Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(32): 41881-41891, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39092619

ABSTRACT

Dental caries, the most prevalent chronic disease across all age groups, has a high prevalence, particularly among children. However, there is no specific and effective treatment for the prevention of caries in primary teeth (Pr.T.), which stems from a lack of knowledge regarding the basic nature of the tooth surface. Herein, we observed that the adhesion energies of the caries-related bacteria Streptococcus mutans and Streptococcus sanguinis to Pr.T were approximately 10 and 5.5 times higher than those to permanent teeth (Pe.T). A lower degree of mineralization and more hydrophilic characteristics of the Pr.T enamel account for this discrepancy. Accordingly, we proposed that the on-target modification of both hydroxyapatite and organic components on Pr.T by dual modification would render a sufficient hydration layer. This resulted in an approximately 11-time decrease in bacterial adhesion energy after treatment. In contrast, a single hydroxyapatite modification on Pe.T and young permanent teeth (Y.Pe.T) was sufficient to achieve a similar effect. Theoretical simulation further verified the rationality of the approach. Our findings may help understand the reason for Pr.T being caries-prone and provide references for treatment using resin restorations. This strategy offers valuable insights into daily oral hygiene and dental prophylactic treatment in children.


Subject(s)
Bacterial Adhesion , Dental Caries , Durapatite , Streptococcus mutans , Streptococcus sanguis , Tooth, Deciduous , Dental Caries/prevention & control , Dental Caries/microbiology , Streptococcus mutans/drug effects , Humans , Bacterial Adhesion/drug effects , Streptococcus sanguis/drug effects , Durapatite/chemistry , Dental Enamel/chemistry , Dental Enamel/drug effects
2.
Food Sci Biotechnol ; 33(8): 1885-1897, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752124

ABSTRACT

This study assesses the impact of dual modification [octenyl succinylation (OSA) and heat-moisture treatment (HMT)] of sweet potato starch (SPS) on the physicochemical, mechanical, and permeability properties of SPS film. The intrinsic limitations of starch films, such as sensitivity to high humidity, inferior mechanical properties, and weak barrier capabilities, have restricted their use in sausage casings. Nonetheless, the dual-modified SPS film (OSA@HMT-SPS film) demonstrated significantly reduced solubility (P < 0.05), moisture content, water vapor permeability (WVP), and O2 permeability compared to the SPS film. Furthermore, its flexibility and elasticity, indicated by its elongation at break, was notably superior. When used as sausage casings, the OSA@HMT-SPS film effectively mitigated lipid oxidation in sausages better than both the SPS film and commercial collagen casings, owing to its low O2 permeability. As a result, the OSA@HMT-SPS casing presents significant promise as a plant-based sausage casing alternative.

3.
Polymers (Basel) ; 16(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675019

ABSTRACT

Glycopolymers are functional polymers with saccharide moieties on their side chains and are attractive candidates for biomaterials. Postpolymerization modification can be employed for the synthesis of glycopolymers. Activated esters are useful in various fields, including polymer chemistry and biochemistry, because of their high reactivity and ease of reaction. In particular, the formation of amide bonds caused by the reaction of activated esters with amino groups is of high synthetic chemical value owing to its high selectivity. It has been employed in the synthesis of various functional polymers, including glycopolymers. This paper reviews the recent advances in polymers bearing activated esters for the synthesis of glycopolymers by postpolymerization modification. The development of polymers bearing hydrophobic and hydrophilic activated esters is described. Although water-soluble activated esters are generally unstable and hydrolyzed in water, novel polymer backbones bearing water-soluble activated esters are stable and useful for postpolymerization modification for synthesizing glycopolymers in water. Dual postpolymerization modification can be employed to modify polymer side chains using two different molecules. Thiolactone and glycine propargyl esters on the polymer backbone are described as activated esters for dual postpolymerization modification.

4.
Food Chem ; 445: 138671, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38367556

ABSTRACT

Chickpea protein, a valuable plant-based source, offers versatile applications, yet the impact of modifications like succinylation and ultrasonication on its properties remains unclear. This study explored dual succinylation and ultrasonication modification to enhance its functionality and application. Modified chickpea protein with a degree of succinylation of 96.75 %, showed enhanced water holding capacity 39.83 %, oil holding capacity 54.02 %, solubility 7.20 %, and emulsifying capacity 23.17 %, compared to native protein. Despite reduced amino acid content (64.50 %), particularly lysine, succinylation increased sulfhydryl by 1.74 %, reducing hydrophobicity (Ho) by 41.87 % and causing structural changes. Ultrasonication further reduced particle size by 82.57 % and increased zeta potential and amino acid content (57.47 %). The dual-modified protein exhibited a non-significant increase in antimicrobial activity against Staphylococcus aureus (25.93 ± 1.36 mm) compared to the native protein (25.28 ± 1.05 mm). In conclusion, succinylation combined with ultrasonication offers a promising strategy to enhance chickpea protein's physicochemical properties for diverse applications.


Subject(s)
Amino Acids , Cicer , Amino Acids/metabolism , Cicer/chemistry , Proteins/metabolism , Solubility , Water/metabolism
5.
Chemistry ; 30(25): e202400088, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38407545

ABSTRACT

P2-type layered manganese-based oxides have attracted considerable interest as economical, cathode materials with high energy density for sodium-ion batteries (SIBs). Despite their potential, these materials still face challenges related to sluggish kinetics and structural instability. In this study, a composite cathode material, Na0.67Ni0.23Mn0.67V0.1O2@Na3V2O2(PO4)2F was developed by surface-coating P2-type Na0.67Ni0.23Mn0.67V0.1O2 with a thin layer of Na3V2O2(PO4)2F to enhance both the electrochemical sodium storage and material air stability. The optimized Na0.67Ni0.23Mn0.67V0.1O2@5wt %Na3V2O2(PO4)2F exhibited a high discharge capacity of 176 mA h g-1 within the 1.5-4.1 V range at a low current density of 17 mA g-1. At an increased current density of 850 mA g-1 within the same voltage window, it still delivered a substantial initial discharge capacity of 112 mAh g-1. These findings validate the significant enhancement of ion diffusion capabilities and rate performance in the P2-type Na0.67Ni0.33Mn0.67O2 material conferred by the composite cathode.

6.
Int J Biol Macromol ; 254(Pt 1): 127748, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287591

ABSTRACT

Banana starch has a highly resistant starch (RS) and slow-digested starch (SDS) content, making it attractive as a functional ingredient. Unfortunately, banana starch requires modification processes due to the loss of RS and SDS during gelatinization because of its thermolabile characteristics. This study explores the effect of banana starch modification by enzymatic, heat moisture treatment (HMT) and dual modification (HMT+ enzymatic) on its nutritional (RS, SDS) and functional properties (hydration, structural, gelation, rheological). HMT and dual modifications decrease RS (from 44.62 g/100 g to 16.62 and 26.66 g/100 g, respectively) and increase SDS (from 21.72 g/100 g to 33.91 and 26.95 g/100 g, respectively) in raw starch but induce structural changes that enhance RS (from 3.10 g/100 g to 3.94 and 4.4 g/100 g, respectively) and SDS (from 2.58 g/100 g to 9.58 and 11.48 g/100 g) thermo-resistance in gelled starch. Also, changes in the functional properties of starches were evidenced, such as weaker gels (hardness < 41 g), lower water absorption (<12.35 g/g), high starch solubility (>1.77 g/100 g) and increased gelatinization temperature. Improved gelatinization temperature and RS thermostability resulted from modifications that could expand banana starch applications as a beverage and compote thickener agent.


Subject(s)
Musa , Starch , Starch/chemistry , Musa/chemistry , Chemical Phenomena , Solubility , Temperature , Resistant Starch , Hot Temperature
7.
Int J Biol Macromol ; 255: 127932, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949279

ABSTRACT

The effect of osmotic pressure treatment (OPT), heat moisture treatment (HMT), and their dual combination as HMT-OPT and OPT-HMT on functional and pasting properties, gel texture, crystallinity, thermal, morphological, and rheological properties, and in vitro digestibility of modified starches were investigated. HMT was done with 29 % moisture at 111 °C for 45 min while OPT was performed at 117 °C for 35 min with saturated sodium sulphate solution. All modifications increased amylose content, improved pasting stability, and reduced swelling power and solubility. Dual modifications caused higher morphological changes than single modified starches. HMT and OPT increased pasting temperature, setback and final viscosity while decreased peak viscosity and breakdown, whereas HMT-OPT and OPT-HMT reduced all pasting parameters except pasting temperature. 1047/1022 and 995/1022 ratios and relative crystallinity decreased. V-type polymorphs were formed, and gelatinization temperature range increased with lower gelatinization enthalpy. Starch gel elasticity, RS and SDS content were enhanced to a greater extent after HMT-OPT and OPT-HMT. HMT as a single and dual form with OPT showed prominent effect on pasting, thermal, crystalline, and rheological properties. Application of HMT, OPT and dual modified starches with improved functionalities may be targeted for suitable food applications such as noodles.


Subject(s)
Hot Temperature , Oryza , Oryza/chemistry , Osmotic Pressure , Starch/chemistry , Chemical Phenomena
8.
Food Chem ; 440: 138177, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38134833

ABSTRACT

Dual-modifications of jet milling and hydroxypropylation were used to improve the functional properties of maize starch (HM, containing 67 % amylose). The fractions obtained in three sizes (HM-S, HM-M, HM-L) were further treated with 10 % and 30 % propylene oxide (PO10 and PO30). The infrared peak of starch at 2794 cm-1 indicated the successful introduction of hydroxypropyl groups. The molar degree of substitution (MS) increased with the degree of jet milling. The MS of HM-L-PO10 is 0.4, that of HM-M-PO10 is 0.7, and that of HM-S-PO10 is 0.9. The crystallinity of dual-modified HM increased, but the crystal type remained unchanged, still being B-type. Dual-modification significantly improved the performance of starch, and the higher the degree of modification, the better the optimization effect. The lowest enthalpy changes of gelatinization (ΔH = 3.49 J/g), the best freeze-thaw stability, the highest elongation at break (110.42 %) and transmittance (81.22 %) were shown in HM-S-PO30. The present study confirms that HM-S-PO30 films have the best physicochemical and mechanical properties, which provide new insights into optimizing starch-based packaging materials.


Subject(s)
Amylose , Zea mays , Amylose/chemistry , Zea mays/chemistry , Starch/chemistry , Freezing
9.
Foods ; 12(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37761075

ABSTRACT

To explore the effect of amylose within starch granules on the efficiency of starch hydrolysis by acid, we chose the warm water extraction method to treat red adzuki bean starch to obtain different degrees of amylose removal granule models and to prepare samples in combination with acid hydrolysis. The amylose content was reduced after acid hydrolysis, reducing the peak viscosity (2599-1049 cP), while the solubility was significantly increased. In contrast, the short-chain content of the deamylose-acid hydrolysis samples was reduced considerably, exacerbating the trend towards reduced starch orderliness and increased solubility. This work reveals the granular structure of starch from the point of view of deamylose and contributes to a thorough understanding of the mechanisms of acid hydrolysis. It might add to knowledge in starch science research and industrial applications for the acid processing of starch-based foods, particularly with regard to the most important factors controlling the structure and function of starch.

10.
Int J Biol Macromol ; 253(Pt 5): 127030, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37742893

ABSTRACT

The objective of this study was to investigate the dual modification of red rice starch using pulsed electric field (PEF) and α-amylase, focusing on morpho-structural, thermal, and viscoamylographic properties. Native starch (Control) underwent various treatments: PEF at 30 kV cm-1 (PEF30), α-amylase at 9.0 U mg-1 (AA0), and a combination of both (PEF30 + α and α + PEF30). The PEF30 + α treatment exhibited the highest degree of digestion (10.66 %) and resulted in morphological changes in the starch granules, which became elongated and curved, with an increased average diameter of 50.49 µm compared to the control. The starch was classified as type A, with a maximum reduction in crystallinity of up to 21.17 % for PEF30. The deconvolution of FT-IR bands indicated an increase in the double helix degree (DDH) for PEF30 and AA0, while the degree of order (DO) was reduced for PEF30, AA0, and PEF30 + α. DSC analysis revealed significant modifications in gelatinization temperatures, particularly for PEF30, and these changes were supported by a reduction in gelatinization enthalpy (ΔH) of up to 28.05 % for AA0. These findings indicate that both individual and combined treatments promote a decrease in starch gelatinization and facilitate the process, requiring less energy. Differences were observed between the formulations subjected to single and alternating dual treatments, highlighting the influence of the order of PEF application on the structural characteristics of starch, especially when applied before the enzymatic treatment (PEF + α). Regarding the viscoamylographic parameters, it was observed that AA0 presented higher values than the control, indicating that α-amylase enhances the firmness of the paste. The double modification with PEF + α was more effective in reducing syneresis and starch retrogradation, leading to improvements in paste properties. This study provided significant insights into the modification of red rice starch using an efficient and environmentally friendly approach.


Subject(s)
Oryza , Starch , Starch/chemistry , alpha-Amylases/chemistry , Oryza/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature
11.
Int J Biol Macromol ; 253(Pt 3): 126952, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37722643

ABSTRACT

Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.


Subject(s)
Excipients , Starch , Starch/chemistry , Resistant Starch
12.
J Colloid Interface Sci ; 652(Pt B): 1184-1196, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37657218

ABSTRACT

Ni-rich layered structure ternary oxides, such as LiNi0.8Co0.1Mn0.1O2 (NCM811), are promising cathode materials for high-energy lithium-ion batteries (LIBs). However, a trade-off between high capacity and long cycle life still obstructs the commercialization of Ni-rich cathodes in modern LIBs. Herein, a facile dual modification approach for improving the electrochemical performance of NCM811 was enabled by a typical perovskite oxide: strontium titanate (SrTiO3). With a suitable thermal treatment, the modified cathode exhibited an outstanding electrochemical performance that could deliver a high discharge capacity of 188.5 mAh/g after 200 cycles under 1C with a capacity retention of 90%. The SrTiO3 (STO) protective layer can effectively suppress the side reaction between the NCM811 and the electrolyte. In the meantime, the pillar effect provided by interfacial Ti doping could effectively reduce the Li+/Ni2+ mixing ratio on the NCM811 surface and offer more efficient Li+ migration between the cathode and the coating layer after post-thermal treatment (≥600 °C). This dual modification strategy not only significantly improves the structural stability of Ni-rich layered structure but also enhances the electrochemical kinetics via increasing diffusion rate of Li+. The electrochemical measurement results further disclosed that the 3 wt% STO coated NCM811 with 600 °C annealing exhibits the best performance compared with other control samples, suggesting an appropriate temperature range for STO coated NCM811 cathode is critical for maintaining a stable structure for the whole system. This work may offer an effective option to enhance the electrochemical performance of Ni-rich cathodes for high-performance LIBs.

13.
Polymers (Basel) ; 15(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37571112

ABSTRACT

Starch is widely applied in various industrial sectors, including the food industry. Starch is used as a thickener, stabilizer, or emulsifier. However, arrowroot starch generally has weaknesses, such as unstable under heating and acidic conditions, which are generally applied to processing in the food industry. Modifications were applied to improve the characteristics of native arrowroot starch. In this study, arrowroot starch was modified by heat-moisture treatment (HMT), octenylsuccinylation (OSA), and dual modification between OSA and HMT in a different sequence--namely, HMT followed by OSA, and OSA followed by HMT. This study aims to determine the effect of different modification methods on the physicochemical and functional properties of native arrowroot starch. The result shows that both single HMT and dual modification caused damage to native starch granules, such as the formation of cracks and roughness. For single OSA treatment, especially, there is no significant change in granule morphology after modification. All modification treatments did not change the crystalline type of starch but reduced the RC of native starch. Both single HMT and dual modifications (HMT-OSA, OSA-HMT) increased pasting temperature and setback, but, conversely, decreased the peak and the breakdown viscosity of native starch, whereas single OSA had the opposite trend compared with the other modifications. HMT played a greater role in increasing the thermal stability and the retrogradation ability of arrowroot starch. Both single modifications (HMT and OSA) increased the hardness and gumminess of native starch, and the opposite was true for the dual modifications. HMT had a greater effect on color characteristics, where the lightness and whiteness index of native arrowroot starch decreased. Single OSA modification increased swelling volume higher than dual modification. Both single HMT and dual modifications increased water absorption capacity and decreased the oil absorption capacity of native arrowroot starch.

14.
ACS Appl Mater Interfaces ; 15(28): 33682-33692, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37427424

ABSTRACT

Sodium-ion batteries (SIBs) have garnered extensive attentions in recent years as a low-cost alternative to lithium-ion batteries. However, achieving both high capacity and long cyclability in cathode materials remains a challenge for SIB commercialization. P3-type Na0.67Ni0.33Mn0.67O2 cathodes exhibit high capacity and prominent Na+ diffusion kinetics but suffer from serious capacity decay and structural deterioration due to stress accumulation and phase transformations upon cycling. In this work, a dual modification strategy with both morphology control and element doping is applied to modify the structure and optimize the properties of the P3-type Na0.67Ni0.33Mn0.67O2 cathode. The modified Na0.67Ni0.26Cu0.07Mn0.67O2 layered cathode with hollow porous microrod structure exhibits an excellent reversible capacity of 167.5 mAh g-1 at 150 mA g-1 and maintains a capacity above 95 mAh g-1 after 300 cycles at 750 mA g-1. For one thing, the specific morphology shortens the Na+ diffusion pathway and releases stress during cycling, leading to excellent rate performance and high cyclability. For another, Cu doping at the Ni site reduces the Na+ diffusion energy barrier and mitigates unfavorable phase transitions. This work demonstrates that the electrochemical performance of P3-type cathodes can be significantly improved by applying a dual modification strategy, resulting in reduced stress accumulation and optimized Na+ migration behavior for high-performance SIBs.

15.
ACS Appl Mater Interfaces ; 15(29): 35072-35081, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37439569

ABSTRACT

Nickel-rich layered oxides are promising cathodes in commercial materials for lithium-ion batteries. However, the increase of the nickel content leads to the decay of cyclic performance and thermal stability. Herein, in situ surface-fluorinated W-doping LiNi0.90Co0.05Mn0.05O2 cathodes enhance integral lithium-ion migration (transfer in bulk and diffusion in the interface) kinetics by synergistically solving the problems of bulk and interface structural degradation. Owing to the introduction of tungsten, the growth of primary particles is regulated toward the (003) crystal plane and with the acicular structure, which further stabilizes the bulk structure during cycling. Moreover, the LiF coating layer on the cathode/electrolyte interface physically isolates the attack of the electrolyte on the surface cathodes and accelerates the lithium-ion diffusion rate, ultimately ameliorating the interfacial dynamics and structural stability. Dual-modified LiNi0.90Co0.05Mn0.05O2 exhibits superior electrochemical properties, especially more remarkable cyclic retention (88.16% vs 70.44%) after 100 cycles at 1 C and more outstanding high current rate properties (173.31 mAh·g-1 vs 135.97 mAh·g-1) at 5 C than the pristine one. This work emphasizes the probability of an integrated optimization strategy for Ni-rich materials, which provides an innovative idea for ameliorating (bulk and interfacial) structure degradation and promoting the diffusion of lithium ions during cycling.

16.
Int J Biol Macromol ; 243: 125246, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37301340

ABSTRACT

To investigate the effect of electron beam irradiation (EBI) pretreatment on the multiscale structure and physicochemical properties of esterified starch, this study used EBI pretreatment to prepare glutaric anhydride (GA) esterified proso millet starch. GA starch did not show the corresponding distinct thermodynamics peaks. However, it had a high pasting viscosity and transparency (57.46-74.25 %). EBI pretreatment increased the degree of glutaric acid esterification (0.0284-0.0560) and changed its structure and physicochemical properties. EBI pretreatment disrupted its short-range ordering structure, reducing the crystallinity, molecular weight and pasting viscosity of glutaric acid esterified starch. Moreover, it produced more short chains and increased the transparency (84.28-93.11 %) of glutaric acid esterified starch. This study could offer a rationale for using EBI pretreatment technology to maximize the functional properties of GA modified starch and enlarge its implementation in modified starch.


Subject(s)
Panicum , Starch , Starch/chemistry , Panicum/chemistry , Electrons , Viscosity
17.
Adv Mater ; 35(36): e2303297, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37272677

ABSTRACT

Bi-based materials are one of the most promising candidates for electrochemical CO2 reduction reaction (CO2 RR) to formate; however, the majority of them still suffer from low current density and stability that essentially constrain their potential applications at the industrial scale. Surface modification represents an effective approach to modulate the electrode microenvironment and the relative binding strength of key intermediates. Herein, it is demonstrated that the surface comodification with halides and alkali metal ions from the conversion of Bi-based halide perovskite nanocrystals is a viable strategy to boost the CO2 RR performance of Bi for formate electrosynthesis. Cs3 Bi2 I9 nanocrystals are prepared by a hot-injection method. The as-prepared products feature well-defined hexagonal shape and uniform size distribution. When used as the precatalyst, Cs3 Bi2 I9 nanocrystals are converted to Cs+ and I- comodified Bi. The resultant catalyst exhibits high formate Faradaic efficiency close to 100%, and remarkable partial current density up to 44 mA cm-2 in an H-cell and up to 276 mA cm-2 in a flow cell. Moreover, Cs3 Bi2 I9 is used as the cathode catalyst and paired with an Al anode in an Al-CO2 battery for simultaneous CO2 valorization and power generation.

18.
Mikrochim Acta ; 190(4): 137, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36920658

ABSTRACT

A conventional colorimetric method based on CuS-catalyzed H2O2 is improved by a dual-modification strategy and employed for thioglycolic acid (TGA) determination. The doping of Co(II) can enhance ion exchange efficiency. Meanwhile, the modification of g-C3N4 can increase specific surface area and decrease unspecific aggregation. The constructed g-C3N4/Co-CuS nanocomposite exhibited a favorable catalytic feature. A Michaelis constant (Km) value of 0.02 mM has been achieved, which is 1/160 of those of CuS and horseradish peroxidase (HRP). The g-C3N4/Co-CuS displays a rapid color response in 3 min and resulted in a stable measurable signal within 10 min. In the determination procedure, the sulfhydryl contained in TGA is capable of preventing TMB oxidation via competing the ·OH produced by catalysis and caused a color distinction that is related to the TGA amount. The distinctions of absorbance (λmax = 652 nm) of different concentrations of TGA are recorded. Linearity is obtained in the ranges of 2.5 - 20 µM and 20 - 160 µM, and the LOD is 0.14 µM. In the real sample assays of perm agent and Qianhu lake water, the recoveries were 96.70 - 106.84% and 100.21 - 101.90%, respectively. This demonstrates that the proposed dual-modification strategy for CuS contributes to highly efficient and convenient determination of TGA in daily cosmetics and water analysis.


Subject(s)
Colorimetry , Peroxidase , Colorimetry/methods , Hydrogen Peroxide/analysis , Water
19.
Food Res Int ; 165: 112511, 2023 03.
Article in English | MEDLINE | ID: mdl-36869511

ABSTRACT

In this study, the functional properties of ovalbumin (OVA) were improved through dual modification with succinylation (succinylation degrees of 32.1 % [S1], 74.2 % [S2], and 95.2 % [S3]) and ultrasonication (ultrasonication durations of 5 min [U1], 15 min [U2], and 25 min [U3]), and the changes in protein structures were explored. Results showed that as the succinylation degree was increased, the particle size and surface hydrophobicity of S-OVA decreased by the maximum values of 2.2 and 2.4 times, respectively, causing emulsibility and emulsifying stability to increase by 2.7 and 7.3 times, respectively. After ultrasonic treatment, the particle size of succinylated-ultrasonicated OVA (SU-OVA) had decreased by 3.0-5.1 times relative to that of S-OVA. Moreover, the net negative charge of S3U3-OVA had increased to the maximum value of - 35.6 mV. These changes contributed to the further enhancement in functional indicators. The unfolding of the protein structure and the conformational flexibility of SU-OVA were illustrated and compared with those of S-OVA via protein electrophoresis, circular dichroism spectroscopy, intrinsic fluorescence spectroscopy, and scanning electron microscopy. The dually modified OVA emulsion (S3U3-E) presented small droplets (243.33 nm), reduced viscosity, and weakened gelation behavior that were indicative of even distribution, which was visually proven by confocal laser scanning microscopy images. Furthermore, S3U3-E exhibited favorable stability, a particle size that was almost unchanged, and a low polydispersity index (<0.1) over 21 days of storage at 4 °C. The above results demonstrated that succinylation combined with ultrasonic treatment could be an effective dual modification method for enhancing the functional performance of OVA.


Subject(s)
Ovalbumin , Microscopy, Confocal , Microscopy, Electron, Scanning , Particle Size , Spectrometry, Fluorescence
20.
Food Res Int ; 163: 112304, 2023 01.
Article in English | MEDLINE | ID: mdl-36596204

ABSTRACT

Native cassava starch (NCS) was chemically modified by cross-linking (CL), octenylsuccinylation (OS), CL followed by OS, and OS followed by CL. The modified cassava starches (MCS) were determined for physicochemical, in-vitro digestibility, and emulsifying properties. For the dual modifications, the functional groups introduced in the first modification were partially replaced by the ones that introduced in the second modification. The X-ray diffraction pattern and relative crystallinity of cassava starch did not change by both modifications, indicating that both reactions occurred predominantly in amorphous regions as well as on the surface of starch granules and did not alter the crystalline pattern in the granules. The physicochemical and emulsifying properties of the dual MCS were predominantly affected by the functional groups introduced in the second modification. For the in-vitro digestibility, the dual MCS exhibited the highest resistant starch content of 19.48-22.00% in comparison with the NCS (6.05%) and the single MCS (10.76-14.49%), possibly due to a synergistic effect of the functional groups introduced in the first and second modifications.


Subject(s)
Manihot , Starch , Starch/chemistry , Chemical Phenomena , Manihot/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL