Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Neotrop Entomol ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354265

ABSTRACT

The Equatorial Pacific Region (EPR) in Ecuador is characterized by high rates of vegetation diversity, and rapid loss of vegetation cover due to anthropogenic pressures. In this study, general ecological aspects of the Tabanidae family, including richness, endemism, and seasonality, were evaluated. Analyses reveal that approximately 42% of the species recorded for Ecuador are present in the EPR, and out of the 84 species cataloged in the EPR, 6 are endemic, representing an endemism of 7.14%. Furthermore, it was established that tabanid populations in a coastal dry forest significantly increased their population density during the dry season, while decreasing during the wet season.

2.
Environ Monit Assess ; 196(10): 895, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230792

ABSTRACT

This study investigated seasonal fluctuations in particulate matter (PM) concentrations, including carbon and polycyclic aromatic hydrocarbon (PAH) components, in Phnom Penh, Cambodia, focusing on ultrafine particles (UFPs or ≤ 100 nm). UFP levels were notably higher during the dry season, averaging 23.73 ± 3.7 µg/m3 compared to 19.64 ± 3.4 µg/m3 in the wet season, attributed to increased emissions from vehicles and agricultural burning. In contrast, lower concentrations during the wet season were due to scavenging effect of rain. When compared to other Southeast Asian cities, UFP levels in Phnom Penh were significantly higher during the dry season, surpassing those in cities like Bangkok and Kuala Lumpur. Seasonal variations in carbonaceous components showed higher elemental carbon (EC) and total carbon (TC) during the dry season, with EC/TC ratios suggesting substantial influence from vehicular emissions and biomass burning. PAH analysis revealed seasonal disparities, with higher concentrations of benzo[b]fluoranthene (BbF) and benzo[k]fluoranthene (BkF) during the wet season, whereas fluoranthene (Flu) and pyrene (Pyr) were consistently present, indicating diverse PAH sources. The Flu/(Flu + Pyr) ratios, indicative of biomass burning, were higher in the dry season. Correlations between PAHs and carbon components confirmed combustion as a significant source of PAHs, aligning with global trends. This emphasizes the need to address distinct PM sources during various season in Phnom Penh.


Subject(s)
Air Pollutants , Carbon , Environmental Monitoring , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Cambodia , Particulate Matter/analysis , Air Pollutants/analysis , Carbon/analysis , Vehicle Emissions/analysis , Seasons , Air Pollution/statistics & numerical data , Particle Size , Cities
3.
EMBO Mol Med ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284949

ABSTRACT

Persistence of malaria parasites in asymptomatic hosts is crucial in areas of seasonally-interrupted transmission, where P. falciparum bridges wet seasons months apart. During the dry season, infected erythrocytes exhibit extended circulation with reduced cytoadherence, increasing the risk of splenic clearance of infected cells and hindering parasitaemia increase. However, what determines parasite persistence for long periods of time remains unknown. Here, we investigated whether seasonality affects plasma composition so that P. falciparum can detect and adjust to changing serological cues; or if alternatively, parasite infection length dictates clinical presentation and persistency. Data from Malian children exposed to alternating ~6-month wet and dry seasons show that plasma composition is unrelated to time of year in non-infected children, and that carrying P. falciparum only minimally affects plasma constitution in asymptomatic hosts. Parasites persisting in the blood of asymptomatic children from the dry into the ensuing wet season rarely if ever appeared to cause malaria in their hosts as seasons changed. In vitro culture in the presence of plasma collected in the dry or the wet seasons did not affect parasite development, replication or host-cell remodelling. The absence of a parasite-encoded sensing mechanism was further supported by the observation of similar features in P. falciparum persisting asymptomatically in the dry season and parasites in age- and sex-matched asymptomatic children in the wet season. Conversely, we show that P. falciparum clones transmitted early in the wet season had lower chance of surviving until the end of the following dry season, contrasting with a higher likelihood of survival of clones transmitted towards the end of the wet season, allowing for the re-initiation of transmission. We propose that the decreased virulence observed in persisting parasites during the dry season is not due to the parasites sensing ability, nor is it linked to a decreased capacity for parasite replication but rather a consequence decreased cytoadhesion associated with infection length.

4.
Insects ; 15(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39336609

ABSTRACT

Our investigation centered on the tropical dry forests along the Pacific coast of Honduras, aiming to elucidate the presence and abundance of minuscule grey moths during the dry season. Through specimen dissections and the taxonomic identification of the collected material, we have described three new species: Acalyptris podenasi sp. nov., A. palpiformis sp. nov., and A. tortoris sp. nov. Additionally, we documented two species previously known from neighboring countries, A. lascuevella Puplesis & Robinson and A. basicornis Remeikis & Stonis. The females of A. lascuevella were previously unknown and are documented here for the first time. Morphological examinations were complemented by DNA barcoding, particularly highlighting variation in A. lascuevella. The paper's primary significance lies not only in the description of new species but also in uncovering their taxonomic, morphological, and molecular importance. We found that these species are unique and indicative of the previously unstudied dry forests as a distinct ecosystem. Our findings revealed several novel atypical morphological traits within the studied Nepticulidae, including unusually large signum cells in the female genitalia, a dorso-ventrally divided uncus, and asymmetrical valvae in the male genitalia. These discoveries underscore the morphological diversity of Acalyptris Meyrick and their significance in evolutionary biology. Consequently, the paper addresses a previously unknown phenomenon of the occurrence and astonishing abundance of minuscule plant-mining micromoths in dry deciduous forests during the peak of the dry season. We hope that this paper will encourage Lepidoptera taxonomists to explore micromoths in other tropical dry forests, which, while limited in distribution, hold global importance. The paper is extensively illustrated with photographs of Acalyptris adults and their genitalia, along with maps, habitats, and molecular phylogenetic trees.

5.
Med Vet Entomol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031697

ABSTRACT

This study explores the influence of small dams on the exposure to malaria vectors during the dry season in Kasungu district, Malawi, an area recently identified as high priority for malaria interventions by the National Malaria Control Programme. Small dam impoundments provide communities with a continuous supply of water for domestic and agricultural activities across sub-Saharan Africa and are considered vital to food security and climate change resilience. However, these permanent water bodies also create ideal breeding sites for mosquitoes in typically arid landscapes. The study focuses on a specific dam impoundment and its vicinity, aiming to assess its spatial and temporal influence on indoor vector densities. From May to August 2021, CDC light traps were used to measure indoor mosquito densities for two consecutive nights per month in three communities located at increasing distances from the dam (0, ~1 and ~2 km). Simultaneously, drone imagery was captured for each community, enabling the identification of additional standing water within approximately 400 m of selected households. Larval sampling was carried out within the impoundment periphery and in additional water bodies identified in the drone imagery. Generalised linear mixed models (GLMMs) were employed to analyse the indoor Anopheles abundance data, estimating the effects of household structure (open/closed eaves), month, temperature and water proximity on malaria vector exposure. Throughout 685 trapping nights, a total of 1256 mosquitoes were captured, with 33% (412) being female Anopheles. Among these, 91% were morphologically identified as Anopheles funestus s.l., and 5% as Anopheles gambiae s.l. Catches progressively decline in each consecutive trapping month as the environment became drier. This decline was much slower in Malangano, the community next to the dam, with abundance being notably higher in June and July. Further, the majority of An. gambiae s.l. were caught in May, with none identified in July and August. Anopheles larvae were found both in the impoundment and other smaller water bodies such as irrigation wells in each survey month; however, the presence of these smaller water bodies did not have a significant impact on adult female mosquito catches in the GLMM. The study concludes that proximity to the dam impoundment was the primary driver of differences between survey communities with the abundance in Chikhombwe (~1 km away) and Chiponde (~2 km away) being 0.35 (95% confidence interval [CI], 0.19-0.66) and 0.28 (95% CI, 0.16-0.47) lower than Malangano, respectively, after adjusting for other factors. These findings underscore the importance of targeted interventions, such as larval source management or housing improvements, near small dams to mitigate malaria transmission risks during the dry season. Further research is needed to develop cost-effective strategies for vector control within and around these impoundments.

6.
J Water Health ; 22(5): 878-886, 2024 May.
Article in English | MEDLINE | ID: mdl-38822466

ABSTRACT

The health district of Sakassou is one of the 83 health districts in Côte d'Ivoire, located in a zone with very high malarial transmission rates, with an incidence rate of ≥40% Therefore, to guide vector control methods more effectively, it was crucial to have a good understanding of the vectors in the area. This study aimed to determine the level of malarial transmission during the dry season in Sakassou, Côte d'Ivoire. Female Anopheles mosquitoes were sampled using human landing catches (HLCs) and pyrethrum spraying catches (PSCs). The larvae were collected using the 'dipping' method. A total of 10,875 adult female mosquitoes of Anopheles gambiae were collected. The PCR analysis revealed that all individuals were Anopheles coluzzii. The geographical distribution of potential breeding sites of Anopheles showed the presence of An. coluzzii in all the wetlands of the city of Sakassou. During the dry season, the human-biting rate of An. coluzzii was 139.1 bites/person/night. An exophagic trend was displayed by an adult female of An. coluzzii. The entomological inoculation rate during the dry season was 1.49 infectious bites/person/night. This study demonstrated that An. coluzzii was the main vector of malarial transmission in Sakassou, and the intensity of transmission remains high throughout the dry season.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Seasons , Animals , Anopheles/physiology , Anopheles/parasitology , Cote d'Ivoire/epidemiology , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Malaria/transmission , Malaria/epidemiology , Female , Humans , Oryza/parasitology , Agricultural Irrigation , Mosquito Control
7.
Environ Entomol ; 53(4): 687-697, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38822449

ABSTRACT

The life history aspects of dormancy of the weevil Anthonomus rufipennis LeConte (Coleoptera: Curculionidae) were studied a 57-month period in a seasonally dry tropical forest of central Mexico. Weevil populations and their physiological status were monitored on both the reproductive host tree, Senna polyantha (Collad.) H.S: Irwin & Barneby (Fabales: Fabaceae) and the highly favored refuge host, Tillandsia recurvata L. (Poales: Bromeliaceae) or "ball moss." During the dry season, weevils were only found on the refuge host with a mean total density of 1.014 ± 2.532 individuals/ball moss (N = 1,681). Weevil densities on T. recurvata between early and late dry seasons were not significantly different, suggesting that dry season survival was relatively high. Weevils collected during these seasons revealed little reproductive development and relatively high-fat accumulation in both sexes. During 5 of 6 yr, densities of the weevils in T. recurvata dropped significantly during the early rainy seasons, when the reproductive host trees leafed out and began producing oviposition sites (flower buds). At this time, more males than females initially moved to vegetative trees and showed significant signs of reproductive development. Recolonization of ball moss by weevils began during the late rainy season when oviposition sites (flower buds) were still available. A proportion of the weevils remained on the reproductive host, suggesting that A. rufipennis is facultatively multivoltine. The methodologies and results of the study can serve as a model system for future studies of the dormancy of other insects in dry tropical forests and provide insight into the dormancy of other anthonomine weevils of economic importance.


Subject(s)
Herbivory , Seasons , Weevils , Animals , Weevils/physiology , Mexico , Female , Male , Forests , Tropical Climate , Population Density
8.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732040

ABSTRACT

Currently, Mediterranean forests are experiencing the deleterious effects of global warming, which mainly include increased temperatures and decreased precipitation in the region. Relict Abies pinsapo fir forests, endemic in the southern Iberian Peninsula, are especially sensitive to these recent environmental disturbances, and identifying the genes involved in the response of this endangered tree species to climate-driven stresses is of paramount importance for mitigating their effects. Genomic resources for A. pinsapo allow for the analysis of candidate genes reacting to warming and aridity in their natural habitats. Several members of the complex gene families encoding late embryogenesis abundant proteins (LEAs) and heat shock proteins (HSPs) have been found to exhibit differential expression patterns between wet and dry seasons when samples from distinct geographical locations and dissimilar exposures to the effects of climate change were analyzed. The observed changes were more perceptible in the roots of trees, particularly in declining forests distributed at lower altitudes in the more vulnerable mountains. These findings align with previous studies and lay the groundwork for further research on the molecular level. Molecular and genomic approaches offer valuable insights for mitigating climate stress and safeguarding this endangered conifer.


Subject(s)
Abies , Climate Change , Gene Expression Regulation, Plant , Stress, Physiological , Stress, Physiological/genetics , Abies/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Forests
9.
PeerJ ; 12: e17125, 2024.
Article in English | MEDLINE | ID: mdl-38577414

ABSTRACT

Rainforest conversion and expansion of plantations in tropical regions change local microclimate and are associated with biodiversity decline. Tropical soils are a hotspot of animal biodiversity and may sensitively respond to microclimate changes, but these responses remain unexplored. To address this knowledge gap, here we investigated seasonal fluctuations in density and community composition of Collembola, a dominant group of soil invertebrates, in rainforest, and in rubber and oil palm plantations in Jambi province (Sumatra, Indonesia). Across land-use systems, the density of Collembola in the litter was at a maximum at the beginning of the wet season, whereas in soil it generally varied little. The community composition of Collembola changed with season and the differences between land-use systems were most pronounced at the beginning of the dry season. Water content, pH, fungal and bacterial biomarkers, C/N ratio and root biomass were identified as factors related to seasonal variations in species composition of Collembola across different land-use systems. We conclude that (1) conversion of rainforest into plantation systems aggravates detrimental effects of low moisture during the dry season on soil invertebrate communities; (2) Collembola communities are driven by common environmental factors across land-use systems, with water content, pH and food availability being most important; (3) Collembola in litter are more sensitive to climatic variations than those in soil. Overall, the results document the sensitivity of tropical soil invertebrate communities to seasonal climatic variations, which intensifies the effects of the conversion of rainforest into plantation systems on soil biodiversity.


Subject(s)
Arthropods , Soil , Animals , Soil/chemistry , Rainforest , Seasons , Invertebrates , Water
10.
Parasit Vectors ; 17(1): 181, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589957

ABSTRACT

ABSTRACT: BACKGROUND: Anopheles mosquitoes are ectothermic and involved in numerous pathogen transmissions. Their life history traits are influenced by several environmental factors such as temperature, relative humidity and photoperiodicity. Despite extensive investigations of these environmental conditions on vector population ecology, their impact on the different life stages of Anopheles at different seasons in the year remains poorly explored. This study reports the potential impact of these abiotic factors on the immature and adult stages of Anopheles gambiae sensu lato during different seasons. METHODS: Environmental conditions were simulated in the laboratory using incubators to mimic the environmental conditions of two important periods of the year in Burkina Faso: the peak of rainy season (August) and the onset of dry season (December). Eggs from wild An. coluzzii and An. gambiae s.l. were reared separately under each environmental condition. For Anopheles coluzzii or An. gambiae s.l., eggs were equally divided into two groups assigned to the two experimental conditions. Four replicates were carried out for this experiment. Then, egg hatching rate, pupation rate, larval development time, larva-to-pupae development time, adult emergence dynamics and longevity of Anopheles were evaluated. Also, pupae-to-adult development time from wild L3 and L4 Anopheles larvae was estimated under semi-field conditions in December. RESULTS: A better egg hatching rate was recorded overall with conditions mimicking the onset of the dry season compared to the peak of the rainy season. Larval development time and longevity of An. gambiae s.l. female were significantly longer at the onset of the dry season compared than at the peak of the rainy season. Adult emergence was spread over 48 and 96 h at the peak of the rainy season and onset of dry season conditions respectively. This 96h duration in the controlled conditions of December was also observed in the semi-field conditions in December. CONCLUSIONS: The impact of temperature and relative humidity on immature stages and longevity of An. gambiae s.l. adult females differed under both conditions. These findings contribute to a better understanding of vector population dynamics throughout different seasons of the year and may facilitate tailoring of control strategies.


Subject(s)
Anopheles , Female , Animals , Seasons , Burkina Faso/epidemiology , Mosquito Vectors , Ovum , Larva
11.
Environ Pollut ; 345: 123500, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38320685

ABSTRACT

Trace metal concentrations in the particulate fractions (MP), dissolved fractions (MD) and sediments (MS), such as Ba, Cu, Co, Cr, Pb, Ni and Zn, were determined during the dry season of the largest open sea delta of Americas, the Parnaíba River Delta (Brazil). This study aimed to comprehend the distribution, dynamic changes of metal speciation and environmental quality index of trace metals in the particulate fractions and subsurface sediments in scenario of major marine influence over the delta. The trace metals bound to suspended particulate material (SPM) from weathering the drainage basin exhibited a removal trend under increases in salinity and pH. Desorption influenced the partitioning of BaMP, ZnMP, NiMP, CoMP, CuMP, and the adsorption and precipitation of PbMP and CrMP to the surface sediments. The organic matter contents in the sediments acts as an important geochemical carrier of these contaminants, and the dissolved organic carbon influences the binding of PbMD in the subsurface waters. The geoaccumulation index (Igeo) plays a crucial role in revealing potential contamination with ZnMP contents and weak association to this fraction. These results make possible the assessment of ecological risk by metal contamination and global pollution mitigation in coastal tidal estuaries under intensive physical mixing along the equatorial coast.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Metals, Heavy/analysis , Seasons , Brazil , Estuaries , Lead , Geologic Sediments/chemistry , Environmental Monitoring/methods , Rivers/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis
12.
Heliyon ; 10(1): e23602, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187295

ABSTRACT

The severe drought in California (2012-2016) generated significant public and government concern. State and local watering regulations were enacted to reduce residential and commercial water-use during the droughts. This study presents a comparison of residential runoff volumes before and after local landscape irrigation regulations were enacted during the droughts of 2008 and 2012-2016. Each sampling site (Folsom 1 and Folsom 2) was a storm drain outfall that drained a low-density residential catchment in the City of Folsom. Dry season runoff measured at the sampling sites represents neighborhood outdoor water waste, mainly from landscape irrigation. During the drought of 2012-2016, median runoff flows were significantly reduced after local landscape irrigation regulations were enacted. The daily runoff pattern was also highly influenced by regulation, with reductions of daily peak runoff flows on 4-5 days in a week after watering regulations were enacted. The number of peak flow events in the daily runoff pattern were reduced during this period. In addition, a significant reduction in mean runoff volume occurred. Based on these results, the watering regulations enacted by the City of Folsom had a positive effect on reducing urban runoff from residential neighborhoods during the dry season. As the results are from monitoring sites in a relatively small geographical area, further work should evaluate reductions in irrigation runoff from other California locations to determine if this is a localized phenomenon.

13.
Malar J ; 22(1): 336, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936194

ABSTRACT

The source of malaria vector populations that re-establish at the beginning of the rainy season is still unclear yet knowledge of mosquito behaviour is required to effectively institute control measures. Alternative hypotheses like aestivation, local refugia, migration between neighbouring sites, and long-distance migration (LDM) are stipulated to support mosquito persistence. This work assessed the malaria vector persistence dynamics and examined various studies done on vector survival  via these hypotheses; aestivation, local refugia, local or long-distance migration across sub-Saharan Africa, explored a range of methods used, ecological parameters and highlighted the knowledge trends and gaps. The results about a particular persistence mechanism that supports the re-establishment of Anopheles gambiae, Anopheles coluzzii or Anopheles arabiensis in sub-Saharan Africa were not conclusive given that each method used had its limitations. For example, the Mark-Release-Recapture (MRR) method whose challenge is a low recapture rate that affects its accuracy, and the use of time series analysis through field collections whose challenge is the uncertainty about whether not finding mosquitoes during the dry season is a weakness of the conventional sampling methods used or because of hidden shelters. This, therefore, calls for further investigations emphasizing the use of ecological experiments under controlled conditions in the laboratory or semi-field, and genetic approaches, as they are known to complement each other. This review, therefore, unveils and assesses the uncertainties that influence the different malaria vector persistence mechanisms and provides recommendations for future studies.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Mosquito Vectors/genetics , Malaria/prevention & control , Africa South of the Sahara , Seasons
14.
Heliyon ; 9(9): e19781, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809961

ABSTRACT

The main purpose of wastewater treatment plant (WWTP) is to reduce organic and inorganic pollutants to meet standards. But WWTPs employing up flow anaerobic sludge blanket (UASB) reactors under psychrophilic temperature are currently removing about 55% chemical oxygen demand (COD) and 70% total dissolved solids (TSS). The research was done to increase the treatment efficiencies of UASB reactor working under psychrophilic conditions through optimization of operational parameters like temperature, organic loading rate (OLR), pH and hydraulic retention time (HRT). Experimentation was carried out in a 0.0486 m3 square-shaped pilot-scale UASB reactor. Experimental design response surface method (RSM) for performance enhancement and optimization of UASB reactor operational parameters through five levels of central composite design (CCD) was used. The optimized operational parameters obtained from CCD-RSM were as follows: temperature of 21.58 °C, OLR of 2.99 kg COD/m3.d, HRT of 4.37hrs and pH of 6.3. Using optimized parameters, tests yielded efficiencies of 92.70%, 99.06%, and 94.50% for COD, TSS, and volatile suspended solid (VSS) respectively. The outlet concentrations of alkalinity, and volatile fatty acids (VFA), were found to be lower than the inlet concentrations. The alkalinity in the system accepts the hydrogen ion released by acids and the system is taken over by methanogensis to maintain the pH. The outlet concentration of sulfate ion was found to be increasing due to inhabitation of sulfur-reducing bacteria by an anaerobic condition of VFA and alkalinity at a pH less than 7.8.This process favors the production of CH4 than H2S gas. In general, there was a high likelihood of improving the performance of UASB reactor operating at psychrophilic temperature by optimizing operational parameters.

15.
Biology (Basel) ; 12(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37887069

ABSTRACT

Seasonal water-level fluctuations can profoundly impact nutrient dynamics in aquatic ecosystems, influencing trophic structures and overall ecosystem functions. The Tian-e-Zhou Oxbow of the Yangtze River is China's first ex situ reserve and the world's first successful case of ex situ conservation for cetaceans. In order to better protect the Yangtze finless porpoise, the effects of water-level fluctuations on the trophic structure in this oxbow cannot be ignored. Therefore, we employed stable isotope analysis to investigate the changes in the trophic position, trophic niche, and contribution of basal food sources to fish during the wet and dry seasons of 2021-2022. The research results indicate that based on stable isotope analysis of the trophic levels of different dietary fish species, fish trophic levels during the wet season were generally higher than those during the dry season, but the difference was not significant (p > 0.05). Fish communities in the Tian-e-Zhou Oxbow exhibited broader trophic niche space and lower trophic redundancy during the wet season (p < 0.05), indicating a more complex and stable food web structure. In both the wet and dry seasons, fish in the oxbow primarily relied on endogenous carbon sources, but there were significant differences in the way they were utilized between the two seasons (p < 0.05). In light of the changes in the trophic structure of the fish during the wet and dry seasons, and to ensure the stable development of the Yangtze finless porpoise population, we recommend strengthening the connectivity between the Tian-e-Zhou Oxbow and the Yangtze River.

16.
Respirol Case Rep ; 11(9): e01200, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37546524

ABSTRACT

A 74-year-old woman was admitted with a dry cough and dyspnea that had persisted for 2 weeks at the beginning of winter. Chest computed tomography revealed bilateral diffuse non-segmental ground-glass opacities without centrilobular nodules. Bronchoalveolar lavage fluid revealed a marked increase in the lymphocyte ratio. Her condition and chest radiographic findings improved spontaneously after admission. An additional interview conducted after admission revealed that the patient had started using a contaminated humidifier approximately 2 weeks before the onset of symptoms. Thus, the diagnosis of humidifier lung was established. Humidifier lung is a rare phenotype of hypersensitive pneumonitis that often occurs during dry winter when the use of humidifiers increases. Humidifier lung is an important differential diagnosis of bilateral pneumonia during dry winter, and detailed history-taking regarding the use of humidifiers, assuming a humidifier lung, is crucial for its diagnosis.

17.
Geohealth ; 7(8): e2022GH000765, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37519911

ABSTRACT

Sub-Saharan Africa has been the last continent to experience a significant number of cases in the novel Coronavirus (COVID-19). Studies suggest that air pollution is related to COVID-19 mortality; poor air quality has been linked to cardiovascular, cerebrovascular, and respiratory diseases, which are considered co-morbidities linked to COVID-19 deaths. We examine potential connections between country-wide COVID-19 cases and environmental conditions in Senegal, Cabo Verde, Nigeria, Cote D'Ivorie, and Angola. We analyze PM2.5 concentrations, temperatures from cost-effective in situ measurements, aerosol optical depth (AOD), and fire count and NO2 column values from space-borne platforms from 1 January 2020 through 31 March 2021. Our results show that the first COVID-19 wave in West Africa began during the wet season of 2020, followed by a second during the dry season of 2020. In Angola, the first wave starts during the biomass burning season but does not peak until November of 2020. Overall PM2.5 concentrations are the highest in Ibadan, Nigeria, and coincided with the second wave of COVID-19 in late 2021 and early 2022. The COVID-19 waves in Cabo Verde are not in phase with those in Senegal, Nigeria, and Cote, lagging by several months in general. Overall, the highest correlations occurred between weekly new COVID-19 cases meteorological and air quality variables occurred in the dry season.

18.
Huan Jing Ke Xue ; 44(5): 2528-2538, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177927

ABSTRACT

Small reservoirs in the Yangtze River are large in quantity and widely distributed, which have important ecological and economic benefits. It is of great significance to explore the response law of small reservoir water quality to environmental variables for improving reservoir water quality. Based on the measured water quality data of 36 small reservoirs in the upper reaches of the Yangtze River, combined with the measured water quality data, using correlation analysis, redundancy analysis, and other research methods, we divided the environmental variables into three categories:landscape configuration index, landscape composition index, and reservoir characteristic index, and explored their impact on the change in water quality index. The research results showed that:① farms were the main source of NO3--N, TN, and TP, and residential land was the main source of TP. Paddy, forest land, and wasteland had positive effects on the retention and purification of N and P in reservoirs. ② The LPI of farms was significantly positively correlated with the concentrations of TN and NO3--N in the reservoir, and the paddy and forest were significantly negatively correlated with the concentrations of NO3--N and TN in the reservoir. The PD of farms was positively correlated with TP. The LPI was negatively correlated with TP content. ③ The correlation between average reservoir depth and reservoir water quality was the strongest. Reservoir capacity, reservoir average depth, and reservoir LSI had significant positive effects on water quality improvement. ④ Among the environmental variables of the reservoir, landscape configuration index had the highest explanatory rate (24%), followed by that of the reservoir characteristics index (11%) and landscape composition index (9%). Watershed factors were the key factors (55%), and internal factors (19%) also had a significant influence on reservoir water quality. The research results can provide a theoretical basis for controlling water quality degradation of small reservoirs by managing and optimizing the landscape characteristics of reservoirs.

19.
Life (Basel) ; 13(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240851

ABSTRACT

Water quality is directly linked to drinking water safety for millions of people receiving the water. The Danjiangkou Reservoir is the main water source for the Middle Route of the South-to-North Water Diversion Project (MR-SNWDP), located in the vicinity of Henan and Hubei provinces in China. Aquatic microorganisms are key indicators of biologically assessing and monitoring the water quality of the reservoir as they are sensitive to environmental and water quality changes. This study aimed to investigate the spatiotemporal variations in bacterioplankton communities during wet (April) and dry (October) seasons at eight monitoring points in Hanku reservoir and five monitoring points in Danku reservoir. Each time point had three replicates, labeled as wet season Hanku (WH), wet season Danku (WD), dry season Hanku (DH), and dry season Danku (DD) of Danjiangkou Reservoir in 2021. High-throughput sequencing (Illumina PE250) of the 16S rRNA gene was performed, and alpha (ACE and Shannon) and beta (PCoA and NDMS) diversity indices were analyzed. The results showed that the dry season (DH and DD) had more diverse bacterioplankton communities compared to the wet season (WH and WD). Proteobacteria, Actinobacteria, and Firmicutes were the most abundant phyla, and Acinetobacter, Exiguobacterium, and Planomicrobium were abundant in the wet season, while polynucleobacter was abundant in the dry season. The functional prediction of metabolic pathways revealed six major functions including carbohydrate metabolism, membrane transport, amino acid metabolism, signal transduction, and energy metabolism. Redundancy analysis showed that environmental parameters greatly affected bacterioplankton diversity during the dry season compared to the wet season. The findings suggest that seasonality has a significant impact on bacterioplankton communities, and the dry season has more diverse communities influenced by environmental parameters. Further, the relatively high abundance of certain bacteria such as Acinetobacter deteriorated the water quality during the wet season compared to the dry season. Our findings have significant implications for water resource management in China, and other countries facing similar challenges. However, further investigations are required to elucidate the role of environmental parameters in influencing bacterioplankton diversity in order to devise potential strategies for improving water quality management in the reservoir.

20.
Environ Sci Pollut Res Int ; 30(24): 65351-65363, 2023 May.
Article in English | MEDLINE | ID: mdl-37081368

ABSTRACT

Dissolved oxygen is an ecologically critical variable with the prevalence of hypoxia one of the key global anthropogenic issues. A study was carried out to understand the causes of low dissolved oxygen in Brunei Bay, northwest Borneo. Hypoxia was widespread in bottom waters in the monsoonal dry season with dissolved oxygen < 2 mg/L throughout the coastal zone. This was a result of riverine nutrient input primarily from the Padas river driving excess primary production and its subsequent sinking into stratified bottom water where its decomposition consumed oxygen. Despite higher riverine nutrient input in the wet season hypoxia was less extensive due to the combination of turbidity reducing coastal primary production, the intrusion of oxygen-rich water from the South China Sea into offshore bottom layer waters and horizontal flushing increase advection of phytoplankton biomass out of the bay. Future investigation of hypoxia in shallow tropical regions therefore needs to consider the role of monsoonal season.


Subject(s)
Bays , Hypoxia , Humans , Brunei , Oxygen/analysis , Seasons , Water , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL