Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Eur J Clin Invest ; : e14296, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118373

ABSTRACT

In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.

2.
Front Cell Dev Biol ; 12: 1390794, 2024.
Article in English | MEDLINE | ID: mdl-39114570

ABSTRACT

Introduction: Heparan sulfate (HS) in the vascular endothelial glycocalyx (eGC) is a critical regulator of blood vessel homeostasis. Trauma results in HS shedding from the eGC, but the impact of trauma on HS structural modifications that could influence mechanisms of vascular injury and repair has not been evaluated. Moreover, the effect of eGC HS shedding on endothelial cell (EC) homeostasis has not been fully elucidated. The objectives of this work were to characterize the impact of trauma on HS sulfation and determine the effect of eGC HS shedding on the transcriptional landscape of vascular ECs. Methods: Plasma was collected from 25 controls and 49 adults admitted to a level 1 trauma center at arrival and 24 h after hospitalization. Total levels of HS and angiopoietin-2, a marker of pathologic EC activation, were measured at each time point. Enzymatic activity of heparanase, the enzyme responsible for HS shedding, was determined in plasma from hospital arrival. Liquid chromatography-tandem mass spectrometry was used to characterize HS di-/tetrasaccharides in plasma. In vitro work was performed using flow conditioned primary human lung microvascular ECs treated with vehicle or heparinase III to simulate human heparanase activity. Bulk RNA sequencing was performed to determine differentially expressed gene-enriched pathways following heparinase III treatment. Results: We found that heparanase activity was increased in trauma plasma relative to controls, and HS levels at arrival were elevated in a manner proportional to injury severity. Di-/tetrasaccharide analysis revealed lower levels of 3-O-sulfated tetramers with a concomitant increase in ΔIIIS and ΔIIS disaccharides following trauma. Admission levels of total HS and specific HS sulfation motifs correlated with 24-h angiopoietin-2 levels, suggesting an association between HS shedding and persistent, pathological EC activation. In vitro pathway analysis demonstrated downregulation of genes that support cell junction integrity, EC polarity, and EC senescence while upregulating genes that promote cell differentiation and proliferation following HS shedding. Discussion: Taken together, our findings suggest that HS cleavage associated with eGC injury may disrupt homeostatic EC signaling and influence biosynthetic mechanisms governing eGC repair. These results require validation in larger, multicenter trauma populations coupled with in vivo EC-targeted transcriptomic and proteomic analyses.

3.
Scand J Trauma Resusc Emerg Med ; 32(1): 71, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160625

ABSTRACT

BACKGROUND: Trauma induced coagulopathy remains to be an important cause of high transfusion requirements and mortality and shock induced endotheliopathy (SHINE) has been implicated. METHODS: European multicenter observational study of adult trauma patients with injury severity score ≥ 16 arriving within 2 h from injury to the trauma centers. Admission blood samples obtained were used for analysis of the SHINE biomarkers (syndecan-1, soluble thrombomodulin, adrenaline) and extensive analysis of coagulation, -and fibrinolytic factors together with collection of clinical data. Hierarchical clustering of the SHINE biomarkers was used to identify the SHINE phenotypes. RESULTS: The 313 patients clustered into four SHINE phenotypes. Phenotype 2, having the highest glycocalyx shedding, encompassing 22% of the whole cohort, had severe coagulopathy with lower levels of prothrombin, FV, IX, X, XI and severe hyperfibrinolysis with higher plasmin - alpha 2-antiplasmin (PAP) - and tPA levels and lower alpha2 - antiplasmin levels. This phenotype had significantly higher transfusion requirements and higher mortality (39% vs. 23%, 15% and 14%) but similar injury severity score (ISS) compared to the others phenotypes. CONCLUSIONS: Hierarchical clustering identified four SHINE phenotype in a cohort of trauma patients. Trauma induced coagulopathy was confined to only one of the SHINE phenotypes, encompassing 22% of the total cohort. This phenotype was characterized by severe hypocoagulability and hyperfibrinolysis, which translated to significantly higher transfusion requirements and higher mortality compared to the other SHINE phenotypes with similar injury severity, warranting further investigation.


Subject(s)
Blood Coagulation Disorders , Injury Severity Score , Phenotype , Wounds and Injuries , Humans , Male , Female , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/blood , Adult , Middle Aged , Wounds and Injuries/complications , Wounds and Injuries/blood , Biomarkers/blood , Endothelium, Vascular/physiopathology , Endothelium, Vascular/injuries , Europe/epidemiology
4.
Vitam Horm ; 126: 191-217, 2024.
Article in English | MEDLINE | ID: mdl-39029973

ABSTRACT

Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.


Subject(s)
Blood-Brain Barrier , Genetic Therapy , Blood-Brain Barrier/metabolism , Humans , Genetic Therapy/methods , Animals , Endothelial Cells/metabolism , Receptors, Transferrin/metabolism
5.
J Surg Res ; 301: 287-295, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996719

ABSTRACT

INTRODUCTION: Hypoxia is a significant cause of secondary insult in the critically ill trauma or surgical patient. The cause of increased mortality following a brief period of hypoxia is not well understood. The aim of this study is to determine the effect of acute, isolated deviations in oxygen concentration on proinflammatory cytokine release and markers of endothelial stress in a murine model. METHODS: Mice were randomized to either control, hypoxia, or hyperoxia group. The control group was exposed to room air for 60 min, the hyperoxia group was exposed to 70% fraction of inspired oxygen, and the hypoxia group was exposed to 10% fraction of inspired oxygen for 60 min. Whole blood collection was completed via cardiac puncture. Serum concentrations of proinflammatory cytokines and endothelial stress markers were analyzed via enzyme-linked immunosorbent assay. RESULTS: Following exposure to hypoxic conditions, there was a significant increase in interleukin (IL)-1α (IL-1 α), IL-1 ß, IL-3, IL-4, IL-6, IL-10, tumor necrosis factor α . Following exposure to hyperoxic conditions, there was a significant increase in monocyte chemoattractant protein-1 and regulated upon activation normal T cell expressed and presumably secreted, as well as a significant decrease in IL-12, and IL-17. No clinically significant difference was noted in serum concentration of endothelial stress markers between the treatment groups. DISCUSSION: Exposure to oxygen extremes induces systemic inflammation as measured by proinflammatory cytokines in a murine model. Hyperoxia also demonstrates the ability to downregulate certain inflammatory pathways while inducing others. No effect on serum concentration of endothelial stress markers is observed following acute, isolated hypoxic or hyperoxic conditions.

6.
Life (Basel) ; 14(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38792566

ABSTRACT

SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, has revealed a broader impact beyond the respiratory system, predominantly affecting the vascular system with various adverse manifestations. The infection induces endothelial dysfunction and immune system dysregulation, creating an inflammatory and hypercoagulable state. It affects both microvasculature and macrovasculature, leading to thromboembolic events, cardiovascular manifestations, impaired arterial stiffness, cerebrovascular complications, and nephropathy, as well as retinopathy-frequently observed in cases of severe illness. Evidence suggests that SARS-CoV-2 infection may result in persistent effects on the vascular system, identified as long-term COVID-19. This is characterized by prolonged inflammation, endotheliopathy, and an increased risk of vascular complications. Various imaging modalities, histopathological studies, and diagnostic tools such as video capillaroscopy and magnetic resonance imaging have been employed to visualize vascular alterations. This review aims to comprehensively summarize the evidence concerning short and long-term vascular alterations following COVID-19 infection, investigating their impact on patients' prognosis, and providing an overview of preventive strategies to mitigate associated vascular complications.

7.
EBioMedicine ; 103: 105132, 2024 May.
Article in English | MEDLINE | ID: mdl-38677182

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS: To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS: We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION: IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING: The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.


Subject(s)
COVID-19 , Cytokine Receptor gp130 , Interleukin-6 , Mice, Transgenic , SARS-CoV-2 , Signal Transduction , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/metabolism , Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus Infections/pathology , COVID-19/metabolism , COVID-19 Drug Treatment , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/antagonists & inhibitors , Disease Models, Animal , Endothelial Cells/metabolism , Interleukin-6/metabolism , Lung/pathology , Lung/virology , Lung/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/metabolism , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Severity of Illness Index , Signal Transduction/drug effects
8.
Virology ; 594: 110052, 2024 06.
Article in English | MEDLINE | ID: mdl-38507920

ABSTRACT

SARS-CoV-2 infection causes activation of endothelial cells (ECs), leading to dysmorphology and dysfunction. To study the pathogenesis of endotheliopathy, the activation of ECs in lungs of cynomolgus macaques after SARS-CoV-2 infection and changes in nicotinamide adenine dinucleotide (NAD) metabolism in ECs were investigated, with a focus on the CD38 molecule, which degrades NAD in inflammatory responses after SARS-CoV-2 infection. Activation of ECs was seen from day 3 after SARS-CoV-2 infection in macaques, with increases of intravascular fibrin and NAD metabolism-associated enzymes including CD38. In vitro, upregulation of CD38 mRNA in human ECs was detected after interleukin 6 (IL-6) trans-signaling induction, which was increased in the infection. In the presence of IL-6 trans-signaling stimulation, however, CD38 mRNA silencing induced significant IL-6 mRNA upregulation in ECs and promoted EC apoptosis after stimulation. These results suggest that upregulation of CD38 in patients with COVID-19 has a protective role against IL-6 trans-signaling stimulation induced by SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Animals , COVID-19/metabolism , Endothelial Cells/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , NAD , SARS-CoV-2/metabolism , Macaca/metabolism , RNA, Messenger/metabolism
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1022372

ABSTRACT

The diagnosis and treatment of sepsis-induced coagulopathy(SIC)and disseminated intravascular coagulation(DIC)are very difficult in clinical practice.It also increases the mortality of sepsis in children.This article reviewed the latest pathophysiological mechanism of endothelial molecular in the occurrence and development of SIC and DIC in sepsis,so as to provide new theoretical basis for the clinical treatment of SIC and DIC in sepsis.

10.
J Surg Res ; 293: 639-646, 2024 01.
Article in English | MEDLINE | ID: mdl-37837820

ABSTRACT

INTRODUCTION: Major traumatic injury is associated with early hemorrhage-related and late-stage deaths due to multiple organ failure (MOF). While improvements to hemostatic resuscitation have significantly reduced hemorrhage-related deaths, the incidence of MOF among trauma patients remains high. Dysregulation of vascular endothelial cell (EC) barrier function is a central mechanism in the development of MOF; however, the mechanistic triggers remain unknown. Accelerated fibrinolysis occurs in a majority of trauma patients, resulting in high circulating levels of fibrin(ogen) degradation products, such as fragment X. To date, the relationship between fragment X and EC dysregulation and barrier disruption is unknown. The goal of this study was to determine the effects of fragment X on EC barrier integrity and expression of paracellular junctional proteins that regulate barrier function. METHODS: Human lung microvascular endothelial cells (HLMVECs) were treated with increasing concentrations of fragment X (1, 10, and 100 µg/mL), and barrier function was monitored using the xCELLigence live-cell monitoring system. Quantitative PCR (qPCR) was performed to measure changes in EC expression of 84 genes. Immunofluorescent (IF) cytostaining was performed to validate qPCR findings. RESULTS: Fragment X treatment significantly increased endothelial permeability over time (P < 0.05). There was also a significant reduction in VE-cadherin mRNA expression in fragment X-treated HLMVECs compared to control (P = 0.01), which was confirmed by IF staining. CONCLUSIONS: Fragment X may induce EC hyperpermeability by reducing VE-cadherin expression. This suggests that a targeted approach to disrupting EC-fragment X interactions could mitigate EC barrier disruption, organ edema, and MOF associated with major trauma.


Subject(s)
Cadherins , Endothelial Cells , Humans , Endothelial Cells/metabolism , Cadherins/metabolism , Endothelium, Vascular/metabolism , Hemorrhage/metabolism , Capillary Permeability , Cells, Cultured
11.
J Surg Res ; 293: 709-716, 2024 01.
Article in English | MEDLINE | ID: mdl-37844411

ABSTRACT

INTRODUCTION: Plasma levels of syndecan-1 (Sdc-1), a biomarker of endothelial glycocalyx (EG) damage, correlate with worse outcomes in trauma patients. However, EG injury is not well characterized in injured older adults (OA). The aims of this study were to characterize Sdc-1 shedding in OA trauma patients relative to younger adults (YA) and determine associations with putative regulators of EG sheddases. METHODS: We performed a secondary analysis of data from the Pragmatic, Randomized Optimal Platelet, and Plasma Ratios (PROPPR) trial, stratifying bluntly injured subjects into OA and YA groups based on upper age quartile (57 y). Plasma Sdc-1 levels were compared in OA and YA at hospital arrival through postinjury day 3, and the independent association between age and Sdc-1 level at arrival was determined after adjusting for differences in gender, shock index (SI), and pre-existing comorbidities. In a follow-up analysis, case-control matching was used to create populations of OA and YA with equivalent SI and injury severity score. Levels of Sdc-1 were compared between these matched groups, and the relationships with candidate regulators of EG shedding were assessed. RESULTS: Of 680 subjects in the Pragmatic, Randomized Optimal Platelet, and Plasma Ratios trial, 350 (51%) had blunt injuries, and 92 (26.3%) of these were OA. Plasma Sdc-1 levels at arrival, 2 h, and 6 h were significantly lower in OA compared to YA (all P < 0.05). After adjusting for sex, pre-existing morbidities and SI, age was associated with decreased Sdc-1 levels at arrival. In the matched analyses, Sdc-1, high-mobility group box 1 and tissue inhibitor of metalloproteinase-2 levels were lower in OA compared to YA. Both high-mobility group box-1 and tissue inhibitor of metalloproteinase-2 significantly correlated with arrival Sdc-1 and were inversely associated with age. CONCLUSIONS: This study indicates that increased age is independently associated with decreased Sdc-1 levels among patients with blunt injuries. Suppressed plasma levels of sheddases in relation to diminished Sdc-1 shedding suggest that mechanisms regulating EG cleavage may be impaired in injured older adults. These findings provide novel insight into the age-dependent impact of injury on the vascular endothelium, which could have important implications for the clinical management of older adults following trauma.


Subject(s)
Tissue Inhibitor of Metalloproteinase-2 , Wounds, Nonpenetrating , Humans , Aged , Glycocalyx , Hemorrhage , Injury Severity Score , Wounds, Nonpenetrating/complications , Wounds, Nonpenetrating/diagnosis , Syndecan-1
12.
J Surg Res ; 295: 611-618, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38096775

ABSTRACT

INTRODUCTION: Syndecan-1 is a heparan sulfate proteoglycan found in the glycocalyx of vascular endothelial cells. Serum levels of syndecan-1 have repeatedly been demonstrated to increase following traumatic injury and shock, but it is unclear whether syndecan-1 plays an active role in the inflammatory response or is simply a biomarker of a state of hypoperfusion. The aim of this study was to identify the role of syndecan-1 role in the inflammatory process in the absence of trauma. METHODS: Male mice were randomized into five groups (n = 3). Four groups received increasing concentrations of syndecan-1 (1, 10, 100, and 1000pg/mL per blood volume) and a fifth group was given normal saline as a control via intravenous injection. These concentrations were selected based on previous syndecan-1 enzyme-linked immunosorbent assay data acquired following induced hemorrhagic shock in mice resulting in serum levels of 10-6000 pg/mL. Mice from each group were sacrificed at 1-, 4-, and 24-h time points for serum biomarker evaluation. A multiplex enzyme-linked immunosorbent assay was performed to analyze proinflammatory cytokines and chemokines including interleukin (IL)-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, IL-17, monocyte chemoattractant protein-1, TNF-α, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, and normal T cell expressed and presumably secreted levels. Whole blood was analyzed via rotational thromboelastometry in a separate group of mice dosed with syndecan-1 at 1000 pg/mL and compared to sham mice at 1 h. RESULTS: Tumor necrosis factor-α was significantly elevated in the 1000 pg/mL group compared to sham animals. There were no significant changes in IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, monocyte chemoattractant protein--1, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, or normal T cell expressed and presumably secretedat 1, 4, and 24 h for any group when compared to mice receiving saline alone. No significant differences were noted in coagulability between the 1000 pg/mL syndecan-1 group and shams at 1 h CONCLUSIONS: Inflammatory cytokine concentrations did not change with increasing dosage of syndecan-1 within mice at any timepoint, except for an acute change in tumor necrosis factor-α which was transient. Based on our results, syndecan-1 appears to be a biomarker for inflammation rather than an active participant in eliciting an inflammatory response. Further research will focus on the role of syndecan-1 following hemorrhagic shock.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Shock, Hemorrhagic , Humans , Male , Mice , Animals , Interleukin-10 , Interleukin-6 , Endothelial Cells , Tumor Necrosis Factor-alpha , Shock, Hemorrhagic/complications , Syndecan-1 , Interleukin-2 , Interleukin-3 , Interleukin-4 , Cytokines , Interleukin-12 , Biomarkers , Macrophage Inflammatory Proteins
13.
Ter Arkh ; 95(6): 487-493, 2023 Aug 17.
Article in Russian | MEDLINE | ID: mdl-38158968

ABSTRACT

AIM: To evaluate the relationship between the systemic inflammatory response and the severity of COVID-19-associated endotheliopathy and the effect of succinate-containing crystalloid solution (sodium meglumine succinate) on it in patients with severe COVID-19. MATERIALS AND METHODS: Clinical and laboratory parameters of 53 intensive care unit's patients with COVID-19 complicated by community-acquired bilateral multisegmental pneumonia were analyzed. Intensive therapy complex of 27 patients (study group) included daily infusion of 1.5% solution of sodium meglumine succinate (Reamberin) in the daily dose of 10 ml/kg for at least 11 days (or during the whole stay in the unit). A similar volume of Ringer's solution was present in the control group of 26 patients. The levels of endotheliocytosis, homocysteine, and systemic inflammatory response were determined at all stages of the study. RESULTS: The evaluation of endotheliopathy degree in the meglumine succinate group showed a significant reduction of initially elevated levels of endotheliemia and homocysteinemia at all study stages. The pattern of changes in the study group was highly correlated (r=0.90-0.96) with the dynamics of systemic inflammatory response parameters-fibrinogenemia, C-reactive protein and interleukin-6 levels. As normalization of the immune imbalance, we regarded the termination of lymphopenia in the Reamberin group. CONCLUSION: Early inclusion of Reamberin infusion into intensive therapy of severe COVID-19, in comparison with Ringer's solution, leads to significant and stable correction of the severity of systemic inflammatory response, which in turn is naturally reflected in the severity of endothelial dysfunction, multiple organ failure, and also leads to a decrease in 28-day mortality.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Ringer's Solution , Succinates/therapeutic use , Meglumine , Sodium , Systemic Inflammatory Response Syndrome/drug therapy
14.
Front Pharmacol ; 14: 1304697, 2023.
Article in English | MEDLINE | ID: mdl-38143504

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially surfaced in late 2019, often triggers severe pulmonary complications, encompassing various disease mechanisms such as intense lung inflammation, vascular dysfunction, and pulmonary embolism. Currently, however, there's no drug addressing all these mechanisms simultaneously. This study explored the multi-targeting potential of S-nitrosoglutathione (GSNO) and N6022, an inhibitor of GSNO reductase (GSNOR) on markers of inflammatory, vascular, and thrombotic diseases related to COVID-19-induced acute lung disease. For this, acute lung disease was induced in C57BL/6 mice through intranasal administration of recombinant SARS-CoV-2 spike protein S1 domain (SP-S1). The mice exhibited fever, body weight loss, and increased blood levels and lung expression of proinflammatory cytokines (e.g., TNF-α and IL-6) as well as increased vascular inflammation mediated by ICAM-1 and VCAM-1 and lung infiltration by immune cells (e.g., neutrophils, monocytes, and activated cytotoxic and helper T cells). Further, the mice exhibited increased lung hyperpermeability (lung Evans blue extravasation) leading to lung edema development as well as elevated blood coagulation factors (e.g., fibrinogen, thrombin, activated platelets, and von Willebrand factor) and lung fibrin deposition. Similar to the patients with COVID-19, male mice showed more severe disease than female mice, along with higher GSNOR expression in the lungs. Optimization of GSNO by treatment with exogenous GSNO or inhibition of GSNOR by N6022 (or GSNO knockout) protects against SP-S1-induced lung diseases in both genders. These findings provide evidence for the potential efficacies of GSNO and GSNOR inhibitors in addressing the multi-mechanistic nature of SARS-CoV-2 SP-associated acute-lung disease.

15.
Syst Rev ; 12(1): 221, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37990333

ABSTRACT

INTRODUCTION: Shock-induced endotheliopathy (SHINE), defined as a profound sympathoadrenal hyperactivation in shock states leading to endothelial activation, glycocalyx damage, and eventual compromise of end-organ perfusion, was first described in 2017. The aggressive resuscitation therapies utilised in treating shock states could potentially lead to further worsening endothelial activation and end-organ dysfunction. OBJECTIVE: This study aimed to systematically review the literature on resuscitation-associated and resuscitation-induced endotheliopathy. METHODS: A predetermined structured search of literature published over an 11-year and 6-month period (1 January 2011 to 31 July 2023) was performed in two indexed databases (PubMed/MEDLINE and Embase) per PRISMA guidelines. Inclusion was restricted to original studies published in English (or with English translation) reporting on endothelial dysfunction in critically ill human subjects undergoing resuscitation interventions. Reviews or studies conducted in animals were excluded. Qualitative synthesis of studies meeting the inclusion criteria was performed. Studies reporting comparable biomarkers of endothelial dysfunction post-resuscitation were included in the quantitative meta-analysis. RESULTS: Thirty-two studies met the inclusion criteria and were included in the final qualitative synthesis. Most of these studies (47%) reported on a combination of mediators released from endothelial cells and biomarkers of glycocalyx breakdown, while only 22% reported on microvascular flow changes. Only ten individual studies were included in the quantitative meta-analysis based on the comparability of the parameters assessed. Eight studies measured syndecan-1, with a heterogeneity index, I2 = 75.85% (pooled effect size, mean = 0.27; 95% CI - 0.07 to 0.60; p = 0.12). Thrombomodulin was measured in four comparable studies (I2 = 78.93%; mean = 0.41; 95% CI - 0.10 to 0.92; p = 0.12). Three studies measured E-selectin (I2 = 50.29%; mean = - 0.15; 95% CI - 0.64 to 0.33; p = 0.53), and only two were comparable for the microvascular flow index, MFI (I2 = 0%; mean = - 0.80; 95% CI - 1.35 to - 0.26; p < 0.01). CONCLUSION: Resuscitation-associated endotheliopathy (RAsE) refers to worsening endothelial dysfunction resulting from acute resuscitative therapies administered in shock states. In the included studies, syndecan-1 had the highest frequency of assessment in the post-resuscitation period, and changes in concentrations showed a statistically significant effect of the resuscitation. There are inadequate data available in this area, and further research and standardisation of the ideal assessment and panel of biomarkers are urgently needed.


Subject(s)
Endothelial Cells , Syndecan-1 , Animals , Humans , Syndecan-1/metabolism , Endothelial Cells/metabolism , Resuscitation/methods , Biomarkers
16.
Cell Stem Cell ; 30(10): 1315-1330.e10, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37802037

ABSTRACT

COVID-19 is linked to endotheliopathy and coagulopathy, which can result in multi-organ failure. The mechanisms causing endothelial damage due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain elusive. Here, we developed an infection-competent human vascular organoid from pluripotent stem cells for modeling endotheliopathy. Longitudinal serum proteome analysis identified aberrant complement signature in critically ill patients driven by the amplification cycle regulated by complement factor B and D (CFD). This deviant complement pattern initiates endothelial damage, neutrophil activation, and thrombosis specific to organoid-derived human blood vessels, as verified through intravital imaging. We examined a new long-acting, pH-sensitive (acid-switched) antibody targeting CFD. In both human and macaque COVID-19 models, this long-acting anti-CFD monoclonal antibody mitigated abnormal complement activation, protected endothelial cells, and curtailed the innate immune response post-viral exposure. Collectively, our findings suggest that the complement alternative pathway exacerbates endothelial injury and inflammation. This underscores the potential of CFD-targeted therapeutics against severe viral-induced inflammathrombotic outcomes.


Subject(s)
COVID-19 , Animals , Humans , SARS-CoV-2 , Complement Factor D , Endothelial Cells , Haplorhini
17.
Am J Med ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37704072

ABSTRACT

Persistence of COVID-19 symptoms may follow severe acute respiratory syndrome coronavirus 2 infection. The incidence of long COVID increases with the severity of acute disease, but even mild disease can be associated with sequelae. The symptoms vary widely, with fatigue, shortness of breath, and cognitive dysfunction the most common. Abnormalities of multiple organs have been documented, and histopathology has revealed widespread microthrombi. Elevated levels of complement are present in acute COVID-19 patients and may persist at lower levels in long COVID. Evidence supports complement activation, with endotheliopathy-associated disease as the molecular mechanism causing both acute and long COVID.

18.
J Clin Med ; 12(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37629312

ABSTRACT

Although coronavirus disease 2019 (COVID-19) is considered a systemic disease associated with vascular inflammation and eventual destruction of the protective endothelial glycocalyx (eGC), biomarkers of eGC damage are not yet available in the clinic. The most prominent components of eGC are sulphated glycosaminoglycans (sGAGs) attached to core proteoglycans. We hypothesised that the amount of sGAG fragments shed in urine (as a surrogate for systemic eGC damage) would correlate with disease severity and outcome. Total urinary sGAG concentration was measured using an in-house optimised 1,9-dimethylmethylene blue (DMMB) assay, which is highly accurate and insensitive to interferences. The median urinary sGAG concentration was significantly higher in 67 hospitalised patients with COVID-19 compared to 72 hospitalised patients with community-acquired pneumonia (CAP). In both groups, urinary sGAG concentrations predicted a combined endpoint (including intubation and death) with an area under the receiver operator characteristic curve of 0.72 (95% CI 0.55-0.88, p = 0.01) and 0.70 (95% CI 0.57-0.83, p = 0.007), respectively. In conclusion, the inexpensive and easy-to-perform DMMB assay provides a surrogate parameter for eGC damage that may be useful for risk stratification of patients with COVID-19 and CAP.

19.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511541

ABSTRACT

When stimulated by proinflammatory mediators, endothelial cells release ultra-large von Willebrand factor (ULVWF) multimers that are hyperactive in activating and aggregating platelets. These ULVWF multimers can accumulate in the circulation and on the inflamed endothelium because they are insufficiently cleaved by the metalloprotease ADAMTS-13, which becomes moderately deficient under conditions of systemic inflammation. This moderate ADAMTS-13 deficiency may lead to thrombotic complications that contribute to ischemic tissue injury and organ failure that are associated with severe infections. To test this hypothesis, we investigated whether recombinant ADAMTS-13 improves the pathological course of endotoxemia in lipopolysaccharide (LPS)-treated mice. C57BL/J6 mice received a bolus infusion of either 5 µg/mouse of ADAMTS-13 or vehicle control 30 min after LPS challenge and were monitored for seven-day survival. During the monitoring period, platelet counts, VWF antigen, and ADAMTS-13 activity were measured. Thrombosis was also examined by the immunohistochemistry in the liver. We found that ADAMTS-13 reduced mortality from 66% to 34.9%. The improved survival was associated with a greater recovery from thrombocytopenia, higher plasma ADAMTS-13 activity, and less thrombotic vascular occlusion. These results suggest that systemic inflammation could result in deficient ULVWF proteolysis by ADAMTS-13 and that ADAMTS-13 improves the outcomes of endotoxemia-induced inflammation.


Subject(s)
ADAM Proteins , Endotoxemia , Animals , Mice , Endothelial Cells , ADAMTS13 Protein , Endotoxemia/drug therapy , Lipopolysaccharides , Mice, Inbred C57BL , von Willebrand Factor
SELECTION OF CITATIONS
SEARCH DETAIL