Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
J Ethnopharmacol ; 336: 118733, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181281

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Smilax glabra rhizome has a long history been used for clinical purposes in traditional Chinese medicinal for treating various inflammatory conditions. Engeletin1 (ENG) is one of the most abundant bioactive compounds found in Smilax glabra rhizome, with anti-inflammatory, antioxidant, and ulcer-preventing activities. AIM OF THE STUDY: The purpose of this study was to investigate the ability of ENG to alleviate inflammatory symptoms and improve epithelial barrier integrity utilize a 2,4,6-trinitrobenzene sulfonic acid2 (TNBS)-induced murine model in Crohn's disease3 (CD)-like colitis, and to characterize the underlying anti-inflammatory mechanisms of action. MATERIALS AND METHODS: A colitis model was established in BALB/c mice and treated with ENG for 7 days. RAW264.7 macrophages were pre-treated with ENG and lipopolysaccharide4 (LPS) stimulation. The mice's weight and colon length were assessed. qPCR and Western blotting were used to analyze gene expression and TLR4-NFκB pathway. Flow cytometry was used to analyze the polarization states of the macrophages. RESULTS: Treatment with ENG was sufficient to significantly alleviate symptoms of inflammation and colonic epithelial barrier integrity in treated mice. Significant inhibition of TNF-α, IL-1ß, and IL-6 expression was observed following ENG treatment in vivo and in vitro. ENG was also determined to be capable of inhibiting the expression of iNOS and CD86, inhibited M1 macrophage polarization in vitro, as well as the TLR4-NFκB signaling pathway. Molecular docking showed a highly stable binding between ENG and TLR4. CONCLUSION: ENG has been proven to alleviate inflammation and ameliorate the damage of epithelial barrier in CD-like colitis. ENG also suppressed the M1 macrophages polarization and the inhibited inflammatory cytokines. TLR4-NFκB signaling pathway, especially TLR4, may be the target of ENG. These data offer a new insight into the therapeutic mechanisms of ENG.

2.
J Cell Mol Med ; 28(8): e18285, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597406

ABSTRACT

Microglial polarization and associated inflammatory activity are the key mediators of depression pathogenesis. The natural Smilax glabra rhizomilax derivative engeletin has been reported to exhibit robust anti-inflammatory activity, but no studies to date have examined the mechanisms through which it can treat depressive symptoms. We showed that treatment for 21 days with engeletin significantly alleviated depressive-like behaviours in chronic stress social defeat stress (CSDS) model mice. T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) imaging revealed no significant differences between groups, but the bilateral prefrontal cortex of CSDS mice exhibited significant increases in apparent diffusion coefficient and T2 values relative to normal control mice, with a corresponding reduction in fractional anisotropy, while engeletin reversed all of these changes. CSDS resulted in higher levels of IL-1ß, IL-6, and TNF-a production, enhanced microglial activation, and greater M1 polarization with a concomitant decrease in M2 polarization in the mPFC, whereas engeletin treatment effectively abrogated these CSDS-related pathological changes. Engeletin was further found to suppress the LCN2/C-X-C motif chemokine ligand 10 (CXCL10) signalling axis such that adeno-associated virus-induced LCN2 overexpression ablated the antidepressant effects of engeletin and reversed its beneficial effects on the M1/M2 polarization of microglia. In conclusion, engeletin can alleviate CSDS-induced depressive-like behaviours by regulating the LCN2/CXCL10 pathway and thereby altering the polarization of microglia. These data suggest that the antidepressant effects of engeletin are correlated with the polarization of microglia, highlighting a potential avenue for future design of antidepressant strategies that specifically target the microglia.


Subject(s)
Antidepressive Agents , Flavonols , Glycosides , Microglia , Mice , Animals , Microglia/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/etiology , Signal Transduction
3.
Drug Des Devel Ther ; 17: 3833-3843, 2023.
Article in English | MEDLINE | ID: mdl-38152488

ABSTRACT

Background: Engeletin (ENG) is a natural flavonoid compound known for its diverse physiological and pharmacological effects, such as anti-inflammatory, antioxidant, and immunomodulatory properties. It has garnered significant attention as a promising candidate for drug development. Objective: This article aims to comprehensively review the clinical application, pharmacological action, and potential mechanisms of ENG, while exploring its prospects in clinical pharmacology. Methods: We conducted a systematic search of PubMed, Science Direct, Google Scholar, Web of Science, Scopus, and MEDLINE for a thorough review of high-quality articles on the source, extraction, and application of ENG, or the primary active ingredient for improving bodily injuries. Results: ENG exhibits significant potential in treating a variety of diseases across different systems, attributed to its anti-inflammatory, antioxidant, anti-tumor, and metabolic regulatory activities. These effects are linked to direct or indirect interactions with multiple pathways involving key molecules upstream and downstream. Conclusion: While ENG shows promise, its development requires further exploration. Future studies should focus on elucidating its mechanisms of action, identifying targets through clinical studies, and optimizing compounds for drug development. These research directions are crucial for advancing the development and application of flavonoids. This review underscores the significant research potential of ENG, paving the way for its application in diverse clinical settings.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/therapeutic use , Plant Extracts/therapeutic use , Flavonols , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Flavonoids/pharmacology
4.
J Cell Mol Med ; 27(23): 3928-3938, 2023 12.
Article in English | MEDLINE | ID: mdl-37799103

ABSTRACT

Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Engeletin, a natural Smilax glabra rhizomilax derivative, is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The effects of engeletin were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Engeletin was also investigated in the chronic restraint stress (CRS) mouse model of depression with fluoxetine (FLX) as the positive control. Changes in prefrontal cortex (PFC) spine density, synaptic plasticity-linked protein expressions and the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB)- mammalian target of rapamycin complex 1 (mTORC1) signalling pathway after chronic stress and engeletin treatment were then investigated. The TrkB and mTORC1 selective inhibitors, ANA-12 and rapamycin, respectively, were utilized to assess the engeletin's antidepressive mechanisms. Our data shows that engeletin exhibited antidepressant-like activity in the FST and TST in mice without affecting locomotor activity. Furthermore, it exhibited efficiency against the depression of CRS model. Moreover, it enhanced the BDNF-TrkB-mTORC1 pathway in the PFC during CRS and altered the reduction in dendritic spine density and levels of synaptic plasticity-linked protein induced by CRS. In conclusion, engeletin has antidepressant activity via activation of the BDNF-TrkB-mTORC1 signalling pathway and upregulation of PFC synaptic plasticity.


Subject(s)
Depressive Disorder, Major , Neuronal Plasticity , Receptor, trkB , Animals , Humans , Mice , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder, Major/drug therapy , Hippocampus/metabolism , Mammals/metabolism , Mechanistic Target of Rapamycin Complex 1/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein-Tyrosine Kinases/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Neuronal Plasticity/drug effects , Receptor, trkB/drug effects , Receptor, trkB/metabolism
5.
Front Pharmacol ; 14: 1218625, 2023.
Article in English | MEDLINE | ID: mdl-37492081

ABSTRACT

Objective: To propose a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery and increased bioavailability in treating Huntington's disease (HD). Methods: We conducted a literature review of the pathophysiology of HD and the limitations of currently available medications. We also reviewed the potential therapeutic benefits of engeletin, a flavanol glycoside, in treating HD through the Keap1/nrf2 pathway. We then proposed a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery across the blood-brain barrier (BBB) and increased bioavailability. Results: HD is an autosomal dominant neurological illness caused by a repetition of the cytosine-adenine-guanine trinucleotide, producing a mutant protein called Huntingtin, which degenerates the brain's motor and cognitive functions. Excitotoxicity, mitochondrial dysfunction, oxidative stress, elevated concentration of ROS and RNS, neuroinflammation, and protein aggregation significantly impact HD development. Current therapeutic medications can postpone HD symptoms but have long-term adverse effects when used regularly. Herbal medications such as engeletin have drawn attention due to their minimal side effects. Engeletin has been shown to reduce mitochondrial dysfunction and suppress inflammation through the Keap1/NRF2 pathway. However, its limited solubility and permeability hinder it from reaching the target site. A theoretical formulation of engeletin-nanostructured lipid nanocarriers may allow for free transit over the BBB due to offering a similar composition to the natural lipids present in the body a lipid solubility and increase bioavailability, potentially leading to a cure or prevention of HD. Conclusion: The theoretical formulation of engeletin-nanostructured lipid nanocarriers has the potential to improve delivery and increase the bioavailability of engeletin in the treatment of HD, which may lead to a cure or prevention of this fatal illness.

6.
J Inflamm Res ; 16: 2255-2270, 2023.
Article in English | MEDLINE | ID: mdl-37250105

ABSTRACT

Objective: Osteoclastogenesis, the process of osteoclast differentiation, plays a critical role in bone homeostasis. Overexpression of osteoclastogenesis can lead to pathological conditions, such as osteoporosis and osteolysis. This study aims to investigate the role of Engelitin in the process of RAW264.7 cell differentiation into osteoclasts induced by RANKL, as well as in a mouse model of bone loss following ovariectomy. Methods: We used RANKL-stimulated RAW264.7 cells as an in vitro osteoclast differentiation model. The effects of Eng on morphological changes during osteoclast differentiation were evaluated using TRAP and F-actin staining. The effects of Eng on the molecular level of osteoclast differentiation were evaluated using Western blot and q-PCR. The level of reactive oxygen species was evaluated using the DCFH-DA staining method. We then used ovariectomized mice as a bone loss animal model. The effects of Eng on changes in bone loss in vivo were evaluated using micro-CT and histological analysis staining. Results: In the in vitro experiments, Eng exhibited dose-dependent inhibition of osteoclast formation and F-actin formation. At the molecular level, Eng dose-dependently suppressed the expression of specific RNAs (NFATc1, c-Fos, TRAP, Cathepsin K, MMP-9) involved in osteoclast differentiation, and inhibited the phosphorylation of proteins such as IκBα, P65, ERK, JNK, and P38. Additionally, Eng dose-dependently suppressed ROS levels and promoted the expression of antioxidant enzymes such as Nrf2, HO-1, and NQO1. In the in vivo experiments, Eng improved bone loss in ovariectomized mice. Conclusion: Our study found that Eng inhibited RANKL-induced osteoclast differentiation through multiple signaling pathways, including MAPKs, NF-κB, and ROS aggregation. Furthermore, Eng improved bone loss in ovariectomized mice.

7.
J Cell Mol Med ; 27(12): 1653-1663, 2023 06.
Article in English | MEDLINE | ID: mdl-37132060

ABSTRACT

High-mobility group box1 (HMGB1) induces inflammatory injury, and emerging reports suggest that it is critical for brain ischemia reperfusion. Engeletin, a natural Smilax glabra rhizomilax derivative, is reported to possess anti-inflammatory activity. Herein, we examined the mechanism of engeletin-mediated neuroprotection in rats having transient middle cerebral artery occlusion (tMCAO) against cerebral ischemia reperfusion injury. Male SD rats were induced using a 1.5 h tMCAO, following by reperfusion for 22.5 h. Engeletin (15, 30 or 60 mg/kg) was intravenously administered immediately following 0.5 h of ischemia. Based on our results, engeletin, in a dose-dependent fashion, reduced neurological deficits, infarct size, histopathological alterations, brain edema and inflammatory factors, namely, circulating IL-1ß, TNF-α, IL-6 and IFN-γ. Furthermore, engeletin treatment markedly reduced neuronal apoptosis, which, in turn, elevated Bcl-2 protein levels, while suppressing Bax and Cleaved Caspase-3 protein levels. Meanwhile, engeletin significantly reduces overall expressions of HMGB1, TLR4, and NF-κB and attenuated nuclear transfer of nuclear factor kappa B (NF-κB) p65 in ischemic cortical tissue. In conclusion, engeletin strongly prevents focal cerebral ischemia via suppression of the HMGB1/TLR4/NF-κB inflammatory network.


Subject(s)
Brain Ischemia , HMGB1 Protein , Reperfusion Injury , Rats , Male , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Signal Transduction , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Brain Ischemia/complications , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion
8.
Neuropathology ; 43(6): 431-440, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37037475

ABSTRACT

Sevoflurane (SEV) is a commonly used anesthetic in pediatric surgery. Recent studies reported that repeated use of SEV contributes to cognitive impairment. Engeletin has been discovered to exert anti-inflammatory effects in various diseases. However, the detailed roles and mechanisms of engeletin in SEV-induced cognitive dysfunction of neonatal mice remain unclear. In this study, C57BL/6 neonatal mice were randomly divided into Ctrl, SEV, SEV + Engeletin (10 mg /kg), SEV + Engeletin (20 mg/kg), and SEV + Engeletin (40 mg/kg) groups. The Morris water maze (MWM) test suggested that engeletin treatment significantly improved SEV-induced cognitive impairment in neonatal mice. Employing ELISA and Nissl staining analysis, engeletin reduced neuroinflammation and loss of nerve cells caused by SEV, respectively. The treatment of engeletin dramatically suppressed the activation of microglia and apoptosis induced by SEV in the hippocampus of neonatal mice. Furthermore, the inhibition of PPAR-γ obviously reversed the abovementioned effects of engeletin in the hippocampus of newborn mice. In conclusion, this study verified that engeletin notably ameliorated SEV-induced cognitive deficiencies in neonatal mice at least partially by mediating the expression of PPAR-γ.


Subject(s)
Cognitive Dysfunction , Methyl Ethers , Animals , Mice , Animals, Newborn , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Hippocampus , Methyl Ethers/adverse effects , Methyl Ethers/metabolism , Mice, Inbred C57BL , PPAR gamma/metabolism , PPAR gamma/pharmacology , Sevoflurane/adverse effects , Sevoflurane/metabolism
9.
Tissue Cell ; 82: 102040, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36857798

ABSTRACT

Ferroptosis is a novel form of cell death, which is a unique modality of cell death and closely associated with iron concentrations, generation of reactive oxygen species (ROS), and accumulation of the lipid reactive oxygen species. In the present study, the anti-ferroptosis effects of Engeletin was studied in erastin-induced bone marrow mesenchymal stem cells (BMSCs). After treatment with Engeletin, cell viability was determined by CCK-8 assay. The production of ROS, malonaldehyde (MDA), Superoxide dismutase (SOD) activities and glutathione peroxidase (GSH) were detected by using commercially-available kits. Ferroptosis-related proteins (GPX4, SLC7A11, TFR1, FPN1, Nrf2, Keap1) were evaluated by Western blotting. Osteogenic capacity was evaluated by ALP staining and ARS staining. The expression of osteogenic-related proteins (OPN, Runx2, OCN) were evaluated by Western blotting and changes in mRNA (ALP, BMP-2, COL-1, Osterix) were evaluated by RT-PCR. Consistent improvements in angiogenesis are observed with Engeletin in the presence of erastin. Engeletin significantly alleviated erastin-induced oxidative damage and protected against ferroptosis in BMSCs. Ferroptosis was inhibited by Engeletin, leading to decreasing reducing accumulation of ROS and lipid peroxidation products. Moreover, Engeletin promoted osteogenic differentiation in BMSCs and angiogenesis in human umbilical vein endothelial cells (HUVECs). Taken together, these findings indicate that Engeletin can protect BMSCs from erastin-induced ferroptosis through the Nrf2/Keap1 antioxidant pathway and identify Engeletin as a novel ferroptosis inhibitor, suggesting that Engeletin may promote resistance to ferroptosis and enable osteogenic function of BMSCs.


Subject(s)
Mesenchymal Stem Cells , NF-E2-Related Factor 2 , Humans , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Osteogenesis , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress , Human Umbilical Vein Endothelial Cells/metabolism
10.
Biomed Pharmacother ; 161: 114439, 2023 May.
Article in English | MEDLINE | ID: mdl-36848751

ABSTRACT

OBJECTIVE: Engeletin is a potent natural compound with antioxidant and anti-inflammatory properties. However, its role in cardiac remodeling remains unclear. Herein, the aim of the present study was to explore the effects of engeletin on cardiac structural and electrical remodeling and its underlying mechanism. METHODS: and results: A cardiac remodeling mice model using isoproterenol (ISO)-induced myocardial fibrosis was constructed and divided into the following four groups: control group; engeletin group; ISO group; engeletin + ISO group. Our results demonstrated that engeletin alleviated ISO-induced myocardial fibrosis and dysfunction. Moreover, engeletin significantly prolonged the QT and corrected QT (QTc) intervals, effective refractory period (ERP), and action potential duration (APD), and enhanced connexin protein 43 (Cx43) and ion channel expressions, thereby decreasing ventricular fibrillation (VF) susceptibility. Additionally, dihydroethidium staining illustrated that engeletin decreased reactive oxygen species (ROS) production. Of note, engeletin also increased the levels of superoxide dismutase and glutathione and decreased the activity of malondialdehyde and L-Glutathione oxidized. Moreover, engeletin significantly increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Furthermore, in vitro administration of an Nrf2 inhibitor abolished the anti-oxidant properties of engeletin. CONCLUSION: Engeletin ameliorated cardiac structural and electrical remodeling, ion channel remodeling, and oxidative stress induced by ISO in mice, thereby reducing VF susceptibility. These effects may be attributed to the anti-oxidant properties of engeletin associated with the Nrf2/HO-1 pathway.


Subject(s)
Antioxidants , Atrial Remodeling , Mice , Animals , Isoproterenol/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Ventricular Remodeling , Oxidative Stress , Reactive Oxygen Species/metabolism , Heme Oxygenase-1/metabolism , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac , Glutathione/metabolism
11.
Article in English | MEDLINE | ID: mdl-35619306

ABSTRACT

BACKGROUND: Phytochemicals belonging to the class of flavonoids have been used in medicine for the treatment of different kinds of human health complications. Flavonoids have beneficial health aspects in medicine mainly due to their anti-microbial, anti-diabetic, anti-inflammatory, anticancer, and anti-carcinogenic activities. They have been scientifically investigated for their health benefit and pharmacological activities in medicine. Engeletin is a pure flavanonol class phytocompound present in the skin of white grapes and white wine. Engeletin has numerous pharmacological activities in medicine. METHODS: In order to know the beneficial health aspects of engeletin in medicine, scientific data on engeletin have been collected from different literature sources and analyzed in the present work. The present work summarized the important findings of engeletin with respect to its medicinal uses, pharmacological activities, and analytical aspects in medicine. All the scientific data were collected from PubMed, Google, Scopus, Science Direct and Google Scholar and analyzed in the present work. RESULTS: Scientific data analysis of research works revealed the biological importance and therapeutic benefit of engeletin in medicine. Engeletin has attracted scientific attention mainly due to its antiinflammatory and anti-tumor potential. Engeletin could inhibit the occurrence of cervical cancer and delay the development of liver damage and lung cancer in mice. Engeletin was found to inhibit lipopolysaccharides- induced endometritis in mice by inhibiting the inflammatory response. Pharmacological data analysis revealed the therapeutic importance of engeletin against acute lung injury, inflammatory diseases, liver injury, pulmonary fibrogenesis, Alzheimer's disease, endometritis, cervical carcinogenesis, lung cancer, and osteoarthritis. Analytical data signified the importance of modern analytical tools for separating, isolating, and identifying engeletin. CONCLUSION: Scientific data analysis revealed the biological importance and therapeutic benefit of engeletin in medicine and other allied health sectors.


Subject(s)
Endometritis , Lung Neoplasms , Humans , Female , Mice , Animals , Medicine, Traditional , Flavonols/chemistry , Flavonols/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
12.
J Inflamm Res ; 15: 5767-5783, 2022.
Article in English | MEDLINE | ID: mdl-36238766

ABSTRACT

Purpose: Low back pain (LBP) induced by intervertebral disc degeneration (IDD) brings progressively painful status and impairs the normal daily living. Engeletin is a plant-derived medicine with anti-inflammation and antioxidant functions. Therefore, we aim to confirm its protective effects against the intervertebral disc degeneration in vivo and in vitro. Methods: The cytotoxicity of engeletin was validated by CCK-8 tests. Using the TNF-α to simulate the inflammation status in vitro, the expression of inflammatory mediators and MMP families were determined by qPCR, Western blotting and confocal microscopy. Cell apoptosis was analyzed by flow cytometry and TUNEL assay. The expression of apoptosis-related proteins was tested by Western blotting. The activation of NF-κB and MAPK pathways was evaluated by Western blotting and confocal microscopy. In vivo, percutaneous needle puncture was used to establish the IDD model in rat, and engeletin was administrated via intradiscal injection. The therapeutic effects of engeletin were detected through imaging and histology analysis. Results: Cell viability tests demonstrated there was little cytotoxicity of engeletin toward NP cells. Pretreatment with engeletin effectively ameliorate the TNF-α-induced up-regulation of inflammatory mediators and MMP families, promoting the anabolism of ECM meanwhile. Cell apoptosis was also attenuated with the addition of engeletin. We found that the activation of MAPK and NF-κB signaling pathways and the nuclear translocation of phosphorylated p65 and p38 were inhibited prominently with the treatment of engeletin which may be the potential molecular mechanism for its anti-inflammation effects. Finally, the IDD induced by percutaneous needle puncture was partially alleviated with the injection of engeletin in vivo. Conclusion: As a natural compound with little cytotoxicity, engeletin possesses the outstanding anti-inflammation and anti-apoptosis effects in the process of IDD in vitro and in vivo, which may be a promising medicine for the prevention and treatment of IDD-related low back pain.

13.
Biomol Ther (Seoul) ; 30(5): 473-478, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35989685

ABSTRACT

In this study, we examined whether engeletin exerts an effect on the gene expression of MUC5AC mucin, in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with engeletin for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of engeletin on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Engeletin suppressed the mRNA expression and production of MUC5AC mucin, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest engeletin inhibits the gene expression of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120311, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34481255

ABSTRACT

The inhibitory effects of engeletin on the activities of human cytochrome P450 3A4 and 2D6 (CYP3A4 and CYP2D6) were investigated by enzyme kinetics, multi-spectroscopy and molecular docking. Engeletin was found to strongly inhibit CYP3A4 and CYP2D6, with the IC50 of 1.32 µM and 2.87 µM, respectively. The inhibition modes of engeletin against CYP3A4 and CYP2D6 were a competitive type and a mixed type, respectively. The fluorescence of the two CYPs was quenched statically by engeletin, which was bound to CYP3A4 stronger than to CYP2D6 at the same temperature. Circular dichroism spectroscopy, three-dimensional fluorescence, ultraviolet-visible spectroscopy and synchronous fluorescence confirmed that the conformation and micro-environment of the two CYPs protein were changed after binding with engeletin. Molecular docking, ultraviolet-visible spectroscopy and the fluorescence data revealed that engeletin had strong binding affinity to the two CYPs through hydrogen and van der Waals forces. The findings here suggested that engeletin may cause the herb-drug interactions for its inhibition of CYP3A4 and CYP2D6 activities.


Subject(s)
Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Flavonols , Glycosides , Humans , Molecular Docking Simulation , Spectrum Analysis
15.
J Inflamm Res ; 14: 745-760, 2021.
Article in English | MEDLINE | ID: mdl-33727849

ABSTRACT

PURPOSE: Osteoarthritis (OA) is a progressive disease characterized by pain and impaired joint functions. Engeletin is a natural compound with anti-inflammatory and antioxidant effects on other diseases, but the effect of engeletin on OA has not been evaluated. This study aimed to elucidate the protective effect of engeletin on cartilage and the underlying mechanisms. METHODS: Chondrocytes were isolated from rat knee cartilage, and TNF-α was used to simulate OA in vitro. After treatment with engeletin, the expression of extracellular matrix (ECM) components (collagen II and aggrecan) and matrix catabolic enzymes (MMP9 and MMP3) was determined by Western blotting and qPCR. Chondrocyte apoptosis was evaluated using Annexin V-FITC/PI and flow cytometry. Apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) were evaluated by Western blotting. The mitochondrial membrane potential of chondrocytes was measured with JC-1, and intracellular reactive oxygen species (ROS) levels were determined with DCFH-DA. Changes in signaling pathways (Nrf2, NF-κB and MAPK) were evaluated by Western blotting. In vivo, anterior cruciate ligament transection (ACLT) was used to induce the rat OA model, and engeletin was administered intraarticularly. The therapeutic effect of engeletin was analyzed by histopathological analysis. RESULTS: Pretreatment with engeletin alleviated TNF-α-induced inhibition of ECM components (collagen II and aggrecan) and upregulation of matrix catabolic enzymes (MMP9 and MMP3). Engeletin ameliorated chondrocyte apoptosis by inhibiting Bax expression and upregulating Bcl-2 expression. Engeletin maintained the mitochondrial membrane potential of chondrocytes and scavenged intracellular ROS by activating the Nrf2 pathway. The NF-κB and MAPK pathways were inhibited by treatment with engeletin. In vivo, ACLT-induced knee OA in rats was alleviated by intraarticular injection of engeletin. CONCLUSION: Engeletin ameliorated OA in vitro and in vivo. It may be a potential therapeutic drug for OA.

16.
Braz. j. med. biol. res ; 54(10): e11028, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285653

ABSTRACT

Engeletin is a natural derivative of Smilax glabra rhizomilax that exhibits anti-inflammatory activity and suppresses lipid peroxidation. In the present study, we sought to elucidate the mechanistic basis for the neuroprotective and pro-angiogenic activity of engeltin in a human umbilical vein endothelial cells (HUVECs) oxygen-glucose deprivation and reoxygenation (OGD/R) model system and a middle cerebral artery occlusion (MCAO) rat model of cerebral ischemia and reperfusion injury. These analyses revealed that engeletin (10, 20, or 40 mg/kg) was able to reduce the infarct volume, increase cerebral blood flow, improve neurological function, and bolster the expression of vascular endothelial growth factor (VEGF), vasohibin-2 (Vash-2), angiopoietin-1 (Ang-1), phosphorylated human angiopoietin receptor tyrosine kinase 2 (p-Tie2), and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) in MCAO rats. Similarly, engeletin (100, 200, or 400 nM) markedly enhanced the migration, tube formation, and VEGF expression of HUVECs in an OGD/R model system, while the VEGF receptor (R) inhibitor axitinib reversed the observed changes in HUVEC tube formation activity and Vash-2, VEGF, and CD31 expression. These data suggested that engeletin exhibited significant neuroprotective effects against cerebral ischemia and reperfusion injury in rats, and improved cerebrovascular angiogenesis by modulating the VEGF/vasohibin and Ang-1/Tie-2 pathways.


Subject(s)
Animals , Rats , Reperfusion Injury/prevention & control , Brain Ischemia/prevention & control , Infarction, Middle Cerebral Artery , Endothelial Cells , Flavonols , Angiopoietin-1 , Vascular Endothelial Growth Factors , Vascular Endothelial Growth Factor A , Glycosides
17.
J Agric Food Chem ; 68(42): 11747-11757, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33047600

ABSTRACT

Pelvic inflammatory disease (PID) is a common inflammation in the upper reproductive tract in women and may cause serious and costly consequences without effective treatment. Engeletin is a flavanonol glycoside and a naturally derived aldose reductase (AR) inhibitor that is widely distributed in vegetables, fruits, and plant-based foods. The present study investigated the anti-PID activity of engeletin in a mucilage-induced rat model of PID and LPS-stimulated RAW 264.7 macrophages. Engeletin significantly reduced inflammation and ameliorated the typical uterine pathological changes in PID rats. Engeletin also inhibited AR-dependent PLC/PKC/NF-κB and MAPK inflammatory pathways, as indicated by the suppression of the phosphorylation levels of PLC, PKC, p38, ERK, and JNK and the nuclear translocation of NF-κB p65. In vitro studies demonstrated that engeletin significantly inhibited inflammatory mediator expression and enhanced the phagocytic ability of LPS-induced RAW 264.7 macrophages. RNA interference of AR prevented the engeletin-induced inhibition of inflammatory mediators. Engeletin also inhibited AR-dependent PLC/PKC/NF-κB and MAPK inflammatory pathways, which was consistent with the in vivo results. These findings support engeletin as a potential agent for prevention or treatment of PID.


Subject(s)
Aldehyde Reductase/antagonists & inhibitors , Anti-Inflammatory Agents/administration & dosage , Enzyme Inhibitors/administration & dosage , Flavonols/administration & dosage , Glycosides/administration & dosage , Pelvic Inflammatory Disease/diet therapy , Protein Kinase C/immunology , Transcription Factor RelA/immunology , Type C Phospholipases/immunology , Aldehyde Reductase/genetics , Aldehyde Reductase/immunology , Animals , Female , Humans , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/immunology , Mice , Pelvic Inflammatory Disease/genetics , Pelvic Inflammatory Disease/immunology , Protein Kinase C/genetics , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Transcription Factor RelA/genetics , Type C Phospholipases/genetics
18.
Inflammation ; 43(5): 1759-1771, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32445069

ABSTRACT

Alzheimer's disease (AD) is a serious neuropathologic disease characterized by aggregation of amyloid-ß (Aß) peptide. Aß-mediated oxidative stress and neuroinflammation play crucial role in the development of AD. Engeletin is a flavononol glycoside that possesses anti-inflammatory effect. However, the effects of engeletin on AD have not been investigated. In the present study, we investigated the role of engeletin in AD using an in vitro AD model. Murine microglia BV-2 cells were stimulated with Aß1-42 (5 µM) for 24 h to induce oxidative stress and inflammation. Our results showed that treatment with engeletin suppressed Aß1-42-induced viability reduction and lactate dehydrogenase (LDH) release in BV-2 cells. Engeletin attenuated Aß1-42-induced oxidative stress in BV-2 cells, as proved by decreased production of reactive oxygen species (ROS) and malonaldehyde (MDA) and increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities. Aß1-42-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression were inhibited by engeletin treatment. Besides, engeletin inhibited Aß1-42-induced production and mRNA levels of tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), and interleukin 6 (IL-6). Engeletin enhanced Aß1-42-induced activation of Kelch-like ECH-associated protein 1 (Keap1)/nuclear transcription factor E2-related factor 2 (Nrf2) signaling pathway in BV-2 cells. Inhibition of Keap1/Nrf2 signaling pathway reversed the inhibitory effects of engeletin on Aß1-42-induced oxidative stress and inflammation in BV-2 cells. Taken together, engeletin attenuated Aß1-42-induced oxidative stress and inflammation in BV-2 cells via regulating the of Keap1/Nrf2 pathway. These findings indicated that engeletin might be served as a therapeutic agent for the treatment of AD.


Subject(s)
Amyloid beta-Peptides/toxicity , Flavonols/pharmacology , Glycosides/pharmacology , Inflammation Mediators/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Peptide Fragments/toxicity , Amyloid beta-Peptides/antagonists & inhibitors , Animals , Cell Line , Dose-Response Relationship, Drug , Flavonols/therapeutic use , Glycosides/therapeutic use , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/prevention & control , Inflammation Mediators/antagonists & inhibitors , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Mice , NF-E2-Related Factor 2/antagonists & inhibitors , Oxidative Stress/physiology , Peptide Fragments/antagonists & inhibitors
19.
Pharmacol Res ; 158: 104894, 2020 08.
Article in English | MEDLINE | ID: mdl-32407960

ABSTRACT

BACKGROUND: Many flavonoids have various beneficial actions like anti-inflammatory, anti-carcinogenic properties and many other clinical conditions. Astilbin is one such flavanoid compound having many physiological as well as pharmacological actions. PURPOSE: To summarize the important findings from the research conducted using astilbin having significance to its physiological and pharmacological activities as well as the patents filed using astilbin. STUDY DESIGN: Systematic review and compilation of the collected literature. METHOD: An extensive investigation of literature was done using several worldwide electronic scientific databases like PUBMED, SCOPUS, Science Direct and Google Scholar etc. All the article available in the English language that used our compound of interest i.e. astilbin, on the basis of inclusion criteria decided were retrieved from these databases, thoroughly reviewed and were summarized. RESULT: It has been established that astilbin can play a vital in the management of diseases associated with immune system. It also possesses antibacterial, anti-oxidative and hepatoprotective activity. CONCLUSION: These researches provide evidence that astilbin possesses great potential and thus can be utilized in the management of various disorders, thus establishing itself as a potential candidate for novel drug development. Also, there is still room for research on astilbin like it can be evaluated for anticancer potential, protective effect in various diabetic complications and many more. Overall observations from data suggested that astilbin is a promising compound and proved its efficacy in every preclinical study which is conducted till date. Some of the pharmacological activity is still unexplored. After successful preclinical trials, astilbin can go for further clinical trials.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Flavonols/therapeutic use , Immunosuppressive Agents/therapeutic use , Phytotherapy/trends , Alopecia/drug therapy , Alopecia/metabolism , Animals , Antidepressive Agents/therapeutic use , Antioxidants/therapeutic use , Arthritis/drug therapy , Arthritis/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Humans , Phytotherapy/methods
20.
Biomed Pharmacother ; 128: 110221, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32447208

ABSTRACT

Lung cancer is a leading cause of human death worldwide. Nevertheless, the outcome of present therapeutic options is still not satisfying. Engeletin (ENG, dihydrokaempferol 3-rhamnoside) is a flavanonol glycoside, showing anticancer activities in some tumors. But the exact molecular mechanism of ENG is not fully understood. In our present study, we found that ENG significantly induced apoptotic cell death in lung cancer cells through reducing X-linked inhibitor apoptosis (XIAP) expression from the post-translational levels. However, the XIAP ubiquitination was obviously up-regulated by ENG. In addition, second mitochondria-derived activator of caspase (SMAC) expression levels were increased by ENG in lung cancer cells. Notably, SMAC inhibition significantly abrogated ENG-inhibited expression of XIAP. Furthermore, ENG enhanced the interaction between XIAP and SMAC through increasing SMAC secretion from mitochondria to the cytoplasm. Moreover, endoplasmic-reticulum (ER) stress was highly induced by ENG, and we found that inhibiting C/-EBP homologous protein (CHOP), the transcription factor of ER stress, eliminated the regulatory effects of ENG on the expression of SMAC and XIAP. The in vitro analysis showed that ENG treatment caused apparent mitochondrial dysfunction in lung cancer cells. Finally, we showed that ENG effectively reduced the growth of xenograft tumors derived from cell lines with limited toxicity. Taken together, ENG had therapeutic potential against lung cancer progression.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Flavonols/pharmacology , Glycosides/pharmacology , Lung Neoplasms/drug therapy , X-Linked Inhibitor of Apoptosis Protein/metabolism , A549 Cells , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Signal Transduction , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Tumor Burden/drug effects , X-Linked Inhibitor of Apoptosis Protein/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL