-enhancing substances, commonly referred to as doping, not only infringes upon the principles of fair competition within athletic pursuits but also poses significant health hazards to athletes. Doping control analysis has emerged as a conventional approach to ensuring equity and integrity in sports. Over the past few decades, extensive advancements have been made in doping control analysis methods, catering to the escalating need for qualitative and quantitative analysis of numerous banned substances exhibiting diverse chemical and biological characteristics. Progress in science, technology, and instrumentation has facilitated the proliferation of varied techniques for detecting doping. In this comprehensive review, we present a succinct overview of recent research developments within the last ten years pertaining to these doping detection methodologies. We undertake a comparative analysis, evaluating the merits and limitations of each technique, and offer insights into the prospective future advancements in doping detection methods. It is noteworthy that the continual design and synthesis of novel synthetic doping agents have compelled researchers to constantly refine and innovate doping detection methods in order to address the ever-expanding range of covertly employed doping agents. Overall, we remain in a passive position for doping detection and are always on the road to doping control.


Subject(s)
Doping in Sports , Performance-Enhancing Substances , Sports , Humans , Doping in Sports/prevention & control , Athletes , Technology , Substance Abuse Detection/methods
3.
Biomed Chromatogr ; 37(3): e5556, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36426413

ABSTRACT

A recent trend in the use of high-resolution accurate mass screening (HRAMS) for doping control testing in both human and animal sports has emerged owing to significant improvement in high-resolution mass spectrometry in terms of sensitivity, mass accuracy, mass resolution and mass stability. Several HRAMS methods have been reported for the detection of multidrug residues in human or equine urine. These improved analytical technologies have led to changes in the use of prohibited substances, and the administration of more than one substance at low concentrations as a "cocktail" has become one of the methods used to alter performance in racehorses. In one of horse urine samples transferred to the analytical laboratory in Turkey for analysis, 5-hydroxymethyl meloxicam (2.96 ng/ml), etofenamate (2.15 ng/ml), flufenamic acid (108.92 ng/ml) and cobalt (200 ng/ml) were detected. These findings reveal that more than one prohibited substance was used together as a cocktail to alter the racing performance at low doses. In this case report, flufenamic acid was detected as a metabolite of etofenamate along with the parent drug. This case study also supports the advantages of metabolite analysis for anti-doping laboratories.


Subject(s)
Body Fluids , Doping in Sports , Horses , Animals , Humans , Flufenamic Acid , Mass Spectrometry/methods , Pharmaceutical Preparations , Substance Abuse Detection/methods
4.
Drug Test Anal ; 14(11-12): 1926-1937, 2022 Nov.
Article in English | MEDLINE | ID: mdl-33733610

ABSTRACT

While misuse of testosterone esters is widespread in elite and recreational sports, direct detection of intact testosterone esters in doping control samples is hampered by the rapid hydrolysis by esterases present in the blood. With dried blood spot (DBS) as sample matrix, continued degradation of the esters is avoided due to inactivation of the hydrolase enzymes in dried blood. Here, we have developed the method further for detection of testosterone esters in DBS with focus on robustness and applicability in doping control. To demonstrate the method's feasibility, DBS samples from men receiving two intramuscular injections of Sustanon® 250 (n = 9) or placebo (n = 10) were collected, transported, and stored prior to analysis, to mimic a doping control scenario. The presented nanoLC-HRMS/MS method appeared reliable and suitable for direct detection of four testosterone esters (testosterone decanoate, isocaproate, phenylpropionate, and propionate) after extraction from DBS. Sustanon® was detected in all subjects for at least 5 days, with detection window up to 14 days for three of the esters. Evaluation of analyte stability showed that while storage at room temperature is tolerated well for a few days, testosterone esters are highly stable (>18 months) in DBS when stored in frozen conditions. Collectively, these findings demonstrate the applicability of DBS sampling in doping control for detection of steroid esters. The fast collection and reduced shipment costs of DBS compared with urine and standard blood samples, respectively, will allow more frequent and/or large-scale testing to increase detection and deterrence.


Subject(s)
Doping in Sports , Esters , Male , Humans , Injections, Intramuscular , Testosterone/analysis , Steroids , Dried Blood Spot Testing/methods
5.
Drug Test Anal ; 13(11-12): 1936-1943, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34494719

ABSTRACT

Δ8 -Tetrahydrocannabinol (Δ8 -THC) as isomer of the well-known Δ9 -THC has a similar mode of action, and the potency was estimated to be two thirds compared with Δ9 -THC. Content of Δ8 -THC in plant material is low, but formulations containing Δ8 -THC in high concentrations are gaining popularity. Δ8 -THC is to be regarded as prohibited substance according to the Prohibited List of the World Anti-Doping Agency (WADA). Contradictory results between initial testing procedure and confirmatory quantitation for 11-Nor-9-carboxy-Δ9 -tetrahydrocannabinol (Δ9 -THC-COOH) of a doping control sample gave rise for follow-up testing procedures. After alkaline hydrolysis and liquid-liquid extraction, the sample was analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) using isocratic elution instead of gradient elution, which is used for standard procedure. Isocratic elution resulted in two peaks instead of one using gradient elution. Both peaks showed same fragmentation. Using certified reference materials, one peak could be assigned to Δ9 -THC-COOH and the other one with higher intensity to the less common 11-Nor-9-carboxy-Δ8 -Tetrahydrocannabinol (Δ8 -THC-COOH) in a concentration of approximately 1200 ng/ml. As complementary method, gas chromatography tandem mass spectrometry (GC-MS/MS) can also be used for identification. Here Δ8 - and Δ9 -THC-COOH can be distinguished by chromatography and by fragmentation. Additional investigations of doping control samples containing Δ9 -THC-COOH revealed the simultaneous presence of Δ8 -THC-COOH in low concentrations (0.22-8.91 ng/ml) presumably due to plant origin. Percentage of Δ8 -THC-COOH varies from 0.05 to 2.83%. In vitro experiments using human liver microsomes showed that Δ8 -THC is metabolized in the same way as Δ9 -THC.


Subject(s)
Doping in Sports/prevention & control , Dronabinol/analogs & derivatives , Substance Abuse Detection/methods , Chromatography, High Pressure Liquid/methods , Dronabinol/analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Liquid-Liquid Extraction , Microsomes, Liver/metabolism , Tandem Mass Spectrometry/methods
6.
Drug Test Anal ; 13(2): 318-337, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32853476

ABSTRACT

This paper describes the studies of the in vitro biotransformation of two selective androgen receptor modulators (SARMs), namely, RAD140 and S-23, and the in vivo metabolism of RAD140 in horses using ultra-high performance liquid chromatography-high resolution mass spectrometry. in vitro metabolic studies of RAD140 and S-23 were performed using homogenised horse liver. The more prominent in vitro biotransformation pathways for RAD140 included hydrolysis, hydroxylation, glucuronidation and sulfation. Metabolic pathways for S-23 were similar to those for other arylpropionamide-based SARMs. The administration study of RAD140 was carried out using three retired thoroughbred geldings. RAD140 and the majority of the identified in vitro metabolites were detected in post-administration urine samples. For controlling the misuse of RAD140 in horses, RAD140 and its metabolite in sulfate form gave the longest detection time in hydrolysed urine and could be detected for up to 6 days post-administration. In plasma, RAD140 itself gave the longest detection time of up to 13 days. Apart from RAD140 glucuronide, the metabolites of RAD140 described herein have never been reported before.


Subject(s)
Anilides/metabolism , Horses/metabolism , Nitriles/metabolism , Oxadiazoles/metabolism , Anilides/urine , Animals , Biotransformation , Chromatography, High Pressure Liquid , Doping in Sports , Horses/urine , Mass Spectrometry , Metabolic Networks and Pathways , Nitriles/urine , Oxadiazoles/urine , Receptors, Androgen/metabolism , Substance Abuse Detection
7.
Equine Vet J ; 53(6): 1287-1295, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33247964

ABSTRACT

BACKGROUND: Administration of bisphosphonates, including tiludronic acid, to Thoroughbred racehorses below 3 and a half years of age is prohibited in most racing jurisdictions. OBJECTIVES: To determine if evidence of administration of tiludronic acid could be obtained from analysis of blood and urine samples beyond 40 days after administration. STUDY DESIGN: Retrospective cohort. METHODS: Horses maintained in a highly controlled environment and treated with Tildren®a were selected from clinical records. Twenty-four horses were identified, 21 of which were still in race training. Blood and urine samples were collected and analysed for the presence of tiludronic acid using ultra-high-performance liquid chromatography-high-resolution mass spectrometry. RESULTS: Tiludronic acid was detected in samples from every horse, including two that had been given a therapeutic dose of the drug 3 years prior to sample collection. The estimated concentrations of tiludronic acid in the blood collected at least 2 years post-administration were consistently very low (less than 0.3 ng/mL). The estimated concentrations in urine were less consistent and were generally lower than those in blood, although higher levels were inconsistently detected in individual horses (up to about 16 ng/mL almost 1 year post-administration in 1 horse and about 3.7 ng/mL at almost 3 years post-administration in another). MAIN LIMITATIONS: The study was performed in horses that are older than the primary target group. A single sample was obtained from most horses and so we cannot comment on elimination profiles. CONCLUSIONS: Evidence that a therapeutic dose of tiludronic acid has been administered to a horse can be obtained from detection of the drug in blood and urine samples over 3 years after it was administered.


Subject(s)
Diphosphonates , Animals , Chromatography, High Pressure Liquid/veterinary , Horses , Mass Spectrometry/veterinary , Retrospective Studies
8.
Drug Test Anal ; 13(2): 451-459, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33043621

ABSTRACT

Human insulin-like growth factor 1 (IGF-I) is the primary mediator of the effects of the growth hormone (GH). Therefore, it has been used as a biomarker to detect the abuse of GH in sports. The measurement of IGF-I relies on mass-based and immunological approaches to analysis. Among the mass-based analysis methods, liquid chromatography-mass spectrometry (LC-MS) has a number of functional advantages. LC-MS measurements based on the quantification of IGF-I, according to trypsin digestion, are used in the most common method of analyzing doping. However, this method is time-consuming and subject to experimental variability. In this study, we optimized a rapid method for detecting IGF-I without the trypsin digestion step. This method of analysis uses an ultra-centrifugal filter and an LC-HRMS through narrow-range mass scan method. To verify the validity of this method, eight categories of validation testing were applied with the following results: linearity, R2 > 0.99; limit of detection, 15 ng/ml; limit of quantification, 20 ng/ml; accuracy, >99%; recovery rate, >95%; carryover, <0.03; and inter- and intra-day precision values, %CV < 2% and %CV < 6%, respectively. Furthermore, we discussed the correlation of the quantified concentration from two other methods, immunoradiometric assay (IRMA) and parallel reaction monitoring method, using 209 serum samples. In conclusion, although both mass spectrometry-based methods worked equally well in terms of analytical performance and correlation with IRMA results, narrow-range mass scan method had several advantages, such as time and cost savings and reliable reproducibility, over the existing methods.


Subject(s)
Chromatography, High Pressure Liquid/methods , Insulin-Like Growth Factor I/analysis , Mass Spectrometry/methods , Doping in Sports , Humans , Limit of Detection , Substance Abuse Detection/methods
9.
Drug Test Anal ; 12(7): 900-917, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32267632

ABSTRACT

A high-throughput method has been developed for the doping control analysis of 124 drug targets, processing up to 154 horse urine samples in as short as 4.5 h, from the time the samples arrive at the laboratory to the reporting deadline of 30 min before the first race, including sample receipt and registration, preparation and instrument analysis and data vetting time. Sample preparation involves a brief enzyme hydrolysis step (30 min) to detect both free and glucuronide-conjugated drug targets. This is followed by extraction using solid-supported liquid extraction (SLE) and analysis using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). The entire set-up comprised of four sets of Biotage Extrahera automation systems for conducting SLE and five to six sets of Orbitrap for instrumental screening using LC-HRMS. Suspicious samples flagged were subject to confirmatory analyses using liquid chromatography-triple quadrupole mass spectrometry. The method comprises 124 drug targets from a spectrum of 41 drug classes covering acidic, basic and neutral drugs. More than 85% of the targets had limits of detection at or below 5 ng/mL in horse urine, with the lowest at 0.02 ng/mL. The method was validated for qualitative identification, including specificity, sensitivity, extraction recovery and precision. Method applicability was demonstrated by the successful detection of different drugs, namely (a) butorphanol, (b) dexamethasone, (c) diclofenac, (d) flunixin and (e) phenylbutazone, in post-race or out-of-competition urine samples collected from racehorses. This method was developed for pre-race urine testing in Hong Kong; however, it is also suitable for testing post-race or out-of-competition urine samples, especially when a quick total analysis time is desired.


Subject(s)
Chromatography, Liquid/methods , Doping in Sports/prevention & control , High-Throughput Screening Assays/methods , Mass Spectrometry/methods , Animals , Chromatography, Liquid/veterinary , High-Throughput Screening Assays/veterinary , Horses , Mass Spectrometry/veterinary , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/urine , Substance Abuse Detection/methods , Substance Abuse Detection/veterinary , Time Factors
10.
Drug Test Anal ; 12(4): 485-495, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31881121

ABSTRACT

According to WADA guidelines, the presence of Higenamine (HG) in urine should not be ≥10 ng/mL. HG is widely found in materials used in Chinese herbal medicines as well as food and additives. This paper is the first method wherein a rat model has been used to evaluate the pharmacokinetics of orally administered HG by LC-MS/MS and would be helpful in doping control analysis. The method was found to be linear over a concentration range of 0.5(lower limit of quantification, LLOQ)-500 ng/mL for plasma and 0.5(LLOQ)-1000 ng/mL for urine. The values for intra- and inter-day accuracy and precision did not deviate by >12.25% for HG in plasma and 5.87% in urine. Extraction recoveries of HG were 70.30-86.71% from plasma and 74.93%-79.29% from urine. HG was stable in plasma and urine after the extraction process and when exposed to different storage conditions. The findings of this study could provide some reference value for the assessment of HG misuse and for the control of intake and external application of HG-related materials (foods and medicinal herbs). Our key findings are that high levels of external application or oral administration of HG-rich materials may lead to a positive urine test for HG in athletes.


Subject(s)
Alkaloids/blood , Alkaloids/urine , Tandem Mass Spectrometry/methods , Tetrahydroisoquinolines/blood , Tetrahydroisoquinolines/urine , Administration, Oral , Alkaloids/administration & dosage , Animals , Chromatography, High Pressure Liquid/methods , Doping in Sports , Female , Limit of Detection , Male , Rats , Rats, Sprague-Dawley , Substance Abuse Detection/methods , Tetrahydroisoquinolines/administration & dosage
11.
Drug Test Anal ; 11(5): 649-658, 2019 May.
Article in English | MEDLINE | ID: mdl-30423218

ABSTRACT

JWH-250 is a synthetic cannabinoid. Its use is prohibited in equine sport according to the Association of Racing Commissioners International (ARCI) and the Fédération Équestre Internationale (FEI). A doping control method to confirm the presence of four JWH-250 metabolites (JWH-250 4-OH-pentyl, JWH-250 5-OH-pentyl, JWH-250 5-OH-indole, and JWH-250 N-pentanoic acid) in equine urine was developed and validated. Urine samples were treated with acetonitrile and evaporated to concentrate the analytes prior to the analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The chromatographic separation was carried out using a Phenomenex Lux® 3 µm AMP column (150 x 3.0 mm). A triple quadrupole mass spectrometer was used for detection of the analytes in positive mode electrospray ionization using multiple reaction monitoring (MRM). The limits of detection, quantification, and confirmation for these metabolites were 25, 50, and 50 pg/mL, respectively. The linear dynamic range of quantification was 50-10000 pg/mL. Enzymatic hydrolysis indicated that JWH-250 4-OH-pentyl, JWH-250 5-OH-pentyl, and JWH-250 5-OH indole are highly conjugated whereas JWH-250 N-pentanoic acid is not conjugated. Relative retention time and product ion intensity ratios were employed as the criteria to confirm the presence of these metabolites in equine urine. The method was successfully applied to post-race urine samples collected from horses suspected of being exposed to JWH-250. All four JWH-250 metabolites were confirmed in these samples, demonstrating the method applicability for equine doping control analysis.


Subject(s)
Anisoles/urine , Cannabinoids/urine , Horses/urine , Indoles/urine , Substance Abuse Detection/veterinary , Animals , Anisoles/metabolism , Cannabinoids/metabolism , Chromatography, Liquid/methods , Chromatography, Liquid/veterinary , Indoles/metabolism , Limit of Detection , Substance Abuse Detection/methods , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/veterinary
12.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1065-1066: 134-144, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28939282

ABSTRACT

A complete analytical protocol for the determination of 25 doping-related peptidic drugs and 3 metabolites in urine was developed by means of accurate-mass quadrupole time-of-flight (Q-TOF) LC-MS analysis following solid-phase extraction (SPE) on microplates and conventional SPE pre-treatment for initial testing and confirmation, respectively. These substances included growth hormone releasing factors, gonadotropin releasing factors and anti-diuretic hormones, with molecular weights ranging from 540 to 1320Da. Optimal experimental conditions were stablished after investigation of different parameters concerning sample preparation and instrumental analysis. Weak cation exchange SPE followed by C18 HPLC chromatography and accurate mass detection provided the required sensitivity and selectivity for all the target peptides under study. 2mg SPE on 96-well microplates can be used in combination with full scan MS detection for the initial testing, thus providing a fast, cost-effective and high-throughput protocol for the processing of a large batch of samples simultaneously. On the other hand, extraction on 30mg SPE cartridges and subsequent target MS/MS determination was the protocol of choice for confirmatory purposes. The methodology was validated in terms of selectivity, recovery, matrix effect, precision, sensitivity (limit of detection, LOD), cross contamination, carryover, robustness and stability. Recoveries ranged from 6 to 70% (microplates) and 17-95% (cartridges), with LODs from 0.1 to 1ng/mL. The suitability of the method was assessed by analyzing different spiked or excreted urines containing some of the target substances.


Subject(s)
Doping in Sports , Peptides/urine , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Antidiuretic Agents/isolation & purification , Antidiuretic Agents/urine , Chromatography, High Pressure Liquid/methods , Gonadotropin-Releasing Hormone/isolation & purification , Gonadotropin-Releasing Hormone/urine , Growth Hormone-Releasing Hormone/isolation & purification , Growth Hormone-Releasing Hormone/urine , Humans , Limit of Detection , Peptides/isolation & purification , Reproducibility of Results
13.
Methods Enzymol ; 596: 403-432, 2017.
Article in English | MEDLINE | ID: mdl-28911778

ABSTRACT

The misuse of anabolic-androgenic steroids (AAS) in sports aiming at enhancing athletic performance has been a challenging matter for doping control laboratories for decades. While the presence of a xenobiotic AAS or its metabolite(s) in human urine immediately represents an antidoping rule violation, the detection of the misuse of endogenous steroids such as testosterone necessitates comparably complex procedures. Concentration thresholds and diagnostic analyte ratios computed from urinary steroid concentrations of, e.g., testosterone and epitestosterone have aided identifying suspicious doping control samples in the past. These ratios can however also be affected by confounding factors and are therefore not sufficient to prove illicit steroid administrations. Here, carbon and, in rare cases, hydrogen isotope ratio mass spectrometry (IRMS) has become an indispensable tool. Importantly, the isotopic signatures of pharmaceutical steroid preparations commonly differ slightly but significantly from those found with endogenously produced steroids. By comparing the isotope ratios of endogenous reference compounds like pregnanediol to that of testosterone and its metabolites, the unambiguous identification of the urinary steroids' origin is accomplished. Due to the complex urinary matrix, several steps in sample preparation are inevitable as pure analyte peaks are a prerequisite for valid IRMS determinations. The sample cleanup encompasses steps such as solid phase or liquid-liquid extraction that are presumably not accompanied by isotopic fractionation processes, as well as more critical steps like enzymatic hydrolysis, high-performance liquid chromatography fractionation, and derivatization of analytes. In order to exclude any bias of the analytical results, each step of the analytical procedure is optimized and validated to exclude, or at least result in constant, isotopic fractionation. These efforts are explained in detail.


Subject(s)
Anabolic Agents/urine , Carbon Isotopes/analysis , Gas Chromatography-Mass Spectrometry/methods , Testosterone Congeners/urine , Anabolic Agents/chemistry , Anabolic Agents/metabolism , Analytic Sample Preparation Methods/instrumentation , Analytic Sample Preparation Methods/methods , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Doping in Sports/prevention & control , Gas Chromatography-Mass Spectrometry/instrumentation , Humans , Liquid-Liquid Extraction/instrumentation , Liquid-Liquid Extraction/methods , Testosterone Congeners/chemistry , Testosterone Congeners/metabolism , Xenobiotics/chemistry , Xenobiotics/metabolism , Xenobiotics/urine
15.
Article in English | MEDLINE | ID: mdl-27393909

ABSTRACT

A rapid and direct paper spray ionization/mass spectrometry (PSI/MS) method was developed for quantitative analysis of ephedrine, pseudoephedrine, norpseudoephedrine, and methylephedrine in human urine. This method involves the use of a triangular filter paper and high-resolution mass spectrometry, where the molecular ions of ephedrines were generated by applying high voltage after loading the spray solvent to the paper which urine sample was pre-loaded. Small amounts (2µL) of urine spiked with an internal standard were directly analyzed for ephedrines. The PSI/MS method was validated for linearity, within- and between-run precision, accuracy, and limit of detection. The results showed good linearity (R(2)≥0.9928) and acceptable precision and accuracy. Furthermore, the accuracy of the method was assessed by analyzing a blind urine sample from World Anti-Doping Agency and comparing the measured concentrations with the nominal concentrations. This test resulted in accuracies ranging from 96.4 to 106.1%, indicating that the PSI/MS method has the potential to be an alternative technique for the fast quantitation of ephedrines in doping control analysis.


Subject(s)
Central Nervous System Stimulants/urine , Ephedrine/analogs & derivatives , Ephedrine/urine , Mass Spectrometry/methods , Phenylpropanolamine/urine , Pseudoephedrine/urine , Substance Abuse Detection/methods , Humans , Limit of Detection , Mass Spectrometry/economics , Paper , Reproducibility of Results , Substance Abuse Detection/economics
17.
Anal Chim Acta ; 906: 128-138, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26772132

ABSTRACT

The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected.


Subject(s)
Anabolic Agents/urine , Gas Chromatography-Mass Spectrometry/methods , Steroids/urine , Atmospheric Pressure , Humans
18.
Anal Chim Acta ; 895: 35-44, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26454457

ABSTRACT

Controversial results have been reported in the literature regarding the behavior of two testosterone (T) metabolites (3α-glucuronide-6ß-hydroxyandrosterone and 3α-glucuronide-6ß-hydroxyetiocholanolone) excreted after T administration. Due to their potential as biomarkers of T misuse, a UHPLC-MS/MS method for the direct quantification of these glucuronides was developed and validated. In addition, the main phase II metabolites of T that compose the steroid profile used for doping control purposes (glucuronides of T, epitestosterone, androsterone and etiocholanolone) were included. The method was found to be linear and with suitable LODs and LOQs for all metabolites. The average accuracies were between 86% and 120%, the RSDs for the intra- and inter-day precision were below 15% and 25% respectively. The method showed low matrix effect. Samples obtained before and after the administration of T were analyzed by both the developed UHPLC-MS/MS method and the GC-MS/MS method currently used by anti-doping laboratories. Relevant disagreements between the results obtained for 3α-glucuronide-6ß-hydroxyandrosterone and 3α-glucuronide-6ß-hydroxyetiocholanolone quantitation were observed. These markers seemed to be more suitable for the screening of T misuse when detected by UHPLC-MS/MS. These discrepancies were further investigated in 50 urine samples from healthy volunteers. The two methods gave highly correlated results for all metabolites that are currently included in the athlete's steroid profile confirming the reliability of the UHPLC-MS/MS method. However, the quantification of 3α-glucuronide-6ß-hydroxyandrosterone and 3α-glucuronide-6ß-hydroxyetiocholanolone, was only possible by using the UHPLC-MS/MS method since three interfering compounds were observed when performing the GC-MS/MS analysis with the most intense ion transitions. These results confirm the potential of the resistant glucuronides as biomarkers of T misuse. Additionally, they suggest that previously reported reference ranges for these metabolites should be reevaluated.


Subject(s)
Glucuronidase/metabolism , Glucuronides/urine , Performance-Enhancing Substances/urine , Chromatography, High Pressure Liquid , Doping in Sports/prevention & control , Escherichia coli K12/enzymology , Glucuronides/metabolism , Healthy Volunteers , Humans , Hydrolysis , Performance-Enhancing Substances/metabolism , Tandem Mass Spectrometry
19.
Article in English | MEDLINE | ID: mdl-26143477

ABSTRACT

Bisphosphonates are used in the management of skeletal disorder in humans and horses, with tiludronic acid being the first licensed veterinary medicine in the treatment of lameness associated with degenerative joint disease. Bisphosphonates are prohibited in horseracing according to Article 6 of the International Agreement on Breeding, Racing and Wagering (published by the International Federation of Horseracing Authorities). In order to control the use of bisphosphonates in equine sports, an effective method to detect the use of bisphosphonates is required. Bisphosphonates are difficult-to-detect drugs due to their hydrophilic properties. The complexity of equine matrices also added to their extraction difficulties. This study describes a method for the simultaneous detection of five bisphosphonates, namely alendronic acid, clodronic acid, ibandronic acid, risedronic acid and tiludronic acid, in equine urine and plasma. Bisphosphonates were first isolated from the sample matrices by solid-phase extractions, followed by methylation with trimethylsilyldiazomethane prior to liquid chromatography - tandem mass spectrometry analysis using selective reaction monitoring in the positive electrospray ionization mode. The five bisphosphonates could be detected at low ppb levels in 0.5mL equine plasma or urine with acceptable precision, fast instrumental turnaround time, and negligible matrix interferences. The method has also been applied to the excretion study of tiludronic acid in plasma and urine collected from a horse having been administered a single dose of tiludronic acid. The applicability and effectiveness of the method was demonstrated by the successful detection and confirmation of the presence of tiludronic acid in an overseas equine urine sample. To our knowledge, this is the first reported method in the successful screening and confirmation of five amino- and non-amino bisphosphonates in equine biological samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Diphosphonates/blood , Diphosphonates/urine , Horses/blood , Horses/urine , Tandem Mass Spectrometry/methods , Animals , Diphosphonates/chemistry , Diphosphonates/isolation & purification , Doping in Sports/prevention & control , Methylation , Solid Phase Extraction
20.
J Steroid Biochem Mol Biol ; 152: 142-54, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26031748

ABSTRACT

Androsta-1,4,6-triene-3,17-dione (ATD) is an irreversible steroidal aromatase inhibitor and is marketed as a supplement. It has been reported to effectively reduce estrogen biosynthesis and significantly increase the levels of endogenous steroids such as dihydrotestosterone and testosterone in human. ATD abuses have been reported in human sports. Its metabolism in human has been studied, and the in vitro metabolic study of ATD in horses has been reported, however, little is known about its biotransformation and elimination in horses. This paper describes the in vitro and in vivo metabolism studies of ATD in horses, with an objective of identifying the target metabolites with the longest detection time for controlling ATD abuse. In vitro metabolism studies of ATD were performed using homogenized horse liver. ATD was found to be extensively metabolized, and its metabolites could not be easily characterized by gas chromatography/mass spectrometry (GC/MS) due to insufficient sensitivity. Liquid chromatography/high resolution mass spectrometry (LC/HRMS) was therefore employed for the identification of in vitro metabolites. The major biotransformations observed were combinations of reduction of the olefin groups and/or the keto group at either C3 or C17 position. In addition, mono-hydroxylation in the D-ring was observed along with reduction of the olefin groups and/or the keto group at C17 position. Fourteen in vitro metabolites, including two epimers of androsta-1,4,6-trien-17-ol-3-one (M1a, M1b), androsta-4,6-diene-3,17-dione (M2), boldione (M3), androsta-4,6-diene-17ß-ol-3-one (M4), androsta-4,6-diene-3-ol-17-one (M5), boldenone and epi-boldenone (M6a, M6b), four stereoisomers of hydroxylated androsta-1,4,6-trien-17-ol-3-one (M7a to M7d), and two epimers of androsta-1,4-diene-16α,17-diol (M8a, M8b), were identified. The identities of all metabolites, except M1a, M5, M7a to M7d, were confirmed by matching with authentic reference standards using LC/HRMS. For the in vivo metabolism studies, two thoroughbred geldings were each administered with 800 mg of ATD by stomach tubing. ATD, and twelve out of the fourteen in vitro metabolites, including M1a, M1b, M2, M4, M5, M6, M7a to M7d, M8a and M8b, were detected in post-administration urine. Two additional urinary metabolites, namely stereoisomers of hydroxylated androsta-4,6-dien-17-ol-3-one (M9a, M9b), were tentatively identified by mass spectral interpretation. Elevated level of testosterone was also observed. In post-administration blood samples, only the parent drug, M1b and M2 were identified. This study showed that the detection of ATD administration would be best achieved by either monitoring the metabolites M1b (androsta-1,4,6-trien-17ß-ol-3-one) or M4 (both excreted as sulfate conjugates) in urine, which could be detected for up to a maximum of 77 h post-administration. The analyte of choice for plasma is M1b, which could be detected for up to 28 h post administration.


Subject(s)
Androstatrienes/metabolism , Horses/metabolism , Performance-Enhancing Substances/metabolism , Testosterone/urine , Alkenes/metabolism , Androstadienes , Animals , Chromatography, Liquid/veterinary , Doping in Sports , Liver/metabolism , Mass Spectrometry/veterinary , Metabolome , Substance Abuse Detection/methods
SELECTION OF CITATIONS
SEARCH DETAIL