Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cureus ; 16(6): e62784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39036259

ABSTRACT

Introduction In stereotactic radiosurgery (SRS) for brain metastasis (BM), volumetric-modulated arcs (VMA) can provide a suitable dose distribution and efficient delivery, even with a widely available 5-mm leaf-width multileaf collimator (MLC). The planning optimization with affirmatively accepting internal high doses of a gross tumor volume (GTV) enhances the steepness of the dose gradient outside the GTV. However, an excessively steep dose falloff outside a GTV is susceptible to insufficient coverage of inherent irradiation uncertainties with the dose attenuation margin. This study was conducted to examine the appropriateness of dose attenuation margin outside a GTV in 5-mm MLC VMA-based SRS with a steep dose gradient and dose prescription with a biologically effective dose (BED) 80 Gy in various fractions to the GTV margin. Materials and methods This was a planning study for the clinical scenario of a single BM and targeted 28 GTVs, including nine sphere-shaped models with diameters of 5-45 mm and 19 clinical BMs (GTV 0.08-44.33 cc). SRS plans were generated for each GTV using 5-mm MLC VMA with an optimization that prioritized the steepness of dose falloff outside the GTV boundary without any internal dose constraints. A prescribed dose with the BED 80 Gy in 1-10 fraction(s) was assigned to the GTV D V-0.01 cc, a minimum dose of GTV minus 0.01 cc (D >95% for GTV >0.20 cc, D 95% for GTV ≤0.20 cc). The BED was based on the linear-quadratic formula with an alpha/beta ratio of 10 (BED10). Two planning systems were compared for the GTV + 2 mm structures that were generated by adding an isotropic 2-mm margin to the GTV. Results The GTV + 2 mm volumes differed significantly between the systems and further varied on the dose-volume histograms. The D V-0.05 cc, D 98%, and D 95% of the GTV + 2 mm were associated with substantial over- or under-coverages of the GTV + 2 mm, although the irradiated isodose volumes (IIVs) of the D 98% were closest to the GTV + 2 mm in general. The coverage values of the GTV + 2 mm with the minimum dose of the IIV equivalent to the GTV + 2 mm, D eIIV, were 93.3%-98.7% (≥95% in 26 cases). The GTV + 2 mm D eIIV relative to the GTV D V-0.01 cc was ≥81.9% (BED10 ≥60 Gy in ≤5 fractions) in 13 cases, while those were <69.8% (BED10 <48 Gy in ≤5 fractions) in four cases with the GTV of 0.33-1.77 cc. Conclusions A dose attenuation margin outside a GTV can be excessively steep for some small GTVs in 5-mm MLC VMA-based SRS with a steepest dose gradient and a BED10 80 Gy in ≤5 fractions to the GTV D V-0.01 cc, for which an adjustment of the too precipitous dose gradient is preferred to sufficiently cover relevant uncertainties. A GTV + 2 mm D eIIV with ≥95% coverage is more suitable for evaluating the appropriateness of dose attenuation outside the GTV than other common metrics with a fixed % coverage or D V-≤0.05 cc. Given the substantial variability in margin addition functions among planning systems, dose prescription to a margin-added GTV is unsuitable for ensuring uniform dose prescription.

2.
Strahlenther Onkol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997440

ABSTRACT

PURPOSE AND OBJECTIVE: To develop expert consensus statements on multiparametric dose prescriptions for stereotactic body radiotherapy (SBRT) aligning with ICRU report 91. These statements serve as a foundational step towards harmonizing current SBRT practices and refining dose prescription and documentation requirements for clinical trial designs. MATERIALS AND METHODS: Based on the results of a literature review by the working group, a two-tier Delphi consensus process was conducted among 24 physicians and physics experts from three European countries. The degree of consensus was predefined for overarching (OA) and organ-specific (OS) statements (≥ 80%, 60-79%, < 60% for high, intermediate, and poor consensus, respectively). Post-first round statements were refined in a live discussion for the second round of the Delphi process. RESULTS: Experts consented on a total of 14 OA and 17 OS statements regarding SBRT of primary and secondary lung, liver, pancreatic, adrenal, and kidney tumors regarding dose prescription, target coverage, and organ at risk dose limitations. Degree of consent was ≥ 80% in 79% and 41% of OA and OS statements, respectively, with higher consensus for lung compared to the upper abdomen. In round 2, the degree of consent was ≥ 80 to 100% for OA and 88% in OS statements. No consensus was reached for dose escalation to liver metastases after chemotherapy (47%) or single-fraction SBRT for kidney primaries (13%). In round 2, no statement had 60-79% consensus. CONCLUSION: In 29 of 31 statements a high consensus was achieved after a two-tier Delphi process and one statement (kidney) was clearly refused. The Delphi process was able to achieve a high degree of consensus for SBRT dose prescription. In summary, clear recommendations for both OA and OS could be defined. This contributes significantly to harmonization of SBRT practice and facilitates dose prescription and reporting in clinical trials investigating SBRT.

3.
Cureus ; 16(4): e57580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38707120

ABSTRACT

Introduction In stereotactic radiosurgery (SRS) for brain metastasis (BM), the prescribed dose is generally reported as a minimum dose to cover a specific percentage (e.g. D98%) of the gross tumor volume (GTV) with or without a margin or an unspecified intended marginal dose to the GTV boundary. In dose prescription to a margin-added planning target volume (PTV), the GTV marginal dose is likely variable and unclear. This study aimed to reveal major flaws of dose prescription to a fixed % coverage of a target volume (TV), such as GTV D98% or PTV D95%, and to propose an alternative. Materials and methods Seven quasi-spherical models with volumes ranging from 1.00 to 15.00 cc were assumed as GTVs. The GTVs and the volumes generated by adding isotropic 1- and 2-mm margins to the GTV boundaries (GTV + 1 and 2 mm) were used for SRS planning, dose prescription, and evaluation. Volumetric-modulated arcs with a 5-mm leaf-width multileaf collimator were used to optimize each SRS plan to ensure the steepest dose gradient outside each TV boundary. In dose prescription to the GTV D98%, 0.02-0.3 cc of the GTV is below the prescribed dose, and the volume increases with larger GTVs. The volume below the prescribed dose should be less than the equivalent of a 3-mm-diameter lesion, i.e. 0.01 cc. Therefore, DV-0.01 cc was defined as an alternative near-minimum dose for which the TV below a relevant dose is less than 0.01 cc. Four different dose prescriptions, including the GTV DV-0.01 cc, were compared using specific doses in 1, 3, and 5 fractions, equivalent to 80, 60, and 50 Gy, respectively, as biologically effective doses (BEDs) to the boundaries of GTV, GTV + 1 mm, and GTV + 2 mm, respectively. Results Dose prescription to the GTV DV-0.01 cc corresponds to 95.0, 98.0, and 99.0-99.93% coverages for the GTV of 0.20, 0.50, and 1.00-15.00 cc, respectively. The GTV DV-0.01 cc varied substantially and decreased significantly as the GTV increased in dose prescriptions to the GTV D98%, GTV + 1 mm D95%, and GTV + 2 mm D95%. The GTV + 2 mm DV-0.01 cc increased significantly as the GTV increased, except for the dose prescription to the GTV + 2 mm D95% with a decreasing tendency. When comparing BED-based specific dose prescriptions, dose prescription to the GTV DV-0.01 cc was optimal in terms of the following: 1) consistency of the near-minimum dose of GTV; 2) the highest BED at 2 mm outside the GTV, except for 1.00 cc GTV, and the rational increase with increasing GTV; and 3) the highest BED at 2 mm inside the GTV. In dose prescription with the BED of 80 Gy in 1 fraction and 5 fractions to the GTV DV-0.01 cc, the GTV limits were ≤1.40 and ≤8.46 cc, respectively, in order for the irradiated isodose volume not to exceed the proposed thresholds for minimizing the risk of brain radionecrosis. Conclusions Dose prescription to a fixed % coverage of a GTV with or without a margin leads to the substantially varied near-minimum dose at the GTV boundary, which significantly decreases with increasing GTV. Alternatively, GTV DV-0.01 cc with a variable coverage (D>95%) for >0.20 cc GTV and fixed D95% for ≤0.20 cc GTV is recommended as the basis for dose prescription and evaluation, along with supplemental evaluation of the marginal dose of the GTV plus a margin (e.g. GTV + 2 mm) to demonstrate the appropriateness of dose attenuation outside the GTV boundary.

5.
Kurume Med J ; 69(3.4): 217-226, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38233174

ABSTRACT

This study investigated the appropriate dose prescription method in static multi-beam stereotactic body radiotherapy for lung tumors. Static multi-beam stereotactic body radiotherapy is a mainstream treatment in Japan. Based on the hypothesis that dose prescription to lower isodose lines may improve planning target volume dose coverage and decrease doses to organs at risk, we investigated changes in dose-volume histograms with prescription to various isodose lines for planning target volume in static multi-beam stereotactic body radiotherapy. In all treatment plans, 45 Gy in 4 fractions were prescribed to 95% of the planning target volume. By adjusting the leaf margins of each beam, various prescription isodose lines encompassing 95% volume of the planning target volume were generated. The prescription isodose lines investigated were 40, 50, 60, 70, 80 and 90% lines relative to the maximum dose of each planning target volume. The conformity index, homogeneity index, mean lung dose, and V5-V40 of the lung were evaluated. The dose was calculated by the adaptive convolve algorithm. The conformity index was lowest in the 70% or 80% isodose plan. The mean lung doses and V10-V40 of the lung decreased steeply from the 90% to the 70% isodose plan, and was lowest in the 60% and 70% isodose plans. These indices increased in the 40% and 50% isodose plans. The optimal stereotactic body radiotherapy plans appeared to be dose prescription to the 60% or 70% isodose line. Further investigation is warranted to clarify the advantage of using this method clinically.


Subject(s)
Lung Neoplasms , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Radiosurgery/methods , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Organs at Risk/radiation effects , Male
6.
Radiother Oncol ; 186: 109802, 2023 09.
Article in English | MEDLINE | ID: mdl-37423477

ABSTRACT

PURPOSE: No specific irradiation guidelines have been proposed for parotid lymph node (PLN) metastasis in patients with nasopharyngeal carcinoma (NPC). This study aimed to explore the dose prescription and target delineation for PLN metastasis in patients with NPC. METHODS: With the NPC database from a big-data platform, 10,685 patients with primarily diagnosed, non-distant metastatic, histologically proven NPC and treated with intensity modulated radiotherapy (IMRT) at our center from 2008 to 2019 were reviewed and those with PLN metastasis were enrolled in this study. Dosimetry parameters were collected from the dose-volume histograms (DVH). The primary endpoint was overall survival (OS). Least absolute shrinkage and selection operator regression (LASSO) was operated for variable selection. Multivariate Cox regression analysis was applied to identify the independent prognostic factors. RESULTS: PLN metastases were identified in 275/10685 (2.5%) patients. Of 367 positive PLN, 199 were in superficial intra-parotid, followed by 70 in deep intra-parotid, 54 in subparotid and 44 in subcutaneous pre-auricular. Better survival outcome was observed in PLN-radical IMRT group, compared with PLN-sparing group. In 190 patients received PLN-radical IMRT, multivariate analysis revealed that D95% of level VIII > 55 Gy was an independent beneficial prognostic factor for overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS), and parotid relapse-free survival (PRFS). CONCLUSION: Based on the distribution pattern of PLN metastasis in NPC and the result of dose-finding study, involving the ipsilateral level VIII into low-risk clinical target volume (CTV2) is recommended for NPC with PLN metastasis.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Lymphatic Metastasis/radiotherapy , Lymphatic Metastasis/pathology , Carcinoma/radiotherapy , Carcinoma/pathology , Neoplasm Recurrence, Local/pathology , Lymph Nodes/pathology , Retrospective Studies , Prognosis , Neoplasm Staging
7.
Radiother Oncol ; 182: 109571, 2023 05.
Article in English | MEDLINE | ID: mdl-36822361

ABSTRACT

BACKGROUND AND PURPOSE: Radiation dose prescriptions are foundational for optimizing treatment efficacy and limiting treatment-related toxicity. We sought to assess the lack of standardization of SBRT dose prescriptions across institutions. MATERIALS & METHODS: Dosimetric data from 1298 patients from 9 academic institutions treated with IMRT and VMAT were collected. Dose parameters D100, D98, D95, D50, and D2 were used to assess dosimetric variability. RESULTS: Disease sites included lung (48.3 %) followed by liver (29.7 %), prostate (7.5 %), spine (6.8 %), brain (4.1 %), and pancreas (2.5 %). The PTV volume in lung varied widely with bimodality into two main groups (22.0-28.7 cm3) and (48.0-67.1 cm3). A hot spot ranging from 120-150 % was noted in nearly half of the patients, with significant variation across institutions. A D50 ≥ 110 % was found in nearly half of the institutions. There was significant dosimetric variation across institutions. CONCLUSIONS: The SBRT prescriptions in the literature or in treatment guidelines currently lack nuance and hence there is significant variation in dose prescriptions across academic institutions. These findings add greater importance to the identification of dose parameters associated with improved clinical outcome comparisons as we move towards more hypofractionated treatments. There is a need for standardized reporting to help institutions in adapting treatment protocols based on the outcome of clinical trials. Dosimetric parameters are subsequently needed for uniformity and thereby standardizing planning guidelines to maximize efficacy, mitigate toxicity, and reduce treatment disparities are urgently needed.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Male , Humans , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Prescriptions
8.
Phys Imaging Radiat Oncol ; 24: 65-70, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36213173

ABSTRACT

Background and purpose: Pulmonary stereotactic treatments can be performed using dedicated linear accelerators as well as robotic-assisted units, and different strategies can be used for dose prescription. This study aimed to compare the doses received by the tumor with a gross tumor volume (GTV)-based prescription on D98%GTV using a robotic-assisted unit (method A) and planning target volume (PTV)-based prescription on D95%PTV using a dedicated linac (method B). Material & methods: Plans of 32 patients were collected for method A, and a dose of 3 × 18 Gy was prescribed using type A algorithm and recalculated using a Monte-Carlo (MC) algorithm. The plans were normalized to match D98%GTV with the mean D 98 % G T V ¯ of the cohort. The plans of 23 patients were collected for method B, and a dose of 3 × 18 Gy was prescribed to D95%PTV using a MC algorithm. A 4D-sum method was developed to estimate doses for PTV and GTV. For validation, all plans were recalculated using an independent MC double-check software. A dose harmonization on D98% GTV was determined for both methods. Results: For method A, mean doses were D2%GTV = 59.9 ± 2.1 Gy, D50%GTV = 55.6 ± 1.2 Gy, D98%GTV = 49.5 ± 0.0 Gy. For method B, the reported doses were D2%GTV = 64.6 ± 2.1 Gy, D50%GTV = 62.8 ± 1.7 Gy, and D98%GTV = 60.0 ± 1.7 Gy. The dose trade-off of D98%GTV = 55 Gy was obtained for both methods. For method A, it corresponded to a dose prescription of 3 × 20 Gy using type A algorithm, followed by rescaling to obtain D98%GTV = 55 Gy. For method B, it corresponded to a dose prescription of D95%PTV = 3 × 16.5 Gy using the MC algorithm. Conclusions: This study determined similar near-minimum doses D98% GTV of approximately 3 × 18.3 Gy (55 Gy) using a GTV-based prescription on a robotic-assisted unit (method A) and a PTV-based prescription on a dedicated linac (method B).

9.
Cancers (Basel) ; 14(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35954478

ABSTRACT

Variations in dose prescription methods in stereotactic body radiotherapy (SBRT) for early stage non-small-cell lung cancer (ES-NSCLC) make it difficult to properly compare the outcomes of published studies. We conducted a comprehensive search of the published literature to summarize the outcomes by discerning the relationship between local control (LC) and dose prescription sites. We systematically searched PubMed to identify observational studies reporting LC after SBRT for peripheral ES-NSCLC. The correlations between LC and four types of biologically effective doses (BED) were evaluated, which were calculated from nominal, central, and peripheral prescription points and, from those, the average BED. To evaluate information on SBRT for peripheral ES-NSCLC, 188 studies were analyzed. The number of relevant articles increased over time. The use of an inhomogeneity correction was mentioned in less than half of the articles, even among the most recent. To evaluate the relationship between the four BEDs and LC, 33 studies were analyzed. Univariate meta-regression revealed that only the central BED significantly correlated with the 3-year LC of SBRT for ES-NSCLC (p = 0.03). As a limitation, tumor volume, which might affect the results of this study, could not be considered due to a lack of data. In conclusion, the central dose prescription is appropriate for evaluating the correlation between the dose and LC of SBRT for ES-NSCLC. The standardization of SBRT dose prescriptions is desirable.

10.
Cureus ; 14(6): e26303, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35911294

ABSTRACT

Purpose This study aimed to explore the relationship between applicator surface dose and 5 mm-depth dose and to optimize both locations simultaneously for three most used cylinder sizes (2.5, 3.0, and 3.5 cm in diameter) in treating patients with endometrial adenocarcinoma. Materials and methods A total of 216 plans were created for each dose level and applicator size. For each dose level, four plans were created with single or double prescription doses. For plans with double prescription doses, the dose constraints were applied to all those points on the surface and 5 mm depth and optimize the two sites simultaneously.  Results A dose table between surface and 5 mm depth and its fifth order polynomial mapping functions were established for each applicator size, so any prescribed dose at one site can find the prescription dose on the other site in optimization on both locations. For plans with a 5 mm-depth prescription, the maximum dose on the surface can be reduced from 145% to 133% if the surface prescription dose is also used; for plans with surface dose prescription, the minimum dose and mean dose can be improved by 2% if 5 mm-depth dose prescription is also used in optimization. Conclusion Dose table and their mapping functions between surface prescription dose and their corresponding 5 mm-depth doses were created. A new optimization method that uses two prescription doses on both surface and 5 mm-depth sites was proposed to reduce the hot dose on the surface and improve the cold dose at 5 mm depth.

11.
Phys Imaging Radiat Oncol ; 23: 8-15, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35734265

ABSTRACT

Background and purpose: Glioblastoma (GBM) patients have a dismal prognosis. Tumours typically recur within months of surgical resection and post-operative chemoradiation. Multiparametric magnetic resonance imaging (mpMRI) biomarkers promise to improve GBM outcomes by identifying likely regions of infiltrative tumour in tumour probability (TP) maps. These regions could be treated with escalated dose via dose-painting radiotherapy to achieve higher rates of tumour control. Crucial to the technical validation of dose-painting using imaging biomarkers is the repeatability of the derived dose prescriptions. Here, we quantify repeatability of dose-painting prescriptions derived from mpMRI. Materials and methods: TP maps were calculated with a clinically validated model that linearly combined apparent diffusion coefficient (ADC) and relative cerebral blood volume (rBV) or ADC and relative cerebral blood flow (rBF) data. Maps were developed for 11 GBM patients who received two mpMRI scans separated by a short interval prior to chemoradiation treatment. A linear dose mapping function was applied to obtain dose-painting prescription (DP) maps for each session. Voxel-wise and group-wise repeatability metrics were calculated for parametric, TP and DP maps within radiotherapy margins. Results: DP maps derived from mpMRI were repeatable between imaging sessions (ICC > 0.85). ADC maps showed higher repeatability than rBV and rBF maps (Wilcoxon test, p = 0.001). TP maps obtained from the combination of ADC and rBF were the most stable (median ICC: 0.89). Conclusions: Dose-painting prescriptions derived from a mpMRI model of tumour infiltration have a good level of repeatability and can be used to generate reliable dose-painting plans for GBM patients.

12.
Rep Pract Oncol Radiother ; 27(1): 10-14, 2022.
Article in English | MEDLINE | ID: mdl-35402033

ABSTRACT

This paper describes how to select the most appropriate stereotactic radiotherapy (SRT ) dose and fractionation scheme according to lesion size and site, organs at risk (OARs) proximity and the biological effective dose. In single-dose SRT, 15-34 Gy are generally used while in fractionated SRT 30 and 75 Gy in 2-5 fractions are administered. The ICRU Report No. 91, which is specifically dedicated to SRT treatments, provided indications for dose prescription (with its definition and essential steps), dose delivery and optimal coverage which was defined as the best planning target volume coverage that can be obtained in the irradiated district. Calculation algorithms and OAR s dose constraints are provided as well as treatment planning system characteristics, suggested beam energy and multileaf collimator leaf size. Finally, parameters for irradiation geometry and plan quality are also reported.

13.
J Med Imaging Radiat Oncol ; 66(2): 267-278, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35243775

ABSTRACT

A high-quality treatment plan aims to best achieve the clinical prescription, balancing high target dose to maximise tumour control against sufficiently low organ-at-risk dose for acceptably low toxicity. Treatment planning (TP) includes multiple steps from simulation/imaging and segmentation to technical plan production and reporting. Consistent quality across this process requires close collaboration and communication between clinical and technical experts, to clearly understand clinical requirements and priorities and also practical uncertainties, limitations and compromises. TP quality depends on many aspects, starting from commissioning and quality management of the treatment planning system (TPS), including its measured input data and detailed understanding of TPS models and limitations. It requires rigorous quality assurance of the whole planning process and it links to plan deliverability, assessable by measurement-based verification. This review highlights some factors influencing plan quality, for consideration for optimal plan construction and hence optimal outcomes for each patient. It also indicates some challenges, sources of difference and current developments. The topics considered include: the evolution of TP techniques; dose prescription issues; tools and methods to evaluate plan quality; and some aspects of practical TP. The understanding of what constitutes a high-quality treatment plan continues to evolve with new techniques, delivery methods and related evidence-based science. This review summarises the current position, noting developments in the concept and the need for further robust tools to help achieve it.


Subject(s)
Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
14.
Asia Pac Psychiatry ; 14(1): e12488, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34519433

ABSTRACT

INTRODUCTION: After extensive research, this study explored whether high-dose prescriptions and polypharmacy remain more frequent in Japan than elsewhere. If confirmed, we aimed to identify the factors that contributed to this unique trend. METHODS: The psychotropic drug prescription patterns for patients with schizophrenia in Japan were reviewed. This was based on a large sample collected from surveys of the Research on Asian Psychotropic Prescription Patterns, an international collaborative research project conducted by Asian psychiatrists to monitor prescriptions of psychotropic drugs for people with mental disorders, in 2001, 2004, 2008, and 2016. RESULTS: The 2016 Research on Asian Psychotropic Prescription Patterns survey revealed that Japan continued to demonstrate the highest rate of polypharmacy and the highest dosages of psychotropic prescription drugs for patients with schizophrenia among the 15 countries and areas that participated in the survey. DISCUSSION: The Research on Asian Psychotropic Prescription Patterns surveys demonstrated that science plays a limited role in the decision-making process for prescriptions of psychotropic medications. Such prescriptions are influenced by a wide range of factors, such as the national mental health policy, prescription-financing systems, the history of psychiatry in each country, and the prevailing culture. Hospital-based national mental health policies and mental health financing systems have been the primary obstacles to reducing polypharmacy in Japan.


Subject(s)
Antipsychotic Agents , Schizophrenia , Antipsychotic Agents/therapeutic use , Drug Prescriptions , Humans , Japan , Polypharmacy , Practice Patterns, Physicians' , Schizophrenia/drug therapy
15.
Clin. transl. oncol. (Print) ; 23(9): 1794-1800, sept. 2021.
Article in English | IBECS | ID: ibc-222178

ABSTRACT

Aim Stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) are essential tools in radiation oncology. In Spain, the use of these techniques continues to grow as older linear accelerators (linacs) are replaced with modern equipment. However, little is known about inter-centre variability in prescription and dose heterogeneity limits. Consequently, the SBRT-Spanish Task Group (SBRT-SG) of the Spanish Society of Radiation Oncology (SEOR) has undertaken an initiative to assess prescription and homogeneity in SRS/SBRT treatment. In the present study, we surveyed radiation oncology (RO) departments to obtain a realistic overview of prescription methods used for SBRT and SRS treatment in Spain. Methods A brief survey was developed and sent to 34 RO departments in Spain, mostly those who are members of the SEOR SBRT-SG. The survey contained seven questions about the specific prescription mode, dose distribution heterogeneity limits, prescription strategies according to SRS/SBRT type, and the use of IMRT–VMAT (Intensity Modulated Radiation Therapy–Volumetric Modulated Arc Therapy). Results Responses were received from 29 centres. Most centres (59%) used the prescription criteria D95% ≥ 100%. Accepted dose heterogeneity was wide, ranging from 107 to 200%. Most centres used IMRT–VMAT (93%). Conclusions This survey about SRS/SBRT prescription and dose heterogeneity has evidenced substantial inter-centre variability in prescription criteria, particularly for intended and accepted dose heterogeneity. These differences could potentially influence the mean planning target volume dose and its correlation with treatment outcomes. The findings presented here will be used by the SEOR SBRT-SG to develop recommendations for SRS/SBRT dose prescription and heterogeneity (AU)


Subject(s)
Humans , Radiation Oncology/standards , Radiosurgery/methods , Radiation Dosage , Health Care Surveys/statistics & numerical data , Prescriptions/standards , Radiotherapy, Intensity-Modulated/statistics & numerical data , Societies, Medical , Spain
16.
Strahlenther Onkol ; 197(9): 836-846, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34196725

ABSTRACT

PURPOSE: Dose, fractionation, normalization and the dose profile inside the target volume vary substantially in pulmonary stereotactic body radiotherapy (SBRT) between different institutions and SBRT technologies. Published planning studies have shown large variations of the mean dose in planning target volume (PTV) and gross tumor volume (GTV) or internal target volume (ITV) when dose prescription is performed to the PTV covering isodose. This planning study investigated whether dose prescription to the mean dose of the ITV improves consistency in pulmonary SBRT dose distributions. MATERIALS AND METHODS: This was a multi-institutional planning study by the German Society of Radiation Oncology (DEGRO) working group Radiosurgery and Stereotactic Radiotherapy. CT images and structures of ITV, PTV and all relevant organs at risk (OAR) for two patients with early stage non-small cell lung cancer (NSCLC) were distributed to all participating institutions. Each institute created a treatment plan with the technique commonly used in the institute for lung SBRT. The specified dose fractionation was 3â€¯× 21.5 Gy normalized to the mean ITV dose. Additional dose objectives for target volumes and OAR were provided. RESULTS: In all, 52 plans from 25 institutions were included in this analysis: 8 robotic radiosurgery (RRS), 34 intensity-modulated (MOD), and 10 3D-conformal (3D) radiation therapy plans. The distribution of the mean dose in the PTV did not differ significantly between the two patients (median 56.9 Gy vs 56.6 Gy). There was only a small difference between the techniques, with RRS having the lowest mean PTV dose with a median of 55.9 Gy followed by MOD plans with 56.7 Gy and 3D plans with 57.4 Gy having the highest. For the different organs at risk no significant difference between the techniques could be found. CONCLUSIONS: This planning study pointed out that multiparameter dose prescription including normalization on the mean ITV dose in combination with detailed objectives for the PTV and ITV achieve consistent dose distributions for peripheral lung tumors in combination with an ITV concept between different delivery techniques and across institutions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung/pathology , Lung Neoplasms/pathology , Prescriptions , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
17.
BMC Med Inform Decis Mak ; 21(1): 212, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34247596

ABSTRACT

In oncology, decision-making in individual situations is often very complex. To deal with such complexity, people tend to reduce it by relying on their initial intuition. The downside of this intuitive, subjective way of decision-making is that it is prone to cognitive and emotional biases such as overestimating the quality of its judgements or being influenced by one's current mood. Hence, clinical predictions based on intuition often turn out to be wrong and to be outperformed by statistical predictions. Structuring and objectivizing oncological decision-making may thus overcome some of these issues and have advantages such as avoidance of unwarranted clinical practice variance or error-prevention. Even for uncertain situations with limited medical evidence available or controversies about the best treatment option, structured decision-making approaches like clinical algorithms could outperform intuitive decision-making. However, the idea of such algorithms is not to prescribe the clinician which decision to make nor to abolish medical judgement, but to support physicians in making decisions in a systematic and structured manner. An example for a use-case scenario where such an approach may be feasible is the selection of treatment dose in radiation oncology. In this paper, we will describe how a clinical algorithm for selection of a fractionation scheme for palliative irradiation of bone metastases can be created. We explain which steps in the creation process of a clinical algorithm for supporting decision-making need to be  performed and which challenges and limitations have to be considered.


Subject(s)
Radiation Oncology , Algorithms , Decision Making , Humans , Intuition , Prescriptions
18.
Clin Transl Oncol ; 23(9): 1794-1800, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33730312

ABSTRACT

AIM: Stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) are essential tools in radiation oncology. In Spain, the use of these techniques continues to grow as older linear accelerators (linacs) are replaced with modern equipment. However, little is known about inter-centre variability in prescription and dose heterogeneity limits. Consequently, the SBRT-Spanish Task Group (SBRT-SG) of the Spanish Society of Radiation Oncology (SEOR) has undertaken an initiative to assess prescription and homogeneity in SRS/SBRT treatment. In the present study, we surveyed radiation oncology (RO) departments to obtain a realistic overview of prescription methods used for SBRT and SRS treatment in Spain. METHODS: A brief survey was developed and sent to 34 RO departments in Spain, mostly those who are members of the SEOR SBRT-SG. The survey contained seven questions about the specific prescription mode, dose distribution heterogeneity limits, prescription strategies according to SRS/SBRT type, and the use of IMRT-VMAT (Intensity Modulated Radiation Therapy-Volumetric Modulated Arc Therapy). RESULTS: Responses were received from 29 centres. Most centres (59%) used the prescription criteria D95% ≥ 100%. Accepted dose heterogeneity was wide, ranging from 107 to 200%. Most centres used IMRT-VMAT (93%). CONCLUSIONS: This survey about SRS/SBRT prescription and dose heterogeneity has evidenced substantial inter-centre variability in prescription criteria, particularly for intended and accepted dose heterogeneity. These differences could potentially influence the mean planning target volume dose and its correlation with treatment outcomes. The findings presented here will be used by the SEOR SBRT-SG to develop recommendations for SRS/SBRT dose prescription and heterogeneity.


Subject(s)
Health Care Surveys/statistics & numerical data , Radiation Oncology/standards , Radiosurgery/methods , Radiotherapy Dosage/standards , Humans , Prescriptions/standards , Radiotherapy, Intensity-Modulated/statistics & numerical data , Societies, Medical , Spain
19.
Cancer Radiother ; 25(1): 92-102, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33390318

ABSTRACT

PURPOSE: In literature, there are no guidelines on how to prescribe dose in the case of radiosurgery (SRS) or stereotactic irradiation of multiple and adjacent BM. Aim of this work is to furnish practical proposals of dosimetric methods for multiple neighboring BM, and to make a literature review about the SRS treatment of multiple BM, comparing radiotherapy techniques on the basis of different dosimetric parameters. MATERIALS AND METHODS: A theoretical proposal of dosimetric approaches to prescribe dose in case of multiple contiguous BM is done. A literature review between 2010 and 2020 was performed on MEDLINE and Cochrane databases according to the PRISMA methodology, with the following keywords dose prescription, radiosurgery, multiple BM. Papers not reporting dosimetric solutions to irradiate multiple BM were excluded. RESULTS: Only one article in the literature reports a practical modality of dose prescription for multiple adjacent BM. Thus, we proposed other five practical solutions to prescribe radiation dose in case of two or more neighboring BM, describing advantages and drawbacks of each method in terms of different dosimetric parameters. The literature review about dosimetric solutions to irradiate multiple BM led to 56 titles; 14 articles met the chosen criteria and we reported their results in terms of dosimetric indexes and low doses to the normal brain tissue. CONCLUSIONS: The six dosimetric approaches here described can be used by physicians for multiple contiguous BM, depending on the clinical situation. These methods may be applied in clinical studies to better evaluate their usefulness in practice.


Subject(s)
Brain Neoplasms/radiotherapy , Radiosurgery/methods , Brain/pathology , Brain/radiation effects , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Humans , Necrosis , Radiation Injuries/pathology , Radiotherapy Dosage
20.
Cancer Radiother ; 24(6-7): 699-705, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32753241

ABSTRACT

From surviving fraction to tumour curability, definitions of tumour radioresistance may vary depending on the view angle. Yet, mechanisms of radioresistance have been identified and involve tumour-specific oncogenic signalling pathways, tumour metabolism and proliferation, tumour microenvironment/hypoxia, genomics. Correlations between tumour biology (histology) and imaging allow theragnostic approaches that use non-invasive biological imaging using tracer functionalization of tumour pathway biomarkers, imaging of hypoxia, etc. Modelling dose prescription function based on their tumour radio-resistant factor enhancement ratio, related to metabolism, proliferation, hypoxia is an area of investigation. Yet, the delivery of dose painting by numbers/voxel-based radiotherapy with low lineal energy transfer particles may be limited by the degree of modulation complexity needed to achieve the doses needed to counteract radioresistance. Higher lineal energy transfer particles or combinations of different particles, or combinations with drugs and devices such as done with radioenhancing nanoparticles may be promising.


Subject(s)
Brain Neoplasms/radiotherapy , Radiation Tolerance , Humans , Radiation Tolerance/physiology , Radiotherapy, Intensity-Modulated
SELECTION OF CITATIONS
SEARCH DETAIL