Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Gut Microbes ; 16(1): 2369339, 2024.
Article in English | MEDLINE | ID: mdl-38962965

ABSTRACT

The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Iron , Oxidative Stress , Salmonella enterica , Animals , Iron/metabolism , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Salmonella enterica/genetics , Salmonella enterica/metabolism , Salmonella enterica/pathogenicity , Virulence/genetics , Phenols/metabolism , Thiazoles/metabolism , Humans , Salmonella Infections/microbiology , Gene Transfer, Horizontal , Female , Virulence Factors/genetics , Virulence Factors/metabolism , Plasmids/genetics
2.
Environ Monit Assess ; 196(7): 619, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878080

ABSTRACT

Helicobacter pylori is a microorganism that infects 60% of the population and is considered the main cause of atrophic gastritis, gastric and duodenal ulcers, and gastric cancer. Different emerging pathogens have been found in drinking water and their presence is considered to be an important public health problem. For this reason, it is necessary to carry out the validation of reliable technologies for this type of pathogens and evaluate their performance. This paper reports, for the first time, H. pylori reduction in a drinking water pilot plant of two slow sand filters (SSF). Inlet water was taken from a gravel filtration system of a rural water supply in Colombia and then inoculated with viable cells of H. pylori. By determining the Genomic Units (GU) through quantitative Polymerase Chain Reaction (qPCR), the concentration of GU/sample was measured. In the inlet water amplification for SSF1 and SSF2 were 5.13 × 102 ± 4.48 × 102 and 6.59 × 102 ± 7.32 × 102, respectively, while for the treated water they were 7.0 ± 5.6 and 2.05 × 101 ± 2.9 × 101 GU/sample for SSF1 and SSF2, respectively. The SSF pilot plant reached up to 3 log reduction units of H. pylori; therefore, since there is not an H. pylori contamination indicator and its periodic monitoring is financially complicated, the SSF could guarantee the drinking water quality necessity that exists in rural areas and small municipalities in developing countries, where infection rates and prevalence of this pathogen are high.


Subject(s)
Drinking Water , Filtration , Helicobacter pylori , Water Microbiology , Water Purification , Water Supply , Filtration/methods , Drinking Water/microbiology , Water Purification/methods , Sand , Colombia
3.
BMC Microbiol ; 24(1): 198, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849724

ABSTRACT

BACKGROUND: Hemotropic Mycoplasma species (hemoplasmas) cause hemolytic anemia in cats worldwide and are recognized as emerging zoonotic pathogens. There is no comprehensive study on the prevalence and species diversity of hemoplasmas in domestic cat populations in different regions in Iran. Thus, the aims of the present study were to provide data on the prevalence and molecular characterization of hemotropic Mycoplasma species in apparently healthy cats from six Iranian provinces with different climates. In addition, potential risk factors associated with hemoplasmosis in cats were assessed. RESULTS: Mycoplasma spp. DNA was detected in the blood of 56 / 361 cats (15.5%) using genus-specific PCR. Further examinations with species-specific PCR and Sanger sequencing showed that 38 cats (10.5%) tested positive for Candidatus Mycoplasma haemominutum (CMhm), 8 cats (2.2%) tested positive for Mycoplasma haemofelis (Mhf), and 2 cats (0.6%) tested positive for Candidatus Mycoplasma turicensis (CMt). Co-infection with CMhm, and Mhf was observed in 7 cats (1.9%). One cat (0.3%) showed mixed infection with CMhm, Mhf, and CMt. There were statistically significant relationships between Mycoplasma positivity and being female, living in shelter (cattery), and being over 3 years old (P < 0.05). No significant association was observed for the cat breed and sampling localities. CONCLUSIONS: Current study findings revealed that hemoplasma infections are common among Iran cat populations. Considering the impact of such emerging zoonotic pathogens on the One Health, routine screenings, increasing public awareness, effective control, and prophylactic strategies for minimizing infection in cats and subsequently in human are strongly recommended.


Subject(s)
Cat Diseases , DNA, Bacterial , Mycoplasma Infections , Mycoplasma , Phylogeny , Animals , Cats , Iran/epidemiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/epidemiology , Mycoplasma Infections/microbiology , Cat Diseases/microbiology , Cat Diseases/epidemiology , Mycoplasma/genetics , Mycoplasma/isolation & purification , Mycoplasma/classification , Prevalence , Female , Male , DNA, Bacterial/genetics , Sequence Analysis, DNA , Polymerase Chain Reaction , Risk Factors , Coinfection/microbiology , Coinfection/veterinary , Coinfection/epidemiology
4.
Acta Trop ; 257: 107306, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944407

ABSTRACT

Colpodella species are close relatives of Apicomplexan protozoa. Although most species of this genus are free-living organisms that feed on other protists and algae, reports indicate their occurence in ticks and human patients, including an individual with a history of tick bite manifesting neurological symptoms. During an investigation of tick-borne pathogens (TBPs) in blood samples of cattle, goats, and in ticks collected on them, Colpodella sp. DNA was detected in a Rhipicephalus bursa tick collected from cattle, while of Theileria sergenti/buffeli/orientalis, Babesia bigemina, Sarcocystis cruzi, Babesia spp., and Rickettsia spp. were molecularly detected in cattle, goats, and ticks in southern Italy. Data herein reported highlight the unprecedented presence of Colpodella sp. in ticks in Italy, raising concern due to the potential pathogenic role of this less known protozoan. This finding advocates for performing routine epidemiological surveys to monitor potential emerging vector-borne pathogens.

5.
Curr Drug Res Rev ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715335

ABSTRACT

BACKGROUND: Ralstonia mannitolilytica is an emerging opportunistic pathogen that has been increasingly reported in clinical settings. Despite its low pathogenicity in immunocompetent individuals, it poses a significant threat to immunocompromised patients, particularly those with underlying medical conditions or invasive medical interventions. OBJECTIVES: This study aimed to evaluate the clinical impact and management strategies based on the analysis of individual case reports on Ralstonia mannitolilytica . METHODS: A comprehensive search of PubMed was conducted from inception until July 31, 2023, using the terms "Ralstonia mannitolilytica" and/or "Pseudomonas thomasii". Inclusion criteria for our systematic review included human-centered case reports of Ralstonia mannitolilytica infections, excluding case series and review articles. Data extraction followed PRISMA guidelines, including study details and patient characteristics. Case reports were systematically assessed using the JBI critical appraisal checklist, evaluating patient demographics, clinical history, diagnostic methods, interventions, post-intervention outcomes, adverse events, and lessons learned to minimize bias risk. RESULTS: A total of 17 case reports of Ralstonia mannitolilytica infections were included in our systematic review. Studies published from 2001 to 2023 revealed diverse global contributions, with 29.41% from China. Infection origins varied, with catheter-related cases being predominant. Mortality was reported in two studies. Antibiotic sensitivity analysis showed sensitivity to third-generation cephalosporins, notably Ceftazidime. Quality appraisal revealed that all studies had a low risk of bias, ensuring the overall robustness of the case reports. CONCLUSION: This study emphasizes the importance of understanding Ralstonia mannitolilytica infections, given their varied clinical presentations and antibiotic responses. The study also underscores the necessity for precise identification, customized treatments, and ongoing research to manage these infections effectively.

6.
BMC Bioinformatics ; 25(1): 185, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730317

ABSTRACT

Surveillance for genetic variation of microbial pathogens, both within and among species, plays an important role in informing research, diagnostic, prevention, and treatment activities for disease control. However, large-scale systematic screening for novel genotypes remains challenging in part due to technological limitations. Towards addressing this challenge, we present an advancement in universal microbial high resolution melting (HRM) analysis that is capable of accomplishing both known genotype identification and novel genotype detection. Specifically, this novel surveillance functionality is achieved through time-series modeling of sequence-defined HRM curves, which is uniquely enabled by the large-scale melt curve datasets generated using our high-throughput digital HRM platform. Taking the detection of bacterial genotypes as a model application, we demonstrate that our algorithms accomplish an overall classification accuracy over 99.7% and perform novelty detection with a sensitivity of 0.96, specificity of 0.96 and Youden index of 0.92. Since HRM-based DNA profiling is an inexpensive and rapid technique, our results add support for the feasibility of its use in surveillance applications.


Subject(s)
Genotype , Machine Learning , DNA, Bacterial/genetics , Algorithms , Nucleic Acid Denaturation/genetics
7.
Health Secur ; 22(2): 85-92, 2024.
Article in English | MEDLINE | ID: mdl-38574329

ABSTRACT

The surveillance and identification of emerging, reemerging, and unknown infectious disease pathogens is essential to national public health preparedness and relies on fluidity, coordination, and interconnectivity between public and private pathogen surveillance systems and networks. Developing a national sentinel surveillance network with existing resources and infrastructure could increase efficiency, accelerate the identification of emerging public health threats, and support coordinated intervention strategies that reduce morbidity and mortality. However, implementing and sustaining programs to detect emerging and reemerging pathogens in humans using advanced molecular methods, such as metagenomic sequencing, requires making large investments in testing equipment and developing networks of clinicians, laboratory scientists, and bioinformaticians. In this study, we sought to gain an understanding of how federal government agencies currently support such pathogen agnostic testing of human specimens in the United States. We conducted a landscape analysis of federal agency websites for publicly accessible information on the availability and type of pathogen agnostic testing and details on flow of clinical specimens and data. The website analysis was supplemented by an expert review of results with representatives from the federal agencies. Operating divisions within the US Department of Health and Human Services and the US Department of Veterans Affairs have developed and sustained extensive clinical and research networks to obtain patient specimens and perform metagenomic sequencing. Metagenomic facilities supported by US agencies were not equally geographically distributed across the United States. Although many entities have work dedicated to metagenomics and/or support emerging infectious disease surveillance specimen collection, there was minimal formal collaboration across agencies.


Subject(s)
Communicable Diseases , Humans , United States , Communicable Diseases/epidemiology , Government Agencies , Federal Government , Public Health
8.
mSphere ; 9(5): e0016224, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38606973

ABSTRACT

Acinetobacter junii is an opportunistic human and animal pathogen severely understudied. Here, we conducted the largest genomic epidemiological study on this pathogen to date. Our data show that this bacterium has spread globally. Also, we found that some human and non-human isolates are not well differentiated from one another, implying transmission between clinical and non-clinical, non-human settings. Remarkably, human but also some non-human isolates have clinically important antibiotic resistance genes, and some of these genes are located in plasmids. Given these results, we put forward that A. junii should be considered an emerging One Health problem. In this regard, future molecular epidemiological studies about this species will go beyond human isolates and will consider animal-, plant-, and water-associated environments. IMPORTANCE: Acinetobacter baumannii is the most well-known species from the genus Acinetobacter. However, other much less studied Acinetobacter species could be important opportunistic pathogens of animals, plants and humans. Here, we conducted the largest genomic epidemiological study of A. junii, which has been described as a source not only of human but also of animal infections. Our analyses show that this bacterium has spread globally and that, in some instances, human and non-human isolates are not well differentiated. Remarkably, some non-human isolates have important antibiotic resistance genes against important antibiotics used in human medicine. Based on our results, we propose that this pathogen must be considered an issue not only for humans but also for veterinary medicine.


Subject(s)
Acinetobacter Infections , Acinetobacter , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Humans , Acinetobacter/genetics , Acinetobacter/drug effects , Acinetobacter/classification , Acinetobacter/isolation & purification , Acinetobacter/pathogenicity , Animals , One Health , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Molecular Epidemiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/epidemiology , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Genomics
9.
J Infect Dis ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682164

ABSTRACT

BACKGROUND: Nipah virus (NiV), a highly lethal virus in humans, circulates in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining viral genomes from bats means we have a poor understanding of NiV diversity. METHODS: We develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N=257, 175 from bats, 73 from humans) from six countries over 22 years (1999-2020). We divide the four major NiV sublineages into 15 genetic clusters. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate the presence and the average size of genetic clusters per area. RESULTS: We find that, within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1500-2000km2. We estimate that each genetic cluster occupies an average area of 1.3million km2 (95%CI: 0.6-2.3 million), with 14 clusters in an area of 100,000km2 (95%CI: 6-24). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most clusters have been identified, but only ∼15% of overall NiV diversity has been uncovered. CONCLUSION: Our findings are consistent with entrenched co-circulation of distinct lineages, even within roosts, coupled with slow migration over larger spatial scales.

10.
Front Public Health ; 12: 1288139, 2024.
Article in English | MEDLINE | ID: mdl-38532968

ABSTRACT

Introduction: An increased incidence of human Monkeypox (Mpox) cases was recently observed worldwide, including in Cameroon. To ensure efficient preparedness and interventions in the health system, we sought to assess the knowledge of Mpox's transmission, prevention, and response among healthcare workers (HCWs) in Cameroon. Methods: A cross-sectional online survey was conducted among HCWs in Cameroon using 21-item questions adapted from the United States Centers for Disease Control and Prevention (US-CDC) standard questionnaire on Mpox. The overall knowledge of Mpox was assessed by cumulative score and categorized as excellent (≥80%, 17/21) or good (≥70%, ≥15/21) knowledge. The regression analysis was used to identify the predictors of Mpox knowledge. Results: The survey enrolled 377 participants, but only responses from 342 participants were analyzed. Overall, 50.6% were female participants, and 59.6% aged 30 years or younger. The majority of the participants were medical doctors (50.3%); most worked in central-level hospitals (25.1%) and had 1-5 years of experience (70.7%). A total of up to 92.7% were aware of Mpox, with social media (58.7%) and radio/television (49.2%) as the main sources. The mean knowledge score was 14.0 ± 3.0 (4 to 20), with only 12.9% having excellent knowledge (≥80%) and 42.1% having good knowledge of Mpox. Younger age (26-30 years old) was associated with good knowledge, while workplace type was associated with excellent knowledge of Mpox (aOR [95% CI]: 4.01 [1.43-11.24]). Knowledge of treatment/management of Mpox was generally poor across the different professional categories. Conclusion: Knowledge of Mpox among HCWs is substandard across different professionals. Thus, for optimal preparedness and immediate interventions for Mpox and similar emerging pathogens, capacity-strengthening programs should be organized for HCWs while encouraging scientific literature and organizational social media websites.


Subject(s)
Mpox (monkeypox) , Pandemic Preparedness , United States , Humans , Female , Adult , Male , Cameroon , Cross-Sectional Studies , Health Personnel
12.
Methods Mol Biol ; 2779: 425-456, 2024.
Article in English | MEDLINE | ID: mdl-38526798

ABSTRACT

The emergence of new pathogens continues to fuel the need for advanced high-containment laboratories across the globe. Here we explore challenges and opportunities for integration of cytometry, a central technology for cell analysis, within high-containment laboratories. We review current applications in infectious disease, vaccine research, and biosafety. Considerations specific to cytometry within high-containment laboratories, such as biosafety requirements, and sample containment strategies are also addressed. We further tour the landscape of emerging technologies, including combination of cytometry with other omics, the application of automation, and artificial intelligence. Finally, we propose a framework to fast track the immersion of advanced technologies into the high-containment research setting to improve global preparedness for new emerging diseases.


Subject(s)
Biomedical Research , Laboratories , Artificial Intelligence , Containment of Biohazards , Technology
13.
Emerg Infect Dis ; 30(3): 444-452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407173

ABSTRACT

We reviewed information about mammals naturally infected by highly pathogenic avian influenza A virus subtype H5N1 during 2 periods: the current panzootic (2020-2023) and previous waves of infection (2003-2019). In the current panzootic, 26 countries have reported >48 mammal species infected by H5N1 virus; in some cases, the virus has affected thousands of individual animals. The geographic area and the number of species affected by the current event are considerably larger than in previous waves of infection. The most plausible source of mammal infection in both periods appears to be close contact with infected birds, including their ingestion. Some studies, especially in the current panzootic, suggest that mammal-to-mammal transmission might be responsible for some infections; some mutations found could help this avian pathogen replicate in mammals. H5N1 virus may be changing and adapting to infect mammals. Continuous surveillance is essential to mitigate the risk for a global pandemic.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Mammals , Mutation
14.
Parasit Vectors ; 17(1): 73, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374048

ABSTRACT

BACKGROUND: Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. METHODS: Here, we examine single and co-infection of Mayaro virus (D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27 °C) and hot (32 °C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. RESULTS: Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes with a tendency for higher titers in co-infected mosquitoes at both temperatures, and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs. single infections and was more evident at earlier time points (7 vs. 14 days post infection) for Mayaro. The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. CONCLUSIONS: Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses. However, more studies are necessary to clarify the role of co-infection at different temperature regimes, including under more natural temperature settings.


Subject(s)
Aedes , Alphavirus , Coinfection , Dengue Virus , Dengue , Flavivirus , Animals , Humans , Temperature , Mosquito Vectors , Alphavirus/genetics , Flavivirus/genetics
15.
Int J Med Microbiol ; 314: 151610, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310676

ABSTRACT

Shiga toxin-producing E. coli (STEC), including the subgroup of enterohemorrhagic E. coli (EHEC), are important bacterial pathogens which cause diarrhea and the severe clinical manifestation hemolytic uremic syndrome (HUS). Genomic surveillance of STEC/EHEC is a state-of-the-art tool to identify infection clusters and to extract markers of circulating clinical strains, such as their virulence and resistance profile for risk assessment and implementation of infection prevention measures. The aim of the study was characterization of the clinical STEC population in Germany for establishment of a reference data set. To that end, from 2020 to 2022 1257 STEC isolates, including 39 of known HUS association, were analyzed and lead to a classification of 30.4 % into 129 infection clusters. Major serogroups in all clinical STEC analyzed were O26, O146, O91, O157, O103, and O145; and in HUS-associated strains were O26, O145, O157, O111, and O80. stx1 was less frequently and stx2 or a combination of stx, eaeA and ehxA were more frequently found in HUS-associated strains. Predominant stx gene subtypes in all STEC strains were stx1a (24 %) and stx2a (21 %) and in HUS-associated strains were mainly stx2a (69 %) and the combination of stx1a and stx2a (12.8 %). Furthermore, two novel O-antigen gene clusters (RKI6 and RKI7) and strains of serovars O45:H2 and O80:H2 showing multidrug resistance were detected. In conclusion, the implemented surveillance tools now allow to comprehensively define the population of clinical STEC strains including those associated with the severe disease manifestation HUS reaching a new surveillance level in Germany.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Hemolytic-Uremic Syndrome , Shiga-Toxigenic Escherichia coli , Humans , Virulence/genetics , O Antigens/genetics , Escherichia coli Proteins/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Genomics , Germany/epidemiology , Hemolytic-Uremic Syndrome/epidemiology , Hemolytic-Uremic Syndrome/microbiology , Multigene Family
16.
Infect Drug Resist ; 17: 171-185, 2024.
Article in English | MEDLINE | ID: mdl-38268929

ABSTRACT

Fungal infections represent a constant and growing menace to public health. This concern is due to the emergence of new fungal species and the increase in antifungal drug resistance. Mycoses caused by Candida species are among the most common nosocomial infections and are associated with high mortality rates when the infection affects deep-seated organs. Candida metapsilosis is part of the Candida parapsilosis complex and has been described as part of the oral microbiota of healthy individuals. Within the complex, this species is considered the least virulent; however, the prevalence has been increasing in recent years, as well as an increment in the resistance to some antifungal drugs. One of the main concerns of candidiasis caused by this species is the wide range of clinical manifestations, ranging from tissue colonization to superficial infections, and in more severe cases it can spread, which makes diagnosis and treatment difficult. The study of virulence factors of this species is limited, however, proteomic comparisons between species indicate that virulence factors in this species could be similar to those already described for C. albicans. However, differences may exist, taking into account changes in the lifestyle of the species. Here, we provide a detailed review of the current literature about this organism, the caused disease, and some sharing aspects with other members of the complex, focusing on its biology, virulence factors, the host-fungus interaction, the identification, diagnosis, and treatment of infection.

17.
Antibiotics (Basel) ; 13(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38247619

ABSTRACT

Foodborne infections pose a substantial global threat, causing an estimated 600 million illnesses and resulting in approximately 420,000 deaths annually. Among the diverse array of pathogens implicated in these infections, Escherichia coli (E. coli), specifically the O157 strain (E. coli O157), emerges as a prominent pathogen associated with severe outbreaks. This study employs a comprehensive bibliometric analysis and scholarly review focused on E. coli O157 research. The bibliometric analysis highlights the significant role played by the United States in the E. coli O157 research domain. Further exploration underscores the noteworthy contributions of the researcher Doyle MP, whose body of work, consisting of 84 documents and an impressive H-Index of 49, reflects their substantial impact in the field. Recent research trends indicate a discernible shift towards innovative detection methods, exemplified by the adoption of CRISPR-CAS and Loop-Mediated Isothermal Amplification. Moreover, high-throughput whole-genome sequencing techniques are gaining prominence for the expeditious analysis of pathogenic E. coli strains. Scientists are increasingly exploring antimicrobial agents, including phage therapy, to address the challenges posed by antibiotic-resistant E. coli strains, thereby addressing critical concerns related to multi-drug resistance. This comprehensive analysis provides vital insights into the dynamic landscape of E. coli O157 research. It serves as a valuable resource for researchers, policymakers, and healthcare professionals dedicated to mitigating E. coli O157 outbreaks and advancing global public health strategies.

18.
Phytopathology ; 114(5): 917-929, 2024 May.
Article in English | MEDLINE | ID: mdl-38170665

ABSTRACT

Fruit and vegetable crops are important sources of nutrition and income globally. Producing these high-value crops requires significant investment of often scarce resources, and, therefore, the risks associated with climate change and accompanying disease pressures are especially important. Climate change influences the occurrence and pressure of plant diseases, enabling new pathogens to emerge and old enemies to reemerge. Specific environmental changes attributed to climate change, particularly temperature fluctuations and intense rainfall events, greatly alter fruit and vegetable disease incidence and severity. In turn, fruit and vegetable microbiomes, and subsequently overall plant health, are also affected by climate change. Changing disease pressures cause growers and researchers to reassess disease management and climate change adaptation strategies. Approaches such as climate smart integrated pest management, smart sprayer technology, protected culture cultivation, advanced diagnostics, and new soilborne disease management strategies are providing new tools for specialty crops growers. Researchers and educators need to work closely with growers to establish fruit and vegetable production systems that are resilient and responsive to changing climates. This review explores the effects of climate change on specialty food crops, pathogens, insect vectors, and pathosystems, as well as adaptations needed to ensure optimal plant health and environmental and economic sustainability.


Subject(s)
Climate Change , Crops, Agricultural , Fruit , Plant Diseases , Vegetables , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Diseases/statistics & numerical data , Fruit/microbiology , Vegetables/microbiology , Crops, Agricultural/microbiology
19.
Zoonoses Public Health ; 71(2): 157-169, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37957801

ABSTRACT

BACKGROUND: Diphtheria caused by toxin-producing Corynebacterium ulcerans is a re-emerging human disease that can cause local and systemic sequelae. In Australia, toxigenic diphtheria is a rare notifiable communicable disease, due to high-vaccination coverage. The public health management of cutaneous cases of toxigenic C. ulcerans varies between jurisdictions, as opposed to the more uniform public health response to toxigenic Corynebacterium diphtheriae presenting as respiratory or laryngeal diphtheria. AIM: To report a case of zoonotically acquired C. ulcerans, review evidence on the zoonotic reservoir and reported transmission events, and examine public health guidelines for the management of human and animal contacts. METHODS AND RESULTS: In this case report, we detail our case investigation, treatment and public health management, including contact tracing and an approach to animal testing. We successfully identified companion canines as probable sources for the human case, with WGS confirming the link. The zoonotic disease link of C. ulcerans to domestic and agricultural animals is established in the literature; however, the management of animal contacts in human cases is inconsistent with jurisdictional or national guidelines. CONCLUSIONS: While a rare disease, a consistent approach to public health management is warranted to systematically elucidate the disease source and improve understanding of transmission.


Subject(s)
Diphtheria , Dog Diseases , Animals , Humans , Dogs , Diphtheria Toxin , Diphtheria/microbiology , Diphtheria/veterinary , Corynebacterium , Zoonoses
20.
Phytopathology ; : PHYTO05230175R, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-37942874

ABSTRACT

Phytophthora cactorum is the most common causal agent of Phytophthora crown rot and leather rot of strawberry, but P. nicotianae is also responsible for the disease in Florida. Studies of P. nicotianae populations have suggested that different groups of genotypes are associated with different hosts; however, it is not yet clear how many lineages exist globally and how they are related to different production systems. The aim of this study was to determine the genetic relationships of P. nicotianae isolates from Florida strawberry with genotypes reported from other hosts, quantify the genetic variation on strawberry, and test for an association with nursery source. A total of 49 isolates of P. nicotianae were collected from strawberry plants originating from multiple nursery sources during six seasons of commercial fruit production in Florida. Microsatellite genotyping identified 28 multilocus genotypes on strawberry that were distinct among 208 isolates originating from various hosts and locations. Based on STRUCTURE analysis, two genetic groups were identified: one consisting of isolates from strawberry, and the other comprising samples from different hosts. Multilocus genotypes were shared among nursery sources, and populations defined by nursery were not differentiated. Both mating types were found among the isolates from North Carolina- and California-origin plants and in most strawberry seasons; however, a predominance of A1 was observed, and regular sexual reproduction was not supported by the data. This study reveals a unique genetic population of P. nicotianae associated with strawberry and emphasizes the vital role of nursery monitoring in mitigating disease spread.

SELECTION OF CITATIONS
SEARCH DETAIL
...