Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.766
Filter
1.
J Orthop ; 57: 17-22, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38948502

ABSTRACT

Introduction: Short stem prostheses were originally designed for younger and more active patients. In recent years, they have been increasingly offered to older patients. This study evaluates the mid-to long-term survival of a short stem prosthesis and the changes in periprosthetic bone density following implantation of a cementless short hip stem in patients over 60 years of age. Methods: 118 patients aged over 60 received short stem prostheses. Clinical examination included Harris Hip Score (HHS) and Hip Disability and Osteoarthritis Outcome Score (HOOS). 93 patients were followed clinically for at least five years. 53 patients underwent dual-energy x-ray absorptiometry (DXA) and radiographic evaluation. Follow-up intervals were preoperative and postoperative (t0), at approximately six months (t1), at approximately two years (t2), and at approximately five years or later (t3). Results: Over a mean 6.7-year observation period for all 118 patients, one stem revision occurred due to a traumatic periprosthetic stem fracture. The five-year survival rate for the endpoint survival of the Metha® stem in 95 at-risk patients is 99.2%. HHS improved significantly from t0 55.3 ± 11.5 (range 30-79) to t3 95.3 ± 8.6 (range 57-100) at a mean of 8.0 years (p < 0.001). HOOS improved significantly in each subscale (p < 0.001). Bone mineral density (BMD) was available for review in 53 patients after a mean of 7.1 years. BMD increased from t0 to t3 in region of interest (ROI) 3 (+0.4%) and ROI 6 (+2.9%) and decreased in ROI 1 (-10.3%), ROI 2 (-9.8%), ROI 4 (-5.3%), ROI 5 (-3.4%) and ROI 7 (-23.1%). Conclusions: The evaluated short stem prosthesis shows a remarkably high survival rate in elderly patients, accompanied by excellent clinical results. Load transfer measurements show a metaphyseal-diaphyseal pattern with a trend towards increased diaphyseal transfer over the period observed.

2.
J Vasc Interv Radiol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950821

ABSTRACT

PURPOSE: To evaluate efficacy of pulmonary arteriovenous malformation (PAVM) embolization using dual-energy computed tomography (DECT) and spectral curve analysis by characterizing contrast enhancement and vascular perfusion as a surrogate of the degree of vascular occlusion after embolotherapy. METHODS: Nine consecutive adult patients underwent embolization for 21 PAVMs (size range 0.4-2.0cm; 15/21 simple angioarchitecture) and subsequent post-embolization chest DECT angiography. Twelve PAVMS were treated with vascular plugs ± coils, whereas nine PAVMs were treated with coils-only. Virtual spectral curves (VSC) were generated using dual-energy image post-processing in order to measure embolization effectiveness. RESULTS: Complete occlusion of target PAVM was achieved in all cases on digital subtraction angiography at the end of the embolization procedure. With a median follow-up of 12.7 months, the vascular plug group demonstrated significantly less vascular opacification compared to the coils-only group, as measured by opacification between upstream feeding artery and and different downstream vasculature locations (Δslope1: median 79.1 versus 28.6, p=0.0030; Δslope2: 76.4 versus 28.6, p=0.0197; Δslope3: 78.9 versus 28.6, p=0.0041). Persistence occurred in three PAVMs based on size criteria, which demonstrated higher vascular vascular opacification by DECT (Δslope1: 72 versus 28.6, p=0.253; Δslope2: 65.1 versus 32.7, p=0.326; Δslope3: 72.9 versus 53.5, p=0.733), although statistical significance was not reached. CONCLUSION: Similar to emerging literature, DECT showed improved occlusion in PAVMs treated with vascular plugs compared to coils alone.

3.
Article in English | MEDLINE | ID: mdl-38952048

ABSTRACT

BACKGROUND: Sarcopenia is an important indicator of ill health and is linked to increased mortality and a reduced quality of life. Age-associated muscle mass indices provide a critical tool to help understand the development of sarcopenia. This study aimed to develop sex- and age-specific percentiles for muscle mass indices in a Chinese population and to compare those indices with those from other ethnicities using the National Health and Nutrition Examination Survey (NHANES) data. METHODS: Whole-body and regional muscle mass was measured by dual-energy X-ray absorptiometry (DXA) in participants of the China Body Composition Life-course (BCL) study (17 203 healthy Chinese aged 3-60 years, male 48.9%) and NHANES (12 663 healthy Americans aged 8-59 years, male 50.4%). Age- and sex-specific percentile curves were generated for whole-body muscle mass and appendicular skeletal muscle mass using the Generalized Additive Model for Location Scale and Shape statistical method. RESULTS: Values of upper and lower muscle mass across ages had three periods: an increase from age 3 to a peak at age 25 in males (with the 5th and 95th values of 41.5 and 66.4 kg, respectively) and age 23 in females (with the 5th and 95th values of 28.4 and 45.1 kg, respectively), a plateau through midlife (30s-50s) and then a decline after their early 50s. The age at which muscle mass began to decline was 52 years in men with the 5th and 95th percentile values of 43.5 and 64.6 kg, and 51 years in women with the 5th and 95th percentile values of 31.6 and 46.9 kg. Appendicular skeletal muscle mass decreased earlier than whole body muscle mass, especially leg skeletal muscle mass, which decreased slightly after age 49 years in both sexes. In comparison with their US counterparts in the NHANES, the Chinese participants had lower muscle mass indices (all P < 0.001) and reached a muscle mass peak earlier with a lower muscle mass, with the exception of similar values compared with adult Mexican and White participants. The muscle mass growth rate of Chinese children decreased faster than that of other races after the age of 13. CONCLUSIONS: We present the sex- and age-specific percentiles for muscle mass and appendicular skeletal muscle mass by DXA in participants aged 3-60 from China and compare them with those of different ethnic groups in NHANES. The rich data characterize the trajectories of key muscle mass indices that may facilitate the clinical appraisal of muscle mass and improve the early diagnosis of sarcopenia in the Chinese population.

4.
Skeletal Radiol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969781

ABSTRACT

Computed tomography (CT) is a common modality employed for musculoskeletal imaging. Conventional CT techniques are useful for the assessment of trauma in detection, characterization and surgical planning of complex fractures. CT arthrography can depict internal derangement lesions and impact medical decision making of orthopedic providers. In oncology, CT can have a role in the characterization of bone tumors and may elucidate soft tissue mineralization patterns. Several advances in CT technology have led to a variety of acquisition techniques with distinct clinical applications. These include four-dimensional CT, which allows examination of joints during motion; cone-beam CT, which allows examination during physiological weight-bearing conditions; dual-energy CT, which allows material decomposition useful in musculoskeletal deposition disorders (e.g., gout) and bone marrow edema detection; and photon-counting CT, which provides increased spatial resolution, decreased radiation, and material decomposition compared to standard multi-detector CT systems due to its ability to directly translate X-ray photon energies into electrical signals. Advanced acquisition techniques provide higher spatial resolution scans capable of enhanced bony microarchitecture and bone mineral density assessment. Together, these CT acquisition techniques will continue to play a substantial role in the practices of orthopedics, rheumatology, metabolic bone, oncology, and interventional radiology.

5.
Clin Nutr ESPEN ; 63: 214-225, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38970786

ABSTRACT

BACKGROUND: Bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA) serves as common modalities for body composition assessment. This study was aimed to evaluate the agreement between BIA and DXA measures in UK Biobank. METHODS: UK Biobank participants with body fat mass (FM) and fat-free mass (FFM) estimates obtained through BIA (Tanita BC418MA) and DXA concurrently were included. Correlation between BIA and DXA-derived estimates were assessed with Lin's concordance correlation coefficients. Bland-Altman and Passing-Boblok analyses were performed to quantify the difference and agreement between BIA and DXA. Multivariable linear regression was used to identify predictors influencing the differences. Finally, prediction models were developed to calibrate BIA measures against DXA. RESULTS: The analysis included 34437 participants (female 51.4%, mean age 64.1 years at imaging assessment). BIA and DXA measurements were highly correlated (Lin's concordance correlation coefficient 0.94 for FM and 0.94 for FFM). BIA (Tanita BC418MA) underestimates FM overall by 1.84 kg (23.77 vs. 25.61, p < 0.01), and overestimated FFM overall by 2.56 kg (52.49 vs. 49.93, p < 0.01). The BIA-DXA differences were associated with FM, FFM, BMI and waist circumference. The developed prediction models showed overall good performance in calibrating BIA data. CONCLUSION: Our analysis exhibited strong correlation between BIA (Tanita BC418MA)- and DXA-derived body composition measures at a population level in UK Biobank. However, the BIA-DXA differences were observed at individual level and associated with individual anthropometric measures. Future studies may explore the use of prediction models to enhance the calibration of BIA measures for more accurate assessments in UK Biobank.

6.
Eur Radiol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967660

ABSTRACT

PURPOSE: To evaluate the quality of lung perfusion imaging obtained with photon-counting-detector CT (PCD-CT) in comparison with dual-source, dual-energy CT (DECT). METHODS: Seventy-one consecutive patients scanned with PCD-CT were compared to a paired population scanned with dual-energy on a 3rd-generation DS-CT scanner using (a) for DS-CT (Group 1): collimation: 64 × 0.6 × 2 mm; pitch: 0.55; (b) for PCD-CT (Group 2): collimation: 144 × 0.4 mm; pitch: 1.5; single-source acquisition. The injection protocol was similar in both groups with the reconstruction of perfusion images by subtraction of high- and low-energy virtual monoenergetic images. RESULTS: Compared to Group 1, Group 2 examinations showed: (a) a shorter duration of data acquisition (0.93 ± 0.1 s vs 3.98 ± 0.35 s; p < 0.0001); (b) a significantly lower dose-length-product (172.6 ± 55.14 vs 339.4 ± 75.64 mGy·cm; p < 0.0001); and (c) a higher level of objective noise (p < 0.0001) on mediastinal images. On perfusion images: (a) the mean level of attenuation did not differ (p = 0.05) with less subjective image noise in Group 2 (p = 0.049); (b) the distribution of scores of fissure visualization differed between the 2 groups (p < 0.0001) with a higher proportion of fissures sharply delineated in Group 2 (n = 60; 84.5% vs n = 26; 26.6%); (c) the rating of cardiac motion artifacts differed between the 2 groups (p < 0.0001) with a predominance of examinations rated with mild artifacts in Group 2 (n = 69; 97.2%) while the most Group 1 examinations showed moderate artifacts (n = 52; 73.2%). CONCLUSION: PCD-CT acquisitions provided similar morphologic image quality and superior perfusion imaging at lower radiation doses. CLINICAL RELEVANCE STATEMENT: The improvement in the overall quality of perfusion images at lower radiation doses opens the door for wider applications of lung perfusion imaging in clinical practice. KEY POINTS: The speed of data acquisition with PCD-CT accounts for mild motion artifacts. Sharply delineated fissures are depicted on PCD-CT perfusion images. High-quality perfusion imaging was obtained with a 52% dose reduction.

7.
ArXiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38947918

ABSTRACT

An optimization-based image reconstruction algorithm is developed for contrast enhanced digital breast tomosynthesis (DBT) using dual-energy scanning. The algorithm minimizes directional total variation (TV) with a data discrepancy and non-negativity constraints. Iodinated contrast agent (ICA) imaging is performed by reconstructing images from dual-energy DBT data followed by weighted subtraction. Physical DBT data is acquired with a Siemens Mammomat scanner of a structured breast phantom with ICA inserts. Results are shown for both directional TV minimization and filtered back-projection for reference. It is seen that directional TV is able to substantially reduce depth blur for the ICA objects.

8.
Eur Radiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985184

ABSTRACT

OBJECTIVES: To compare the diagnostic performance of conventional non-contrast CT, dual-energy spectral CT, and chemical-shift MRI (CS-MRI) in discriminating lipid-poor adenomas (> 10-HU on non-contrast CT) from non-adenomas. METHODS: A total of 110 patients (69 men; 41 women; mean age 66.5 ± 13.4 years) with 80 lipid-poor adenomas and 30 non-adenomas who underwent non-contrast dual-layer spectral CT and CS-MRI were retrospectively identified. For each lesion, non-contrast attenuation on conventional 120-kVp images, ΔHU-index ([attenuation difference between virtual monoenergetic 140-keV and 40-keV images]/conventional attenuation × 100), and signal intensity index (SI-index) were quantified. Each parameter was compared between adenomas and non-adenomas using the Mann-Whitney U-test. The area under the receiver operating characteristic curve (AUC) and sensitivity to achieve > 95% specificity for adenoma diagnosis were determined. RESULTS: Conventional non-contrast attenuation was lower in adenomas than in non-adenomas (22.4 ± 8.6 HU vs 32.8 ± 48.5 HU), whereas ΔHU-index (148.0 ± 103.2 vs 19.4 ± 25.8) and SI-index (41.6 ± 19.6 vs 4.2 ± 10.2) were higher in adenomas (all, p < 0.001). ΔHU-index showed superior performance to conventional non-contrast attenuation (AUC: 0.919 [95% CI: 0.852-0.963] vs 0.791 [95% CI: 0.703-0.863]; sensitivity: 75.0% [60/80] vs 27.5% [22/80], both p < 0.001), and near equivalent to SI-index (AUC: 0.952 [95% CI: 0.894-0.984], sensitivity 85.0% [68/80], both p > 0.05). Both the ΔHU-index and SI-index provided a sensitivity of 96.0% (48/50) for hypoattenuating adenomas (≤ 25 HU). For hyperattenuating (> 25 HU) adenomas, SI-index showed higher sensitivity than ΔHU-index (66.7% [20/30] vs 40.0% [12/30], p = 0.022). CONCLUSIONS: Non-contrast spectral CT and CS-MRI outperformed conventional non-contrast CT in distinguishing lipid-poor adenomas from non-adenomas. While CS-MRI demonstrated superior sensitivity for adenomas measuring > 25 HU, non-contrast spectral CT provided high discriminative values for adenomas measuring ≤ 25 HU. CLINICAL RELEVANCE STATEMENT: Spectral attenuation analysis improves the diagnostic performance of non-contrast CT in discriminating lipid-poor adrenal adenomas, potentially serving as an alternative to CS-MRI and obviating the necessity for additional diagnostic workup in indeterminate adrenal incidentalomas, particularly for lesions measuring ≤ 25 HU. KEY POINTS: Incidental adrenal lesion detection has increased as abdominal CT use has become more frequent. Non-contrast spectral CT and CS-MRI differentiated lipid-poor adenomas from non-adenomas better than conventional non-contrast CT. For lesions measuring ≤ 25 HU, spectral CT may obviate the need for additional evaluation.

9.
Clin Interv Aging ; 19: 1203-1215, 2024.
Article in English | MEDLINE | ID: mdl-38974509

ABSTRACT

Purpose: This study aims to develop a novel MRI-based paravertebral muscle quality (PVMQ) score for assessing muscle quality and to investigate its correlation with the degree of fat infiltration (DFF) and the vertebral bone quality (VBQ) score of paravertebral muscles. Additionally, the study compares the effectiveness of the PVMQ score and the VBQ score in assessing muscle quality and bone quality. Methods: PVMQ scores were derived from the ratio of paravertebral muscle signal intensity (SI) to L3 cerebrospinal fluid SI on T2-weighted MRI. Image J software assessed paravertebral muscle cross-sectional area (CSA) and DFF. Spearman rank correlation analyses explored associations between PVMQ, VBQ scores, DFF, and T-scores in both genders. Receiver operating characteristic (ROC) curves compared PVMQ and VBQ scores' effectiveness in distinguishing osteopenia/osteoporosis and high paraspinal muscle DFF. Results: In this study of 144 patients (94 females), PVMQ scores were significantly higher in osteoporosis and osteopenia groups compared to normals, with variations observed between genders (P < 0.05). PVMQ showed stronger positive correlation with VBQ scores and DFF in females than males (0.584 vs 0.445, 0.579 vs 0.528; P < 0.01). ROC analysis favored PVMQ over VBQ for low muscle mass in both genders (AUC = 0.767 vs 0.718, 0.793 vs 0.718). VBQ was better for bone mass in males (0.737/0.865 vs 0.691/0.858), whereas PVMQ excelled for females (0.808/0.764 vs 0.721/0.718). Conclusion: The novel PVMQ score provides a reliable assessment of paravertebral muscle quality and shows a strong correlation with VBQ scores and DFF, particularly in females. It outperforms VBQ scores in evaluating muscle mass and offers valuable insights for assessing bone mass in females. These findings underscore the potential of the PVMQ score as a dual-purpose tool for evaluating both muscle and bone health, informing future research and clinical practice.


Subject(s)
Magnetic Resonance Imaging , Osteoporosis , Humans , Female , Male , Magnetic Resonance Imaging/methods , Middle Aged , Aged , Osteoporosis/diagnostic imaging , Bone Diseases, Metabolic/diagnostic imaging , Paraspinal Muscles/diagnostic imaging , ROC Curve , Bone Density , Lumbar Vertebrae/diagnostic imaging
10.
Article in English | MEDLINE | ID: mdl-39001732

ABSTRACT

BACKGROUND: The association of coronary computed tomography angiography (CTA) and left ventricular (LV) myocardium measurements with cancer therapy-related cardiac dysfunction (CTRCD) is limited. OBJECTIVES: In this study, the authors sought to evaluate the changes in coronary arteries and LV myocardium in patients with left breast cancer (BC) receiving anthracycline with or without radiotherapy, with the use of coronary CTA. METHODS: Participants with left BC receiving anthracycline with or without radiotherapy were prospectively included. All participants underwent coronary CTA before and after treatment, including nonenhanced calcium-scoring scan, computed tomography angiography, and dual-energy late enhancement scan. Computed tomographic fractional flow reserve (CT-FFR), pericoronary adipose tissue (PCAT) CT attenuation, and LV segments' extracellular volume (ECV) before and after treatment were compared. Logistic regression analysis was used to assess the association between baseline coronary CTA parameters and CTRCD. RESULTS: Eighty participants receiving anthracycline and 59 participants receiving anthracycline with radiotherapy were included. CT-FFR decreased and PCAT CT attenuation and LV global and segments' ECV increased after treatment (all P < 0.05). After chemoradiotherapy, CT-FFR was lower and PCAT CT attenuation and LV myocardial ECV were higher than after chemotherapy. Twenty-four participants developed CTRCD. After adjustment by Heart Failure Association-International Cardio-Oncology Society risk in multivariable logistic regression analysis, baseline stenosis of the left anterior descending artery (LAD) (OR: 1.987 [95% CI: 1.322-2.768]; P = 0.021), left circumflex artery (LCX) (OR: 1.895 [95% CI: 1.281-2.802]; P = 0.031), and right coronary artery (RCA) (OR: 1.920 [95% CI: 1.405-2.811]; P = 0.028), and baseline CT-FFR of the LAD (OR: 3.425 [95% CI: 1.621-9.434]; P < 0.001), LCX (OR: 2.058 [95% CI: 1.030-5.076]; P = 0.006), and RCA (OR: 2.469 [95% CI: 1.232-6.944]; P = 0.004) were associated with CTRCD. CONCLUSIONS: Multiparameter coronary CTA contributes to comprehensive assessment of the coronary arteries and myocardium in patients with left BC receiving anthracycline with or without radiotherapy. Baseline coronary artery stenosis and CT-FFR might be imaging markers for predicting CTRCD in these patients.

11.
Acad Radiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38997882

ABSTRACT

RATIONALE AND OBJECTIVES: To explore the value of splenic hemodynamic parameters from low-dose one-stop dual-energy and perfusion CT (LD-DE&PCT) in non-invasively predicting high-risk esophageal varices (HREV) in cirrhotic patients. METHODS: We retrospectively analyzed cirrhotic patients diagnosed with esophageal varices (EV) through clinical, laboratory, imaging, and endoscopic examinations from September 2021 to December 2023 in our hospital. All patients underwent LD-DE&PCT to acquire splenic iodine concentration and perfusion parameters. Radiation dose was recorded. Patients were classified into non-HREV and HREV groups based on endoscopy. Univariate and multivariate logistic regression analysis were performed, and the prediction model for HREV was constructed. P < 0.05 was considered statistically significant. RESULTS: Univariate analysis revealed that significant differences were found in portal iodine concentration (PIC), blood flow (BF), permeability surface (PS), spleen volume (V-S), total iodine concentration (TIC), and total blood volume of the spleen (BV-S) between groups. TIC demonstrated the highest predictive value with an area under the curve (AUC) value of 0.87. Multivariate analysis showed that PIC, PS, and BV-S were independent risk factors for HREV. The logistic regression model for predicting HREV had an AUC of 0.93. The total radiation dose was 20.66 ± 4.07 mSv. CONCLUSION: Splenic hemodynamic parameters obtained from LD-DE&PCT can non-invasively and accurately assess the hemodynamic status of the spleen in cirrhotic patients with EV and predict the occurrence of HREV. Despite the retrospective study design and limited sample size of this study, these findings deserve further validation through prospective studies with larger cohorts.

12.
Article in English | MEDLINE | ID: mdl-39001640

ABSTRACT

BACKGROUND: The distribution of fat and muscle mass in different regions of the body can reflect different pathways to mortality in individuals with diabetes. Therefore, we investigated the associations between whole-body and regional body fat and muscle mass with cardiovascular disease (CVD) and non-CVD mortality in type 2 diabetes (T2D). METHODS: Within the National Health and Nutrition Examination Survey 1999-2006, 1417 adults aged ≥50 years with T2D were selected. Dual-energy X-ray absorptiometry was used to derive whole-body, trunk, arm, and leg fat mass and muscle mass indices (FMI and MMI). Mortality data until 31 December 2019 were retrieved from the National Death Index. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated from Cox proportional hazard models. RESULTS: A total of 1417 participants were included in this study (weighted mean age [standard error]: 63.7 [0.3] years; 50.5% female). Over a median follow-up of 13.6 years, 797 deaths were recorded (371 CVD-related and 426 non-CVD deaths). Higher FMI in the arm was associated with increased risk of non-CVD mortality (fourth quartile [Q4] vs. first quartile [Q1]: HR 1.82 [95% CI 1.13-2.94]), whereas higher FMI in the trunk or leg was not significantly associated with CVD or non-CVD mortality. Conversely, higher arm MMI was associated with a lower risk of both CVD (Q4 vs. Q1: HR 0.51 [95% CI 0.33-0.81]) and non-CVD (Q4 vs. Q1: HR 0.56 [95% CI 0.33-0.94]) mortality. There was a significant interaction between smoking status and arm FMI on non-CVD mortality (P for interaction = 0.007). Higher arm FMI was associated with a higher risk of non-CVD mortality among current or former smokers (Q4 vs. Q1: HR 2.67 [95% CI 1.46-4.88]) but not non-smokers (Q4 vs. Q1: HR 0.85 [95% CI 0.49-1.47]). CONCLUSIONS: Fat mass and muscle mass, especially in the arm, are differently associated with CVD and non-CVD mortality in people with T2D. Our findings underscore the predictive value of body compositions in the arm in forecasting mortality among older adults with T2D.

13.
Diagnostics (Basel) ; 14(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39001219

ABSTRACT

BACKGROUND AND OBJECTIVE: Segmentation of the femur in Dual-Energy X-ray (DXA) images poses challenges due to reduced contrast, noise, bone shape variations, and inconsistent X-ray beam penetration. In this study, we investigate the relationship between noise and certain deep learning (DL) techniques for semantic segmentation of the femur to enhance segmentation and bone mineral density (BMD) accuracy by incorporating noise reduction methods into DL models. METHODS: Convolutional neural network (CNN)-based models were employed to segment femurs in DXA images and evaluate the effects of noise reduction filters on segmentation accuracy and their effect on BMD calculation. Various noise reduction techniques were integrated into DL-based models to enhance image quality before training. We assessed the performance of the fully convolutional neural network (FCNN) in comparison to noise reduction algorithms and manual segmentation methods. RESULTS: Our study demonstrated that the FCNN outperformed noise reduction algorithms in enhancing segmentation accuracy and enabling precise calculation of BMD. The FCNN-based segmentation approach achieved a segmentation accuracy of 98.84% and a correlation coefficient of 0.9928 for BMD measurements, indicating its effectiveness in the clinical diagnosis of osteoporosis. CONCLUSIONS: In conclusion, integrating noise reduction techniques into DL-based models significantly improves femur segmentation accuracy in DXA images. The FCNN model, in particular, shows promising results in enhancing BMD calculation and clinical diagnosis of osteoporosis. These findings highlight the potential of DL techniques in addressing segmentation challenges and improving diagnostic accuracy in medical imaging.

14.
Clinics (Sao Paulo) ; 79: 100430, 2024.
Article in English | MEDLINE | ID: mdl-38991370

ABSTRACT

INTRODUCTION: Type 2 Diabetes (T2D) is associated with fractures, despite preserved Bone Mineral Density (BMD). This study aimed to evaluate the relationship between BMD and trabecular bone score (TBS) with the reallocation of fat within muscle in individuals with eutrophy, obesity, and T2D. METHODS: The subjects were divided into three groups: eutrophic controls paired by age and sex with the T2D group (n = 23), controls diagnosed with obesity paired by age, sex, and body mass index with the T2D group (n = 27), and the T2D group (n = 29). BMD and body fat percentage were determined using dual-energy X-Ray absorptiometry. TBS was determined using TBS iNsight software. Intra and extramyocellular lipids in the soleus were measured using proton magnetic resonance spectroscopy. RESULTS: TBS was lower in the T2D group than in the other two groups. Glycated hemoglobin (A1c) was negatively associated with TBS. Body fat percentage was negatively associated with TBS and Total Hip (TH) BMD. TH BMD was positively associated with intramuscular lipids. A trend of negative association was observed between intramuscular lipids and TBS. CONCLUSION: This study showed for the first time that the reallocation of lipids within muscle has a negative association with TBS. Moreover, these results are consistent with previous studies showing a negative association between a parameter related to insulin resistance (intramuscular lipids) and TBS.


Subject(s)
Absorptiometry, Photon , Adipose Tissue , Bone Density , Cancellous Bone , Diabetes Mellitus, Type 2 , Muscle, Skeletal , Humans , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Male , Female , Middle Aged , Bone Density/physiology , Cancellous Bone/diagnostic imaging , Case-Control Studies , Adipose Tissue/diagnostic imaging , Adult , Obesity/physiopathology , Obesity/metabolism , Glycated Hemoglobin/analysis , Body Mass Index , Aged , Glycemic Control , Reference Values
15.
BMC Musculoskelet Disord ; 25(1): 557, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020351

ABSTRACT

BACKGROUND: This meta-analysis assessed the efficacy of dual-energy computed tomography (DECT) in the diagnosis of anterior cruciate ligament (ACL) injuries. METHODS: The literature search was performed up to December 8, 2023, and included a comprehensive examination of several databases: PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang, and VIP. Diagnostic metrics sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and a summary receiver operating characteristic (SROC) were determined using a bivariate model analysis. Heterogeneity within the data was explored through subgroup analyses, which considered variables including geographical region, use of magnetic resonance imaging (MRI), arthroscopy, and study design. RESULTS: The analysis included ten studies encompassing 544 patients. DECT demonstrated substantial diagnostic utility for ACL injuries of the knee, with a sensitivity of 0.91 (95% confidence interval [CI]: 0.88-0.94), a specificity of 0.90 (95% CI: 0.81-0.95), a PLR of 9.20 (95% CI: 4.50-19.00), a NLR of 0.10 (95% CI: 0.06-0.14), a DOR of 97.00 (95% CI: 35.00-268.00), and an area under the curve (AUC) of 0.95 (95% CI: 0.93-0.97). The subgroup analyses consistently showed high diagnostic precision for ACL injuries across Asian population (sensitivity: 0.91, specificity: 0.91, PLR: 9.90, NLR: 0.09, DOR: 105.00, AUC: 0.96), in MRI subgroup (sensitivity: 0.85, specificity: 0.94, PLR: 9.57, NLR: 0.18, DOR: 56.00, AUC: 0.93), in arthroscopy subgroup (sensitivity: 0.92, specificity: 0.89, PLR: 8.40, NLR: 0.09, DOR: 94.00, AUC: 0.95), for prospective studies (sensitivity: 0.92, specificity: 0.88, PLR: 7.40, NLR: 0.09, DOR: 78.00, AUC: 0.95), and for retrospective studies (sensitivity: 0.91, specificity: 0.93, AUC: 0.93). CONCLUSION: DECT exhibits a high value in diagnosing ACL injuries. The significant diagnostic value of DECT provides clinicians with a powerful tool that enhances the accuracy and efficiency of diagnosis and optimizes patient management and treatment outcomes.


Subject(s)
Anterior Cruciate Ligament Injuries , Tomography, X-Ray Computed , Humans , Anterior Cruciate Ligament/diagnostic imaging , Anterior Cruciate Ligament Injuries/diagnostic imaging , Knee Injuries/diagnostic imaging , Magnetic Resonance Imaging/methods , Sensitivity and Specificity
16.
Acta Chir Belg ; : 1-6, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046481

ABSTRACT

Background Laparoscopic cholecystectomy (LC) is the gold standard management for benign gallbladder diseases. It has been observed that there is alteration in vitamin D levels and bone mineral density after cholecystectomy due to altered enterohepatic circulation.With increase in average age expectancy of the population, low levels of vitamin D levels and osteoporosis after cholecystectomies might cause increased health care burden.Methods A prospective observational study was planned between 1st Jan 2022 to 30th Jun 2023 in the Department of General Surgery at PGIMER Chandigarh, a tertiary care hospital in north India. One hundred and three post-menopausal women who underwent LC and met the inclusion and exclusion criteria were included in the study. All participants underwent estimation of vitamin D and bone mineral density preoperatively and 3rdpost operative month (POM).Results The mean age of the patients was58.46 ± 7.44. Pain abdomen was present in 68(66%) patients, 18 had epigastric discomfort and 17 had dyspepsia. The mean levels of vit D decreased from21.92 at the baseline to 20.12 at 3rd POM(P < 0.001). There was significant change in t score Femoral Neck (-1.12 vs -1.15, P < 0.001) andLumbar spine L1-L4 -1.98 vs-1.98 (P = 0.033). z-Scores of the Femoral Neck were -0.34 vs -0.54 (p < 0.001) and of Lumbar spine L1-L4 were -0.95 vs 1.02 (P < 0.001). The decrease in fracture risk for the femoral neck(p= 0.344) and the lumbar spine (P = 0.223) were not statistically significant.Conclusion There is significant decrease in vitamin D and BMD level after LC in post-menopausal females.

17.
Eur Radiol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046499

ABSTRACT

OBJECTIVES: To perform a multi-reader comparison of multiparametric dual-energy computed tomography (DECT) images reconstructed with deep-learning image reconstruction (DLIR) and standard-of-care adaptive statistical iterative reconstruction-V (ASIR-V). METHODS: This retrospective study included 100 patients undergoing portal venous phase abdominal CT on a rapid kVp switching DECT scanner. Six reconstructed DECT sets (ASIR-V and DLIR, each at three strengths) were generated. Each DECT set included 65 keV monoenergetic, iodine, and virtual unenhanced (VUE) images. Using a Likert scale, three radiologists performed qualitative assessments for image noise, contrast, small structure visibility, sharpness, artifact, and image preference. Quantitative assessment was performed by measuring attenuation, image noise, and contrast-to-noise ratios (CNR). For the qualitative analysis, Gwet's AC2 estimates were used to assess agreement. RESULTS: DECT images reconstructed with DLIR yielded better qualitative scores than ASIR-V images except for artifacts, where both groups were comparable. DLIR-H images were rated higher than other reconstructions on all parameters (p-value < 0.05). On quantitative analysis, there was no significant difference in the attenuation values between ASIR-V and DLIR groups. DLIR images had higher CNR values for the liver and portal vein, and lower image noise, compared to ASIR-V images (p-value < 0.05). The subgroup analysis of patients with large body habitus (weight ≥ 90 kg) showed similar results to the study population. Inter-reader agreement was good-to-very good overall. CONCLUSION: Multiparametric post-processed DECT datasets reconstructed with DLIR were preferred over ASIR-V images with DLIR-H yielding the highest image quality scores. CLINICAL RELEVANCE STATEMENT: Deep-learning image reconstruction in dual-energy CT demonstrated significant benefits in qualitative and quantitative image metrics compared to adaptive statistical iterative reconstruction-V. KEY POINTS: Dual-energy CT (DECT) images reconstructed using deep-learning image reconstruction (DLIR) showed superior qualitative scores compared to adaptive statistical iterative reconstruction-V (ASIR-V) reconstructed images, except for artifacts where both reconstructions were rated comparable. While there was no significant difference in attenuation values between ASIR-V and DLIR groups, DLIR images showed higher contrast-to-noise ratios (CNR) for liver and portal vein, and lower image noise (p value < 0.05). Subgroup analysis of patients with large body habitus (weight ≥ 90 kg) yielded similar findings to the overall study population.

18.
Osteoporos Sarcopenia ; 10(2): 54-59, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39035230

ABSTRACT

Objectives: This study investigates the regional variation in areal bone mineral density (aBMD) at the distal radius, a critical site for osteoporosis-related fractures. Understanding aBMD distribution is essential for accurate diagnosis and management of osteoporosis. Methods: The study involved 261 participants aged over 50. Using dual-energy X-ray absorptiometry (DXA) scans, aBMD was recorded across contiguous regions of the distal radius. Factors considered include age, sex, and hand dominance, providing a comprehensive view of aBMD distribution. Results: The findings indicated a consistent pattern in aBMD distribution along the radius, with a plateau around the one-third distance from the wrist. Notably, significant differences in aBMD were observed between age groups, especially among post-menopausal women. The study also recorded minor variations in aBMD between dominant and non-dominant forearms. Conclusions: The study's insights into aBMD variation at the distal radius have implications for osteoporosis research and clinical diagnosis. It highlights the importance of standardized region of interest placement in DXA scans for accurate assessment.

19.
Cureus ; 16(6): e62811, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39036172

ABSTRACT

INTRODUCTION: This study aimed to evaluate the potential of dual-energy computed tomography (CT) to distinguish postoperative ascites, pancreatic fistula, and abscesses. MATERIALS AND METHOD: Patients who underwent biliary and pancreatic surgery performed at our institution between June 2021 and February 2022 were included in the study. Postoperative body fluid samples were collected through a drain or percutaneous drainage. These samples were set in a phantom, and imaging data were obtained using dual-energy CT. Image analysis was performed to obtain CT values at each energy in virtual monoenergetic images (VMIs), effective atomic number, iodine map, and virtual non-contrast (VNC) images. VMIs were calculated from 80 and 140 kVp tube data at 10 kV each from 40-140 kV. Additionally, the effective atomic number, iodine map, and VNC images were reconstructed from the material decomposition process using water and iodine as the base material pair. RESULTS: In this study, 25 patients (eight with abscess and 17 with ascites) were included. No significant association was observed between the presence or absence of abscess and malignancy or surgical procedure. The intervention was performed in six of the eight patients with abscesses. In contrast, five of the 17 patients with postoperative ascites required intervention. A significant relationship was observed between the intervention and the presence of an abscess. Significant differences in C-reactive protein values and the incidence of fever were observed between the groups. Only VNC showed a significant difference between the groups. CONCLUSIONS: VNC using dual-energy CT could differentiate abscesses from postoperative fluid.

20.
J Clin Med ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999213

ABSTRACT

Purpose: We aimed to evaluate whether virtual non-contrast cerebral computed tomography (VNCCT) reconstructed from intravenous contrast-enhanced dual-energy CT (iv-DECT) could replace non-contrast CT (NCCT) in patients with suspected acute cerebral ischemia. Method: This retrospective study included all consecutive patients in whom NCCT followed by iv-DECT were performed for suspected acute ischemia in our emergency department over a 1-month period. The Alberta Stroke Program Early CT Score (ASPECTS) was used to determine signs of acute ischemia in the anterior and posterior circulation, the presence of hemorrhage, and alternative findings, which were randomly evaluated via the consensus reading of NCCT and VNCCT by two readers blinded to the final diagnosis. An intraclass correlation between VNCCT and NCCT was calculated for the ASPECTS values. Both techniques were evaluated for their ability to detect ischemic lesions (ASPECTS <10) when compared with the final discharge diagnosis (reference standard). Results: Overall, 148 patients (80 men, mean age 64 years) were included, of whom 46 (30%) presented with acute ischemia, 6 (4%) presented with intracerebral hemorrhage, 11 (7%) had an alternative diagnosis, and 85 (59%) had no pathological findings. The intraclass correlation coefficients of the two modalities were 0.97 (0.96-0.98) for the anterior circulation and 0.77 (0.69-0.83) for the posterior circulation. The VNCCT's sensitivity for detecting acute ischemia was higher (41%, 19/46) than that of NCCT (33%, 15/46). Specificity was similar between the two techniques, at 94% (97/103) and 98% (101/103), respectively. Conclusions: Our results show that VNCCT achieved a similar diagnostic performance as NCCT and could, thus, replace NCCT in assessing patients with suspected acute cerebral ischemia.

SELECTION OF CITATIONS
SEARCH DETAIL