Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 738
Filter
1.
Zoolog Sci ; 41(4): 392-399, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39093285

ABSTRACT

Some anguillid eels migrate thousands of kilometers from their spawning grounds, dispersing across vast geographic areas to fresh and brackish water habitats, where they settle and grow. Japanese eels (Anguilla japonica) and giant mottled eels (A. marmorata) are both found in Japan, although their distributions differ, and their exact distributions are poorly known. We assumed that topographic distribution patterns of Japanese and giant mottled eels must differ among and within rivers along the northwest coast of Kyushu, Japan. Environmental DNA (eDNA) analysis was conducted at 87 sites in 23 rivers. Japanese eel eDNA was detected in 19 rivers (82.6%) and that of giant mottled eels was detected in eight (34.8%). We detected giant mottled eel eDNA in five rivers where they were previously unknown. eDNA for Japanese eels was detected at six of nine sites in the north (66.7%), 13 of 23 sites in Omura (56.5%), and 37 of 55 sites in the south (67.3%). In contrast, giant mottled eel eDNA was detected at one of nine sites in the north (11.1%), no sites in Omura, and 15 of 55 sites in the south (27.3%). There was no correlation between eDNA concentrations of the two species at 10 sites in the five rivers where eDNA of both species was detected. These findings suggest differences in the distribution of the two eel species and the northern distributional limit of giant mottled eels in the area facing the East China Sea.


Subject(s)
Anguilla , Animal Distribution , DNA, Environmental , Animals , Japan , Anguilla/genetics , DNA, Environmental/genetics , Rivers , Species Specificity
2.
Mar Environ Res ; 200: 106660, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39088889

ABSTRACT

eDNA metabarcoding has been increasingly employed in the monitoring of marine invertebrate non-indigenous species (NIS), in particular using filtered seawater. However, comprehensive detection of all NIS may require a diversity of sampling substrates. To assess the effectiveness of 5 sample types (hard and artificial substrates, water, zooplankton) on the recovery of invertebrates' diversity, two marinas were monitored over three time points, using COI and 18S rRNA genes as DNA metabarcoding markers. We detected a total of 628 species and 23 NIS, with only up to 9% species and 17% of NIS detected by all sample types. Hard and artificial substrates were similar to each other but displayed the most significant difference in invertebrate recovery when compared to water eDNA and zooplankton. Five NIS are potential first records for Portugal. No NIS were detected in all sample types and seasons, highlighting the need for varied sampling approaches, and consideration of temporal variation for comprehensive marine NIS surveillance.

3.
Mar Pollut Bull ; 206: 116789, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094284

ABSTRACT

This study thoroughly examines three cetacean monitoring methods and assessing their advantages and limitations, establishing a foundational basis for comprehensive information on composition, distribution, and behavior. While real-time and non-invasive, visual surveys favor surface-active cetaceans and are weather-dependent. Local ecological knowledge supplements insights into group behavior. Environmental DNA (eDNA) analysis efficiently detects species like the narrow-ridged finless porpoise (Neophocaena asiaeorientalis) and common bottlenose dolphin (Tursiops truncatus), offering non-invasive, and spatially adept monitoring. Furthermore, eDNA provides prey species information, revealing the narrow-ridged finless porpoise's winter migration to deeper waters due to prey distribution. The study identifies prevalent prey species, like the Japanese Anchovy (Engraulis japonicus) and Osbeck's grenadier anchovy (Coilia mystus), offering insights into the porpoise's feeding ecology and adaptation to changing prey availability in winter. This study systematically compares diverse methodologies employed in cetacean surveys, thereby yielding a comprehensive understanding of cetacean distribution, behavior, and feeding ecology.

4.
Sci Rep ; 14(1): 17890, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095544

ABSTRACT

Transitional waters are important habitats both for biodiversity and ecological functions, providing valuable natural resources and relevant ecosystem services. However, they are highly susceptible to climate changes and anthropogenic pressures responsible for biodiversity losses and require specific biomonitoring programs. Benthic macroinvertebrates are suitable as ecological indicators of transitional waters, being affected by biological, chemical, and physical conditions of the ecosystems about their life cycles and space-use behaviour. The advent of high-throughput sequencing technologies has allowed biodiversity investigations, at the molecular level, in multiple ecosystems and for different ecological guilds. Benthic macroinvertebrate communities' composition has been investigated, at the molecular level, mainly through DNA extracted from sediments in marine and riverine ecosystems. In this work, benthic macroinvertebrate communities are explored through eDNA metabarcoding from water samples in a Mediterranean transitional water ecosystem. This research highlighted the validity of eDNA metabarcoding as an efficient tool for the assessment of benthic macroinvertebrate community structure in transitional waters, unveiling the spatial heterogeneity of benthic macroinvertebrate communities correlated to the measured environmental gradients. The results suggest that peculiar features of transitional water ecosystems, such as shallow waters and limited currents, facilitate the assessment of benthic macroinvertebrate communities through environmental DNA analysis from surface water samples, opening for more rapid and accurate monitoring programs for these valuable ecosystems.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Ecosystem , Invertebrates , Animals , Invertebrates/genetics , Invertebrates/classification , DNA Barcoding, Taxonomic/methods , Mediterranean Sea , Environmental Monitoring/methods , DNA, Environmental/genetics , DNA, Environmental/analysis
5.
Curr Biol ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39096906

ABSTRACT

All species shed DNA during life or in death, providing an opportunity to monitor biodiversity via environmental DNA (eDNA). In recent years, combining eDNA, high-throughput sequencing technologies, bioinformatics, and increasingly complete sequence databases has promised a non-invasive and non-destructive environmental monitoring tool. Modern agricultural systems are often large monocultures and so are highly vulnerable to disease outbreaks. Pest and pathogen monitoring in agricultural ecosystems is key for efficient and early disease prevention, lower pesticide use, and better food security. Although the air is rich in biodiversity, it has the lowest DNA concentration of all environmental media and yet is the route for windborne spread of many damaging crop pathogens. Our work suggests that ecosystems can be monitored efficiently using airborne nucleic acid information. Here, we show that the airborne DNA of microbes can be recovered, shotgun sequenced, and taxonomically classified, including down to the species level. We show that by monitoring a field growing key crops we can identify the presence of agriculturally significant pathogens and quantify their changing abundance over a period of 1.5 months, often correlating with weather variables. We add to the evidence that aerial eDNA can be used as a source for biomonitoring in terrestrial ecosystems, specifically highlighting agriculturally relevant species and how pathogen levels correlate with weather conditions. Our ability to detect dynamically changing levels of species and strains highlights the value of airborne eDNA in agriculture, monitoring biodiversity changes, and tracking taxa of interest.

6.
Sci Justice ; 64(4): 443-454, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39025568

ABSTRACT

Environmental DNA (eDNA) is widely used in biodiversity, conservation, and ecological studies but despite its successes, similar approaches have not yet been regularly applied to assist in wildlife crime investigations. The purpose of this paper is to review current eDNA methods and assess their potential forensic application in freshwater environments considering collection, transport and persistence, analysis, and interpretation, while identifying additional research required to present eDNA evidence in court. An extensive review of the literature suggests that commonly used collection methods can be easily adapted for forensic frameworks providing they address the appropriate investigative questions and take into consideration the uniqueness of the target species, its habitat, and the requirements of the end user. The use of eDNA methods to inform conservationists, monitor biodiversity and impacts of climate change, and detect invasive species and pathogens shows confidence within the scientific community, making the acceptance of these methods by the criminal justice system highly possible. To contextualise the potential application of eDNA on forensic investigations, two test cases are explored involving i) species detection and ii) species localisation. Recommendations for future work within the forensic eDNA discipline include development of suitable standardised collection methods, considered collection strategies, forensically validated assays and publication of procedures and empirical research studies to support implementation within the legal system.


Subject(s)
Crime , DNA, Environmental , Fresh Water , Animals , Forensic Sciences/methods , Conservation of Natural Resources/legislation & jurisprudence , Specimen Handling/methods , Animals, Wild/genetics , Introduced Species , Biodiversity
7.
BMC Res Notes ; 17(1): 199, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026307

ABSTRACT

OBJECTIVE: Environmental DNA (eDNA) detection is a transformative tool for ecological surveys which in many cases offers greater accuracy and cost-effectiveness for tracking low-density, cryptic species compared to conventional methods. For the use of targeted quantitative PCR (qPCR)-based eDNA detection, protocols typically require freshly prepared reagents for each sample, necessitating systematic evaluation of reagent stability within the functional context of eDNA standard curve preparation and environmental sample evaluation. Herein, we assessed the effects of long-term storage and freeze-thaw cycles on qPCR reagents for eDNA analysis across six assays. RESULTS: Results demonstrate qPCR plates (containing pre-made PCR mix, primer-probe, and DNA template) remain stable at 4 °C for three days before thermocycling without fidelity loss irrespective of qPCR assay used. Primer-probe mixes remain stable for five months of - 20 °C storage with monthly freeze-thaw cycles also irrespective of qPCR assay used. Synthetic DNA stocks maintain consistency in standard curves and sensitivity for three months under the same conditions. These findings enhance our comprehension of qPCR reagent stability, facilitating streamlined eDNA workflows by minimizing repetitive reagent preparations.


Subject(s)
DNA, Environmental , Real-Time Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , DNA, Environmental/analysis , DNA, Environmental/genetics , Indicators and Reagents , Freezing , DNA Primers/genetics , Specimen Handling/methods
8.
Ecol Evol ; 14(7): e11631, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966247

ABSTRACT

Intraspecific genetic variation is important for the assessment of organisms' resistance to changing environments and anthropogenic pressures. Aquatic DNA metabarcoding provides a non-invasive method in biodiversity research, including investigations at the within-species level. Through the analysis of eDNA samples collected from the Peter the Great Gulf of the Japan Sea, in this study, we aimed to evaluate the identification of Amplicon Sequence Variants (ASVs) in marine eDNA among abundant species of the Zostera sp. community: Hexagrammos octogrammus, Pholidapus dybowskii (Teleostei: Perciformes), and Pandalus latirostris (Arthropoda: Decapoda). These species were collected from two distant locations to produce mock communities and gather aquatic eDNA both on the community and individual level. Our approach highlights the efficacy of eDNA metabarcoding in capturing haplotypic diversity and the potential for this methodology to track genetic diversity accurately, contributing to conservation efforts and ecosystem management. Additionally, our results elucidate the impact of nuclear mitochondrial DNA segments (NUMTs) on the reliability of metabarcoding data, indicating the necessity for cautious interpretation of such data in ecological studies. Moreover, we analyzed 83 publicly available COI sequence datasets from common groups of multicellular organisms (Mollusca, Echinodermata, Crustacea, Polychaeta, and Actinopterygii). The results reflect the decrease in population diversity that arises from using the metabarcode compared to the COI barcode.

9.
Heliyon ; 10(12): e33094, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948039

ABSTRACT

The unique floral fingerprint embedded within honey holds valuable clues to its geographical and botanical origin, playing a crucial role in ensuring authenticity and detecting adulteration. Honey from native Apis cerana and Heterotrigona itama bees in Karangasem, Indonesia, was examined utilizing pollen DNA metabarcoding for honey source identification. In this study, we used ITS2 amplicon sequencing to identify floral DNA in honey samples. The finding reveals distinct pollen signatures for each bee species. Results analysis showed A. cerana honey generated 179,267 sequence reads, assembled into Amplicon Sequence Variants (ASVs) with a total size of 485,932 bp and an average GC content of 59 %. H. itama honey generated 177,864 sequence reads, assembled into ASVs with a total size of 350,604 bp and an average GC content of 57 %. A. cerana honey exhibited a rich tapestry of pollen from eleven diverse genera, with Schleichera genus dominating at an impressive relative read abundance of 72.8 %. In contrast, H. itama honey displayed a remarkable mono-dominance of the Syzygium genus, accounting for a staggering 99.95 % of its pollen composition or relative read abundance, highlighting their distinct foraging preferences and floral resource utilization. Notably, all identified pollen taxa were indigenous to Karangasem, solidifying the geographical link between honey and its origin. This study demonstrates pollen DNA metabarcoding may identify honey floral sources. By using pollen profiles from different bee species and their foraging patterns, we may protect consumers against honey adulteration and promote sustainable beekeeping in Karangasem district. Future research could explore expanding the database of reference pollen sequences and investigating the influence of environmental factors on pollen composition in honey. Investigating this technology's economic and social effects on beekeepers and consumers may help promote fair trade and sustainable beekeeping worldwide.

10.
Environ Monit Assess ; 196(8): 694, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963575

ABSTRACT

Human activities at sea can produce pressures and cumulative effects on ecosystem components that need to be monitored and assessed in a cost-effective manner. Five Horizon European projects have joined forces to collaboratively increase our knowledge and skills to monitor and assess the ocean in an innovative way, assisting managers and policy-makers in taking decisions to maintain sustainable activities at sea. Here, we present and discuss the status of some methods revised during a summer school, aiming at better management of coasts and seas. We include novel methods to monitor the coastal and ocean waters (e.g. environmental DNA, drones, imaging and artificial intelligence, climate modelling and spatial planning) and innovative tools to assess the status (e.g. cumulative impacts assessment, multiple pressures, Nested Environmental status Assessment Tool (NEAT), ecosystem services assessment or a new unifying approach). As a concluding remark, some of the most important challenges ahead are assessing the pros and cons of novel methods, comparing them with benchmark technologies and integrating these into long-standing time series for data continuity. This requires transition periods and careful planning, which can be covered through an intense collaboration of current and future European projects on marine biodiversity and ecosystem health.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Environmental Monitoring , Environmental Monitoring/methods , Conservation of Natural Resources/methods , Humans , Oceans and Seas , Human Activities
11.
Animals (Basel) ; 14(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891566

ABSTRACT

The species-area relationship is important for understanding species diversity patterns at spatial scales, but few studies have examined the relationship using environmental DNA (eDNA) techniques. We investigated amphibian diversity on 21 islands of the Zhoushan Archipelago and nearby mainland areas in China using the combination of eDNA metabarcoding and the traditional line transect method (TLTM) and identified the species-area relationship for amphibians on the islands. The mean detection probability of eDNA is 0.54, while the mean detection probability of TLTM is 0.24. The eDNA metabarcoding detected eight amphibian species on the islands and nine species in the mainland areas, compared with seven species on the islands and nine species in the mainland areas that were identified by TLTM. Amphibian richness on the islands increased with island area and habitat diversity. The species-area relationship for amphibians in the archipelago was formulated as the power function (S = 0.47A0.21) or exponential function (S = 2.59 + 2.41 (logA)). Our results suggested that eDNA metabarcoding is more sensitive for the detection of amphibian species. The combined use of eDNA metabarcoding and the traditional line transect method may optimize the survey results for amphibians.

12.
J Anim Ecol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864368

ABSTRACT

Terrestrial invertebrates are highly important for the decomposition of dung from large mammals. Mammal dung has been present in many of Earth's ecosystems for millions of years, enabling the evolution of a broad diversity of dung-associated invertebrates that process various components of the dung. Today, large herbivorous mammals are increasingly introduced to ecosystems with the aim of restoring the ecological functions formerly provided by their extinct counterparts. However, we still know little about the ecosystem functions and nutrient flows in these rewilded ecosystems, including the dynamics of dung decomposition. In fact, the succession of insect communities in dung is an area of limited research attention also outside a rewilding context. In this study, we use environmental DNA metabarcoding of dung from rewilded Galloway cattle in an experimental set-up to investigate invertebrate communities and functional dynamics over a time span of 53 days, starting from the time of deposition. We find a strong signal of successional change in community composition, including for the species that are directly dependent on dung as a resource. While several of these species were detected consistently across the sampling period, others appeared confined to either early or late successional stages. We believe that this is indicative of evolutionary adaptation to a highly dynamic resource, with species showing niche partitioning on a temporal scale. However, our results show consistently high species diversity within the functional groups that are directly dependent on dung. Our findings of such redundancy suggest functional stability of the dung-associated invertebrate community, with several species ready to fill vacant niches if other species disappear. Importantly, this might also buffer the ecosystem functions related to dung decomposition against environmental change. Interestingly, alpha diversity peaked after approximately 20-25 days in both meadow and pasture habitats, and did not decrease substantially during the experimental period, probably due to preservation of eDNA in the dung after the disappearance of visiting invertebrates, and from detection of tissue remains and cryptic life stages.

13.
Sci Total Environ ; 944: 173885, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38871310

ABSTRACT

Accelerating global urbanization is leading to drastic losses and restructuring of biodiversity. Although it is crucial to understand urban impacts on biodiversity to develop mitigation strategies, there is a dearth of knowledge on the functional structure of fish assemblages spanning the entire city-scale spectrum of urbanization intensity. Here, using environmental DNA sampled from 109 water sites in Beijing, we investigated the taxonomic and functional diversity patterns of fish assemblages across the city and uncovered community-, trait-, and species-level responses to various environmental stressors. By ranking sampling sites into three disturbance levels according to water physiochemical and landcover conditions, we found that both native and non-native fish taxonomic and functional α-diversity decreased significantly with elevating disturbance, as strong disturbance led to the disappearance of many species. However, the quantitative taxonomic and functional ß-diversity components of native and non-native fish showed distinct patterns; assemblage turnover dominated native fish ß-diversity and decreased with increasing disturbance, whereas species/trait richness differences dominated non-native fish ß-diversity and increased with disturbance intensity particularly in lotic waters. RLQ and fourth-corner analyses revealed that fish size, fecundity, diet, and reproductive behaviors were significantly correlated with water quality, with pollution-tolerant, larger-sized native and omnivorous non-native fishes being urban winners, which indicates strong trait-dependent environmental filtering. Potential ecological indicator species were identified based on the sensitivity of fish responses to pollution loads; these were mostly small native species, and many have bivalve-dependent reproduction. Our results demonstrate that, along with native fish assemblage simplification and homogenization, urban stressors exert profound impacts on community trait composition, highlighting the need to consider both biodiversity loss and functional reorganization in combating disturbance of aquatic ecosystems under global urbanization. Furthermore, correlations between cropland cover and water nutrient level suggested that the management of agricultural runoff might be critically important for safeguarding urban water quality.


Subject(s)
Biodiversity , Environmental Monitoring , Fishes , Urbanization , Animals , Fishes/physiology , Beijing , Water Quality
14.
Biology (Basel) ; 13(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927294

ABSTRACT

In this study, we evaluated the fungal diversity present associated with cores of Oligocene rocks using a DNA metabarcoding approach. We detected 940,969 DNA reads grouped into 198 amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Mucoromycota, Rozellomycota, Blastocladiomycota, Monoblepharomycota, Zoopagomycota, Aphelidiomycota (Fungi) and the fungal-like Oomycota (Stramenopila), in rank abundance order. Pseudogymnoascus pannorum, Penicillium sp., Aspergillus sp., Cladosporium sp., Aspergillaceae sp. and Diaporthaceae sp. were assessed to be dominant taxa, with 22 fungal ASVs displaying intermediate abundance and 170 being minor components of the assigned fungal diversity. The data obtained displayed high diversity indices, while rarefaction indicated that the majority of the diversity was detected. However, the diversity indices varied between the cores analysed. The endolithic fungal community detected using a metabarcoding approach in the Oligocene rock samples examined contains a rich and complex mycobiome comprising taxa with different lifestyles, comparable with the diversity reported in recent studies of a range of Antarctic habitats. Due to the high fungal diversity detected, our results suggest the necessity of further research to develop strategies to isolate these fungi in culture for evolutionary, physiological, and biogeochemical studies, and to assess their potential role in biotechnological applications.

15.
Harmful Algae ; 136: 102644, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876525

ABSTRACT

Blooms of Prymnesium parvum, a unicellular alga globally distributed in marine and brackish environments, frequently result in massive fish kills due to the production of toxins called prymnesins by this haptophyte. In August 2022, a harmful algal bloom (HAB) of this species occurred in the lower Oder River (Poland and Germany), which caused mass mortalities of fish and other organisms. This HAB was linked to low discharge of the Oder and mining activities that caused a significant increase in salinity. In this context, we report on the molecular detection and screening of this haptophyte and its toxins in environmental samples and clonal cultures derived thereof. Both conventional PCR and droplet digital PCR assays reliably detected P. parvum in environmental samples. eDNA metabarcoding using the V4 region of the 18S rRNA gene revealed a single Prymnesium sequence variant, but failed to identify it to species level. Four clonal cultures established from environmental samples were unambiguously identified as P. parvum by molecular phylogenetics (near full-length 18S rRNA gene) and light microscopy. Phylogenetic analysis (ITS1-5.8S-ITS2 marker region) placed the cultured phylotype within a clade containing other P. parvum strains known to produce B-type prymnesins. Toxin-screening of the cultures using liquid chromatography-electrospray ionization - time of flight mass spectrometry identified B-type prymnesins, which were also detected in extracts of filter residues from water samples of the Oder collected during the HAB. Overall, our investigation provides a detailed characterization of P. parvum, including their prymnesins, during this HAB in the Oder River, contributing valuable insights into this ecological disaster. In addition, the droplet digital PCR assay established here will be useful for future monitoring of low levels of P. parvum on the Oder River or any other salt-impacted and brackish water bodies.


Subject(s)
Haptophyta , Harmful Algal Bloom , Phylogeny , Rivers , Haptophyta/genetics , Rivers/chemistry , Marine Toxins/analysis , Marine Toxins/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/analysis , Germany
16.
J Anim Ecol ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38881237

ABSTRACT

During animal migration, ephemeral communities of taxa at all trophic levels co-occur over space and time. The interactions between predators and prey along migration corridors are ecologically and evolutionarily significant. However, these interactions remain understudied in terrestrial systems and warrant further investigations using novel approaches. We investigated the predator-prey interactions between a migrating avivorous predator and ephemeral avian prey community in the fall migration season. We tested for associations between avian traits and prey selection and hypothesized that prey traits (i.e. relative size, flocking behaviour, habitat, migration tendency and availability) would influence prey selection by a sexually dimorphic raptor on migration. To document prey consumption, we sampled trace prey DNA from beaks and talons of migrating sharp-shinned hawks Accipiter striatus (n = 588). We determined prey availability in the ephemeral avian community by extracting weekly abundance indices from eBird Status and Trends data. We used discrete choice models to assess prey selection and visualized the frequency of prey in diet and availability on the landscape over the fall migration season. Using eDNA metabarcoding, we detected prey species on 94.1% of the hawks sampled (n = 525/588) comprising 1396 prey species detections from 65 prey species. Prey frequency in diet and eBird relative abundance of prey species were correlated over the migration season for top-selected prey species, suggesting prey availability is an important component of raptor-songbird interactions during fall. Prey size, flocking behaviour and non-breeding habitat association were prey traits that significantly influenced predator choice. We found differences between female and male hawk prey selection, suggesting that sexual size dimorphism has led to distinct foraging strategies on migration. This research integrated field data collected by a volunteer-powered raptor migration monitoring station and public-generated data from eBird to reveal elusive predator-prey dynamics occurring in an ephemeral raptor-songbird community during fall migration. Understanding dynamic raptor-songbird interactions along migration routes remains a relatively unexplored frontier in animal ecology and is necessary for the conservation and management efforts of migratory and resident communities.


Durante la migración animal, las comunidades efímeras de taxones de todos los niveles tróficos coexisten en el espacio y el tiempo. Las interacciones entre depredadores y presas a lo largo de los corredores migratorios son significativas desde el punto de vista ecológica y evolutivo. Sin embargo, estas interacciones siguen siendo poco estudiadas en los sistemas terrestres y justifican más investigaciones utilizando enfoques novedosos. Investigamos las interacciones depredador­presa entre un depredador avívoro migratorio y una comunidad de presas aviares efímeras en la temporada migratoria otoñal. Probamos las asociaciones entre los rasgos de las aves y la selección de presas y planteamos la hipótesis de que los rasgos de las presas (tamaño relativo, comportamiento de bandada, hábitat, tendencia migratoria y disponibilidad) influirían en la selección de presas por parte de una rapaz sexualmente dimórfica durante la migración. Para documentar el consumo de presas, recogimos rastros de ADN de presas de picos y garras de Gavilán Americano Accipiter striatus (n = 588) migratorios. Determinamos la disponibilidad de presas en la comunidad de aves efímeras extrayendo índices de abundancia semanales de los datos de eBird Estado y Tendencias. Utilizamos modelos de elección discreta para evaluar la selección de presas y visualizamos la frecuencia de las presas en la dieta y la disponibilidad en el paisaje durante la temporada migratoria otoñal. Utilizando el metacódigo de barras del ADN ambiental, detectamos especies de presas en el 94,1% de los halcones muestreados (n = 525/588), comprendiendo 1396 detecciones de 65 especies de presas. La frecuencia de presas en la dieta y la abundancia relativa de especies de presas en eBird se correlacionaron a lo largo de la temporada de migración para las principales especies de presas seleccionadas, lo que sugiere que la disponibilidad de presas es un componente importante de las interacciones entre aves rapaces y aves canoras durante el otoño. El tamaño de las presas, el comportamiento de las bandadas y la asociación con el hábitat no reproductivo fueron rasgos de presa que influyeron significativamente en la elección de los depredadores. Encontramos diferencias entre la selección de presas de gavilán hembra y macho, lo que sugiere que el dimorfismo sexual de tamaño ha conducido a distintas estrategias de alimentación durante la migración. Esta investigación integró datos de campo recopilados por una estación de monitoreo de migración de rapaces impulsada por voluntarios y datos generados públicamente por eBird para revelar la esquiva dinámica depredador­presa que ocurre en una comunidad efímera de rapaces y aves canoras durante la migración otoñal. Comprender las interacciones dinámicas entre rapaces y aves canoras a lo largo de las rutas migratorias sigue siendo una frontera relativamente inexplorada en la ecología animal y es necesaria para los esfuerzos de conservación y gestión de las comunidades migratorias y residentes.

17.
Forensic Sci Int ; 361: 112085, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850619

ABSTRACT

Previous studies have shown that environmental DNA (eDNA) from human sources can be recovered from natural bodies of water, and the generation of DNA profiles from such environmental samples may assist in forensic investigations. However, fundamental knowledge gaps exist around the factors influencing the probability of detecting human eDNA and the design of optimal sampling protocols. One of these is understanding the particle sizes eDNA signals are most strongly associated with and the most appropriate filter size needed for efficiently capturing eDNA particles. This study assessed the amount of mitochondrial eDNA associated with different particle sizes from human blood and skin cells recovered from freshwater samples. Samples (300 mL) were taken from experimental 10 L tanks of freshwater spiked with 50 µL of human blood or skin cells deposited by vigorously rubbing hands together for two minutes in freshwater. Subsamples were collected by passing 250 mL of experimental water sample through six different filter pore sizes (from 0.1 to 8 µm). This process was repeated at four time intervals after spiking over 72 hours to assess if the particle size of the amount of eDNA recovered changes as the eDNA degrades. Using a human-specific quantitative polymerase chain reaction (qPCR) assay targeting the HV1 mitochondrial gene region, the total amount of mitochondrial eDNA associated with different particle size fractions was determined. In the case of human blood, at 0 h, the 0.45 µm filter pore size captured the greatest amount of mitochondrial eDNA, capturing 42 % of the eDNA detected. The pattern then changed after 48 h, with the 5 µm filter pore size capturing the greatest amount of eDNA (67 %), and 81 % of eDNA at 72 h. Notably, a ten-fold dilution proved to be a valuable strategy for enhancing eDNA recovery from the 8 µm filter at all time points, primarily due to the PCR inhibition observed in hemoglobin. For human skin cells, the greatest amounts of eDNA were recovered from the 8 µm filter pore size and were consistent through time (capturing 37 %, 56 %, and 88 % of eDNA at 0 hours, 48 hours, and 72 hours respectively). There is a clear variation in the amount of eDNA recovered between different cell types, and in some forensic scenarios, there is likely to be a mix of cell types present. These results suggest it would be best to use a 5 µm filter pore size to capture human blood and an 8 µm filter pore size to capture human skin cells to maximize DNA recovery from freshwater samples. Depending on the cell type contributing to the eDNA, a combination of different filter pore sizes may be employed to optimize the recovery of human DNA from water samples. This study provides the groundwork for optimizing a strategy for the efficient recovery of human eDNA from aquatic environments, paving the way for its broader application in forensic and environmental sciences.

18.
Sci Total Environ ; 946: 174101, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38906296

ABSTRACT

Eukaryotic communities in groundwater may be particularly sensitive to disturbance because they are adapted to stable environmental conditions and often have narrow spatial distributions. Traditional methods for characterising these communities, focussing on groundwater-inhabiting macro- and meiofauna (stygofauna), are challenging because of limited taxonomic knowledge and expertise (particularly in less-explored regions), and the time and expense of morphological identification. The primary objective of this study was to evaluate the vulnerability of eukaryote communities in shallow groundwater to mine water discharge containing elevated concentrations of magnesium (Mg) and sulfate (SO4). The study was undertaken in a shallow sand bed aquifer within a wet-dry tropical setting. The aquifer, featuring a saline mine water gradient primarily composed of elevated Mg and SO4, was sampled from piezometers in the creek channel upstream and downstream of the mine water influence during the dry season when only subsurface water flow was present. Groundwater communities were characterised using both morphological assessments of stygofauna from net samples and environmental DNA (eDNA) targeting the 18S rDNA and COI mtDNA genes. eDNA data revealed significant shifts in community composition in response to mine waters, contrasting with findings from traditional morphological composition data. Changes in communities determined using eDNA data were notably associated with concentrations of SO42-, Mg2+ and Na+, and water levels in the piezometers. This underscores the importance of incorporating molecular approaches in impact assessments, as relying solely on traditional stygofauna sampling methods in similar environments may lead to inaccurate conclusions about the responses of the assemblage to studied impacts.


Subject(s)
Environmental Monitoring , Groundwater , Mining , Groundwater/chemistry , Eukaryota , Rivers/chemistry , Water Pollutants, Chemical/analysis , Saline Waters
19.
Mar Environ Res ; 199: 106602, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870557

ABSTRACT

The assessment of fish diversity is crucial for effective conservation and management strategies, especially in ecologically sensitive regions such as marine protected areas. This study contrasts the effectiveness of environmental DNA (eDNA) metabarcoding analysis employing Nanopore technology with compare beam trawl surveys at the Sylt Outer Reef, a Natura 2000 site in the North Sea, Germany. Out of the 17 fish species caught in a bottom trawl (using a 3m beam trawl), 14 were also identified through eDNA extracted from water samples. The three species not detected in the eDNA results were absent because they lacked representation in public DNA databases. The eDNA method detected twice as many fish species as the beam trawl, totalling 36 species, of which 14 were also detected by the trawl. Additionally, the selection of primers (Mifish) facilitated the identification of one marine mammal species, the harbour porpoise. In conclusion, the findings underscore the potential of eDNA coupled with MinION sequencing (Long read technology) as a robust tool for biodiversity assessment, surpassing traditional methods in detecting species richness.


Subject(s)
Biodiversity , Coral Reefs , DNA Barcoding, Taxonomic , DNA, Environmental , Fishes , Animals , Fishes/genetics , DNA Barcoding, Taxonomic/methods , DNA, Environmental/analysis , Nanopore Sequencing/methods , Germany , North Sea , Environmental Monitoring/methods
20.
Mar Environ Res ; 199: 106601, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875900

ABSTRACT

Invasive species that outcompete endemic ones and toxic harmful algae that cause algal blooms threaten marine resources like fisheries, aquaculture, and even tourism. Environmental DNA (eDNA) metabarcoding can help as a method for early alert. In this study, we have analyzed communities inhabiting six lagoons within the Gulf of Lion (northwest Mediterranean Sea) with spatial protection as RAMSAR and Natura 2000 sites. Employing the COI gene as the only metabarcode, we found 15 genera that have caused recognized algal bloom outbreaks in the studied lagoons since 2000. In addition, seven alien invasive species that can pose risks to the rich marine resources of the zone and lagoons were also found. The results found from eDNA are consistent with events of toxic algae blooms before and after the sampling moment and with reported occurrences of the invasive species in nearby Mediterranean areas. Multivariate multiple analysis showed the importance of anthropic pressure in the abundance of these nuisance species. Mitigation actions and routine eDNA metabarcoding in zones of special interest like these fragile French Mediterranean lagoons are recommended for early alert of nuisance species in order to plan timely management actions.


Subject(s)
DNA, Environmental , Environmental Monitoring , Introduced Species , Mediterranean Sea , DNA, Environmental/genetics , DNA, Environmental/analysis , Environmental Monitoring/methods , DNA Barcoding, Taxonomic , Harmful Algal Bloom , Animals
SELECTION OF CITATIONS
SEARCH DETAIL