Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Small ; : e2404983, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113343

ABSTRACT

The kinetically retarded sulfur evolution reactions and notorious lithium dendrites as the major obstacles hamper the practical implementation of lithium-sulfur batteries (LSBs). Dual metal atom catalysts as a new model are expected to show higher activity by their rational coupling. Herein, the dual-atom catalyst with coupled Ni─Co atom pairs (Ni/Co-DAC) is designed successfully by programmed approaches. The Ni─Co atom pairs alter the local electron structure and optimize the coordination configuration of Ni/Co-DAC, leading to the coupling effect for promoting the interconversion of sulfur and guiding lithium plating/striping. The LSB delivers a remarkable capacity of 818 mA h g-1 at 3.0 C and a low degeneration rate of 0.053% per cycle over 500 cycles. Moreover, the LSB with a high sulfur mass loading of 6.1 mg cm-2 and lean electrolyte dosage of 6.0 µL mgS -1 shows a remarkable areal capacity of 5.7 mA h cm-2.

2.
Small ; : e2404162, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958083

ABSTRACT

The synergistic effect of rare earth single-atoms and transition metal single-atoms may enable us to achieve some unprecedented performance and characteristics. Here, Co-Dy dual-atoms on black phosphorus with a P-Co-Dy charge-transfer bridge are designed and fabricated as the active center for the CO2 photoreduction reaction. The synergistic effect of Co-Dy on the performance of black phosphorus is studied by combining X-ray absorption spectroscopy, ultrafast spectral analysis, and in situ technology with DFT calculations. The results show that the Co and Dy bimetallic active site can promote charge transfer by the charge transfer bridge from P to Dy, and then to Co, thereby improving the photocatalytic activity of black phosphorus. The performance of catalysts excited at different wavelength light indicates that the 4G11/2/2I15/2/4F9/2→6H15/2 and 4F9/2→6H13/2 emissions of Dy can be absorbed by black phosphorus to improve the utilization of sunlight. The in situ DRIFTS and density functional theory (DFT) calculations are used to investigate the CO2 photoreduction pathway. This work provides an depth insight into the mechanism of dual-atom catalysts with enhanced photocatalytic performance, which helps to design novel atomic photocatalysts with excellent activity for CO2 reduction reactions.

3.
J Colloid Interface Sci ; 673: 486-495, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38879990

ABSTRACT

Dual-atoms catalysts (DACs), while inheriting the advantages of maximum atom utilization ratio and excellent selectivity of single-atom catalysts (SACs), can better enhance the catalytic activity through the synergy of adjacent atoms. Therefore, DACs are considered to be very potential catalysts for CO2 to CO conversion. Its catalytic activity is greatly influenced by the coordination environment and morphology. Here, hollow urchin-like NiNC catalysts (Ni-NC(HU)-x, x = 100, 50, 25, 0) were synthesized using urchin-like nickel particles as template. By adjusting the amount of additional nitrogen source, the percentage content of pyridinic-N was adjusted as well as further affecting the coordination environment. Among them, Ni-NC(HU)-50, which had the highest content of pyridinic-N, formed a dual-atoms coordination structure and had the best catalytic performance that the CO Faradaic efficiency (FECO) reached 97.2 % at -0.9 V vs. reversible hydrogen electrode (RHE) and sustained above 95 % within 50 h. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and density functional theory (DFT) calculations showed that Ni-NC(HU)-50 exhibited the best performance of CO2 reduction reaction (CO2RR) by lowering the *COOH formation free energy barrier and its favorable dual desorption mechanism of *COL and *COB.

4.
Adv Healthc Mater ; 13(19): e2400307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38573778

ABSTRACT

Ferroptosis induction is an emerging strategy for tumor therapy. Reactive oxygen species (ROS) can induce ferroptosis but are easily consumed by overexpressed glutathione (GSH) in tumor cells. Therefore, achieving a large amount of ROS production in tumor cells without being consumed is key to efficiently inducing ferroptosis. In this study, a self-amplifying ferroptosis-inducing therapeutic agent, Pd@CeO2-Fe-Co-WZB117-DSPE-PEG-FA (PCDWD), is designed for tumor therapy. PCDWD exhibits excellent multi-enzyme activities due to the loading of Fe-Co dual atoms with abundant active sites, including peroxidase-like enzymes, catalase-like enzymes, and glutathione oxidases (GSHOx), which undergo catalytic reactions in the tumor microenvironment to produce ROS, thereby inducing ferroptosis. Furthermore, PCDWD can also deplete GSH in tumor cells, thus reducing the consumption of ROS by GSH and inhibiting the expression of GSH peroxidase 4. Moreover, the photothermal effect of PCDWD can not only directly kill tumor cells but also further enhance its own enzyme activities, consequently promoting ferroptosis in tumor cells. In addition, WZB117 can reduce the expression of heat shock protein 90 by inhibiting glucose transport, thereby reducing the thermal resistance of tumor cells and further improving the therapeutic effect. Finally, X-ray computed tomography imaging of PCDWD guides it to achieve efficient tumor therapy.


Subject(s)
Ferroptosis , Reactive Oxygen Species , Ferroptosis/drug effects , Humans , Reactive Oxygen Species/metabolism , Animals , Mice , Cell Line, Tumor , Glutathione/metabolism , Glutathione/chemistry , Neoplasms/metabolism , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/drug therapy , Mice, Nude , Mice, Inbred BALB C , Tumor Microenvironment/drug effects
5.
Toxics ; 12(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38668465

ABSTRACT

Formaldehyde (CH2O) emerges as a significant air pollutant, necessitating effective strategies for its oxidation to mitigate adverse impacts on human health and the environment. Among various technologies, the photooxidation of CH2O stands out owing to its affordability, safety, and effectiveness. Nitrogen-rich crystalline triazine-based organic frameworks (CTFs) exhibit considerable potential in this domain. Nevertheless, the weak and unstable CH2O adsorption hinders the overall oxidation efficiency of CTF. To address this limitation, we incorporate single and dual Ni atoms into nitrogen-rich CTFs by density functional theory (DFT) calculations, resulting in CTF-Ni and CTF-2Ni. This strategic modification significantly enhances the adsorption capability of CH2O. Notably, this synergy between Ni dual atoms activates CH2O by strong chemical adsorption, thereby reducing the energy barrier of CH2O oxidation and achieving the complete oxidation of CH2O to CO2. Moreover, the introduction of dual-atom Ni over CTF ameliorates visible and near-infrared light absorption and facilitates photoexcited charge transfer and separation. Finally, the underlying mechanisms of complete CH2O oxidation over CTF-2Ni are proposed. This work offers novel insights into the rational design of photocatalysts for CH2O oxidation through the integration of Ni dual atoms into CTFs.

6.
Small ; 20(14): e2306295, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37992255

ABSTRACT

Dual-atom catalysts exhibit higher reactivity and selectivity than the single-atom catalysts. The pyrolysis of bimetal salt precursors is the most typical method for synthesizing dual-atomic catalysts; however, the finiteness of bimetal salts limits the variety of dual-atomic catalysts. In this study, a confined synthesis strategy for synthesizing dual-atomic catalysts is developed. Owing to the in situ synthesis of zeolitic imidazolate frameworks in the pores of covalent organic frameworks (COFs), the migration and aggregation of metal atoms are suppressed adequately during the pyrolysis process. The resultant catalyst contains abundant Zn─Co dual atomic sites with 2.8 wt.% Zn and 0.5 wt.% Co. The catalyst exhibits high reactivity toward oxygen reduction reaction with a half-wave potential of 0.86 V, which is superior to that of the commercial Pt/C catalyst. Theoretical calculations reveal that the Zn atoms in the Zn─Co dual atomic sites promote the formation of intermediate OOH*, and thus contribute to high catalytic performance. This study provides new insights into the design of dual-atom catalysts using COFs.

7.
ACS Appl Mater Interfaces ; 16(1): 889-897, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38153800

ABSTRACT

Achieving effective hydrogen evolution/oxidation reaction (HER/HOR) across a wide pH span is of critical importance in unlocking the full potential of hydrogen energy but remains intrinsically challenging. Here, we engineer the N-coordinated Ir-Mo dual atoms on a carbon matrix by ultrafast high-temperature sintering, creating an efficient bifunctional electrocatalyst for both HER and HOR in both acidic and alkaline electrolytes. The optimized catalyst, Ir-Mo DAC/NC, demonstrates exceptional performance, with a significantly reduced HER overpotential of 11.3 mV at 10 mA/cm2 and a HOR exchange current (i0,m) of 3972 mA/mgIr in acidic conditions, surpassing the performance of Pt/C and Ir/C catalysts. In alkaline conditions, Ir-Mo DAC/NC also outperforms Pt/C, as evidenced by its low HER overpotential of 23 mV at 10 mA/cm2 and a high i0,m of 1308 mA/mgIr. Furthermore, our catalyst exhibits remarkable stability in both acidic and alkaline environments. DFT calculations results reveal that the superior electrochemical performance of Ir-Mo DAC/NC arises from the electronic synergy between Ir and Mo pairs, which regulates the interaction between the intermediates and active sites. These findings present a promising strategy for the development of dual-atom catalysts (DACs), with potential applications in the polymer fuel cells and water electrolyzers.

8.
Anal Chim Acta ; 1277: 341675, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37604626

ABSTRACT

Construction of novel two-dimensional porous carbon nanosheets with superior electrochemical activity is of great challenge. Here, graphene/ZIF-8 nano-sandwiches derived N, P-codoped porous carbon nanosheets (N, P-codoped PCN) was easily obtained by sequential room temperature self-assembly and high-temperature carbonization method. Relative to the widely used physically exfoliated graphene nanosheets (GN) and graphene/ZIF-8 derived N-doped porous carbon nanosheets (N-doped PCN), N, P-codoped PCN displayed larger active surface, faster electron transport ability and stronger physical adsorption ability, which can be ascribed to the dual doping effect of heteroatoms N and P. As a result, N, P-codoped PCN exhibited remarkable oxidation signal enhancement for tumor marker (8-hydroxy-2'-deoxyguanosine), analgesic and antipyretic drug (acetaminophen) and organic pesticide (benomyl). Besides, the limits of detection were measured as low as 1.58 nM, 7.50 nM and 2.10 nM with sensitivity of 270.00 µA µM-1 cm-2, 757.14 µA µM-1 cm-2 and 272.86 µA µM-1 cm-2 for 8-hydroxy-2'-deoxyguanosine, acetaminophen and benomyl, respectively. Basing on this, a novel and highly sensitive electrochemical sensing platform was developed. It is believed that the reported two-dimensional N, P-codoped PCN with unique structure and composition is highly valuable for the development of carbon-based electrochemical sensors.

9.
Small ; 19(49): e2304655, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37590396

ABSTRACT

Developing efficient and low-cost noble-free metal electrocatalysts is an urgent requirement. Herein, a one-step, solid-state template-assisted method for fabricating isolated half-metallic diatomic M, Zn─N─C (M═Fe, Co, and Ni) catalysts is reported. In particular, the fabricated Fe, Zn─N─C structure exhibits superior oxygen reduction reaction capabilities with a half-wave potential of 0.867 V versus RHE. The Mossbauer spectra reveal that the Fe, Zn─N─C half-metallic diatomic catalyst has a large proportion of the D2 site (ferrous iron with a medium spin state). Density functional theory (DFT) reveals that in Fe, Zn─N─C structures, the zinc sites play a unique role in accelerating the protonation process of O2 in ORR. In assembled zinc-air batteries, a maximum power density of 138 mW cm-2 and a capacity of 748 mAh g zn-1 can be obtained. This work fabricates a series of efficient M, Zn─N─C diatomic electrocatalysts, and the developed solid-state reaction method can hopefully apply in other energy conversion and storage fields.

10.
Small ; 18(12): e2106091, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34897990

ABSTRACT

Atomic catalysts (AC) are gaining extensive research interest as the most active new frontier in heterogeneous catalysis due to their unique electronic structures and maximum atom-utilization efficiencies. Among all the atom catalysts, atomically dispersed heteronuclear dual-atom catalysts (HDACs), which are featured with asymmetric active sites, have recently opened new pathways in the field of advancing atomic catalysis. In this review, the up-to-date investigations on heteronuclear dual-atom catalysts together with the last advances on their theoretical predictions and experimental constructions are summarized. Furthermore, the current experimental synthetic strategies and accessible characterization techniques for these kinds of atomic catalysts, are also discussed. Finally, the crucial challenges in both theoretical and experimental aspects, as well as the future prospects of HDACs for energy-related applications are provided. It is believed that this review will inspire the rational design and synthesis of the new generation of highly effective HDACs.

11.
ACS Nano ; 15(9): 14683-14696, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34412470

ABSTRACT

Rechargeable aqueous zinc-air cells (ZACs) promise an extremely safe and high energy technology. However, they are still significantly limited by sluggish electrochemical kinetics and irreversibility originating from the parasitic reactions of the bifunctional catalysts and electrolytes. Here, we report the preferential in situ building of interfacial structures featuring the edge sites constituted by FeCo single/dual atoms with the integration of Co sites in the nitrogenized graphitic carbon frameworks (FeCo SAs@Co/N-GC) by electronic structure modulation approach. Compared to commercial Pt/C and RuO2, FeCo SAs@Co/N-GC reveals exceptional electrochemical performance, reversible redox kinetics, and durability toward oxygen reduction and evolution reactions under universal pH environments, i.e., alkaline, neutral, and acidic, due to synergistic effect at interfaces and preferred charge/mass transfer. The aqueous (alkaline, nonalkaline, and acidic electrolytes) ZACs constructed with a FeCo SAs@Co/N-GC cathode tolerate stable operations, have significant reversibility, and have the highest energy densities, outperforming those of noble metal counterparts and state-of-the-art ZACs in the ambient atmosphere. Additionally, flexible solid-state ZACs demonstrate excellent mechanical and electrochemical performances with a highest power density of 186 mW cm-2, specific capacity of 817 mAh gZn-1, energy density of 1017 Wh kgZn-1, and cycle life >680 cycles with extremely harsh operating conditions, which illustrates the great potential of triphasic catalyst for green energy storage technologies.

SELECTION OF CITATIONS
SEARCH DETAIL