Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(5): e2103838, 2022 02.
Article in English | MEDLINE | ID: mdl-34923767

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) possess the remarkable ability to regenerate the whole blood system in response to ablated stress demands. Delineating the mechanisms that maintain HSPCs during regenerative stresses is increasingly important. Here, it is shown that Hemgn is significantly induced by hematopoietic stresses including irradiation and bone marrow transplantation (BMT). Hemgn deficiency does not disturb steady-state hematopoiesis in young mice. Hemgn-/- HSPCs display defective engraftment activity during BMT with reduced homing and survival and increased apoptosis. Transcriptome profiling analysis reveals that upregulated genes in transplanted Hemgn-/- HSPCs are enriched for gene sets related to interferon gamma (IFN-γ) signaling. Hemgn-/- HSPCs show enhanced responses to IFN-γ treatment and increased aging over time. Blocking IFN-γ signaling in irradiated recipients either pharmacologically or genetically rescues Hemgn-/- HSPCs engraftment defect. Mechanistical studies reveal that Hemgn deficiency sustain nuclear Stat1 tyrosine phosphorylation via suppressing T-cell protein tyrosine phosphatase TC45 activity. Spermidine, a selective activator of TC45, rescues exacerbated phenotype of HSPCs in IFN-γ-treated Hemgn-/- mice. Collectively, these results identify that Hemgn is a critical regulator for successful engraftment and reconstitution of HSPCs in mice through negatively regulating IFN-γ signaling. Targeted Hemgn may be used to improve conditioning regimens and engraftment during HSPCs transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Interferon-gamma , Animals , Hematopoiesis , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Interferon-gamma/metabolism , Mice , Transplantation Conditioning
2.
J Allergy Clin Immunol ; 138(1): 219-228.e9, 2016 07.
Article in English | MEDLINE | ID: mdl-26853280

ABSTRACT

BACKGROUND: Defects in phagocytic nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) function cause chronic granulomatous disease (CGD), a primary immunodeficiency characterized by dysfunctional microbicidal activity and chronic inflammation. OBJECTIVE: We sought to study the effect of chronic inflammation on the hematopoietic compartment in patients and mice with X-linked chronic granulomatous disease (X-CGD). METHODS: We used immunostaining and functional analyses to study the hematopoietic compartment in patients with CGD. RESULTS: An analysis of bone marrow cells from patients and mice with X-CGD revealed a dysregulated hematopoiesis characterized by increased numbers of hematopoietic progenitor cells (HPCs) at the expense of repopulating hematopoietic stem cells (HSCs). In patients with X-CGD, there was a clear reduction in the proportion of HSCs in bone marrow and peripheral blood, and they were also more rapidly exhausted after in vitro culture. In mice with X-CGD, increased cycling of HSCs, expansion of HPCs, and impaired long-term engraftment capacity were found to be associated with high concentrations of proinflammatory cytokines, including IL-1ß. Treatment of wild-type mice with IL-1ß induced enhanced cell-cycle entry of HSCs, expansion of HPCs, and defects in long-term engraftment, mimicking the effects observed in mice with X-CGD. Inhibition of cytokine signaling in mice with X-CGD reduced HPC numbers but had only minor effects on the repopulating ability of HSCs. CONCLUSIONS: Persistent chronic inflammation in patients with CGD is associated with hematopoietic proliferative stress, leading to a decrease in the functional activity of HSCs. Our observations have clinical implications for the development of successful autologous cell therapy approaches.


Subject(s)
Granulomatous Disease, Chronic/metabolism , Hematopoietic Stem Cells/metabolism , Adolescent , Adult , Animals , Biomarkers , Case-Control Studies , Cell Count , Cell Differentiation , Child , Child, Preschool , Colony-Forming Units Assay , Cytokines/metabolism , Cytokines/pharmacology , Disease Models, Animal , Graft Survival , Granulomatous Disease, Chronic/etiology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Humans , Immunophenotyping , Inflammation Mediators/metabolism , Mice , Mice, Transgenic , Models, Biological , Phenotype , Signal Transduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL