ABSTRACT
Resumen Objetivo: En pacientes con enfermedad de Alzheimer (EA) se han descrito cambios neuropatológicos tempranos en la corteza entorrinal, que anteceden el compromiso temporomesial. La evaluación de la atrofia hipocampal mediante escalas visuales y volumetría son herramientas útiles en la valoración de pacientes con deterioro cognitivo. Nuestro objetivo es establecer la correlación entre la evaluación visual de la atrofia de la corteza entorrinal (ACE), la atrofia temporomesial (ATM) y el volumen hipocampal. Material y métodos: Estudio retrospectivo de corte transversal. Se incluyeron pacientes con queja cognitiva y resonancia magnética (RM) cerebral. Se utilizaron escalas visuales de ACE y ATM. Se midió el volumen hipocampal mediante el software volBrain 1.0. Resultados: Se incluyeron 48 pacientes, 31 eran mujeres (64,6%). Mediana de edad: 76,5 (RIQ: 69-83). La correlación entre las escalas visuales ACE y la ATM del lado derecho fue de 0,67 p < 0,0001) y del lado izquierdo de 0,69 (p < 0,0001). Encontramos correlación negativa moderada entre la ACE y el volumen hipocampal, del lado derecho fue de 0,59 (p < 0,0001) y del lado izquierdo de 0,42 (p = 0,003). Conclusión: La escala de ACE muestra moderada correlación con la escala de ATM y con el volumen hipocampal. Su uso podría aportar información valiosa para valoración de trastornos cognitivos.
Abstract Objective: In patients with Alzheimers disease (AD), early neuropathological changes in the entorhinal cortex have been described, which precede temporomesial involvement. The evaluation of hippocampal atrophy using visual scales and volumetry are useful tools in the assessment of patients with cognitive impairment. Our objective is to establish the correlation between the visual evaluations of entorhinal cortex atrophy (ECA), temporomesial atrophy (TMA), and hippocampal volume. Material and methods: Retrospective cross-sectional study. Patients with cognitive complaint and brain magnetic resonance imaging (MRI) were included. ACE and TMA visual scales were used. Hippocampal volume was measured using the volBrain 1.0 software. Results: Forty-eight patients were included, 31 were women (64.6%). Median age was 76.5 (IQR: 69-83). The correlation between ECA and TMA on the right side was 0.67 (p < 0.0001) and on the left side was 0.69 (p < 0.0001). We found a negative moderate correlation between ECA and hippocampal volume, on the right side it was 0.59 (p < 0.0001) and on the left side it was 0.42 (p = 0.003). Conclusion: The ECA scale shows high correlation with the TMA scale and moderate correlation with hippocampal volume. Its use could provide valuable information for the assessment of cognitive disorders.
ABSTRACT
Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.
ABSTRACT
Astrocytes perform multiple essential functions in the brain showing morphological changes. Hypertrophic astrocytes are commonly observed in cognitively healthy aged animals, implying a functional defense mechanism without losing neuronal support. In neurodegenerative diseases, astrocytes show morphological alterations, such as decreased process length and reduced number of branch points, known as astroglial atrophy, with detrimental effects on neuronal cells. The common marmoset (Callithrix jacchus) is a non-human primate that, with age, develops several features that resemble neurodegeneration. In this study, we characterize the morphological alterations in astrocytes of adolescent (mean 1.75 y), adult (mean 5.33 y), old (mean 11.25 y), and aged (mean 16.83 y) male marmosets. We observed a significantly reduced arborization in astrocytes of aged marmosets compared to younger animals in the hippocampus and entorhinal cortex. These astrocytes also show oxidative damage to RNA and increased nuclear plaques in the cortex and tau hyperphosphorylation (AT100). Astrocytes lacking S100A10 protein show a more severe atrophy and DNA fragmentation. Our results demonstrate the presence of atrophic astrocytes in the brains of aged marmosets.
Subject(s)
Astrocytes , Callithrix , Animals , Male , Callithrix/physiology , DNA Fragmentation , Astrocytes/metabolism , RNA/metabolism , Entorhinal Cortex , AtrophyABSTRACT
Whenever we navigate through different contexts, we build a cognitive map: an internal representation of the territory. Spatial navigation is a complex skill that involves multiple types of information processing and integration. Place cells and grid cells, collectively with other hippocampal and medial entorhinal cortex neurons (MEC), form a neural network whose activity is critical for the representation of self-position and orientation along with spatial memory retrieval. Furthermore, this activity generates new representations adapting to changes in the environment. Though there is a normal decline in spatial memory related to aging, this is dramatically increased in pathological conditions such as Alzheimer's disease (AD). AD is a multi-factorial neurodegenerative disorder affecting mainly the hippocampus-entorhinal cortex (HP-EC) circuit. Consequently, the initial stages of the disease have disorientation and wandering behavior as two of its hallmarks. Recent electrophysiological studies have linked spatial memory deficits to difficulties in spatial information encoding. Here we will discuss map impairment and remapping disruption in the HP-EC network, as a possible circuit mechanism involved in the spatial memory and navigation deficits observed in AD, pointing out the benefits of virtual reality as a tool for early diagnosis and rehabilitation.
ABSTRACT
Entorhinal cortex lesions have been established as a model for hippocampal deafferentation and have provided valuable information about the mechanisms of synapse reorganization and plasticity. Although several molecules have been proposed to contribute to these processes, the role of Wnt signaling components has not been explored, despite the critical roles that Wnt molecules play in the formation and maintenance of neuronal and synaptic structure and function in the adult brain. In this work, we assessed the reorganization process of the dentate gyrus (DG) at 1, 3, 7, and 30 days after an excitotoxic lesion in layer II of the entorhinal cortex. We found that cholinergic fibers sprouted into the outer molecular layer of the DG and revealed an increase of the developmental regulated MAP2C isoform 7 days after lesion. These structural changes were accompanied by the differential regulation of the Wnt signaling components Wnt7a, Wnt5a, Dkk1, and Sfrp1 over time. The progressive increase in the downstream Wnt-regulated elements, active-ß-catenin, and cyclin D1 suggested the activation of the canonical Wnt pathway beginning on day 7 after lesion, which correlates with the structural adaptations observed in the DG. These findings suggest the important role of Wnt signaling in the reorganization processes after brain lesion and indicate the modulation of this pathway as an interesting target for neuronal tissue regeneration.
Subject(s)
Entorhinal Cortex/pathology , Hippocampus/metabolism , Wnt Signaling Pathway , Afferent Pathways/metabolism , Animals , Choline/metabolism , Male , Microtubule-Associated Proteins/metabolism , Models, Biological , Nerve Fibers/metabolism , Protein Isoforms/metabolism , Rats, Wistar , Wnt Proteins/metabolismABSTRACT
Significant evidence shows that the acquisition of delay conditioning can occur in out-of-awareness states, such as under anesthesia. However, it is unclear to what extent and what type of conditioning animals may achieve during nonawake states. Trace conditioning is an appealing protocol to study under anesthesia, given the long empty gap separating the conditioned and unconditioned stimuli, which must be bridged for acquisition to happen. Here, we show evidence that rats develop physiological responses during the trace conditioning paradigm under anesthesia. We recorded the activity of the hippocampus (HPC) and lateral entorhinal cortex (LEC) in urethane-anesthetized rats, along with an electromyogram and an electrocardiogram. The protocol consisted of randomly presenting two distinct sound stimuli (CS- and CS+), where only one stimulus (CS+) was assigned to be trace-paired with a footshock. A trial-average analysis revealed that animals developed significant climbing heart rate activity initiating at the CS onset and persisting during the trace period. Such climbing arose for both CS- and CS+ with similar slopes but different intercepts, suggesting CS+ heart rates were typically above CS-. The power and coherence of HPC and LEC high-frequency bands (>100 Hz) significantly increased during CS presentation and trace, similarly to CS- and CS+ and insensitive to either activated or deactivated states. To the best of our knowledge, this is the first attempt to perform a trace conditioning protocol under anesthesia. Confirmation of this procedure acquisition can allow a new preparation for the exploration of brain mechanisms that bind time-discontinuous events.NEW & NOTEWORTHY Some forms of learning, such as some types of conditioning, can occur in anesthetized states. However, the extent to which memories can be formed in these states is still an open question. Here, we investigated the trace conditioning under urethane anesthesia and found heart rate, hippocampus, and lateral entorhinal cortex physiological changes to stimuli presentation. This new preparation may allow for exploration of memory acquisition of time-discontinuous events in the nonawake brain.
Subject(s)
Anesthesia , Conditioning, Classical/physiology , Entorhinal Cortex/physiology , Hippocampus/physiology , Anesthetics, Intravenous/pharmacology , Animals , Electrocardiography , Electromyography , Male , Rats , Rats, Sprague-Dawley , Time Factors , Urethane/pharmacologyABSTRACT
The entorhinal cortex (EC) is associated with impaired cognitive function such as in the case of Alzheimer's disease, Parkinson's disease and Huntington's disease. The present study provides a detailed analysis of the cytoarchitectural and myeloarchitectural organization of the EC in the common marmoset Callithrix jacchus. Data were collected using Nissl and fiber stained preparations, supplemented with acetylcholinesterase and parvalbumin immunohistochemistry. The EC layers and subfields in the marmoset seem to be architectonically similar to those that have been proposed in nonhuman primates and humans to date; however, slight differences could be revealed using the present techniques. Throughout its rostrocaudal length, the entorhinal cortex presents a clear six-layered pattern. The entorhinal cortex is divided into six fields, named mainly in accordance to their rostrocaudal and mediolateral positions. At rostral levels, the neurons tend to be organized in patches that are surrounded by large, thick, radially oriented bundles of fibers, and the deep layers are poorly developed. At caudal levels, the divisions are more laminated in appearance. AChE staining at the borders of adjacent fields are consistent with the changes in layering revealed in Nissl-stained sections, of which the lateral regions of the EC display denser AChE staining than that of the medial banks. PV immunoreactivity was found in the labeled somata, dendrites, and axons in all layers and subdivisions. Additionally, we distinguished three subtypes of PV-immunoreactive neurons: multipolar, bipolar and spherical-shaped neurons, based on the shape of the somata and the disposition of the dendrites.
Subject(s)
Entorhinal Cortex/chemistry , Entorhinal Cortex/cytology , Neurons/chemistry , Animals , Callithrix , Entorhinal Cortex/anatomy & histology , Female , Male , Staining and Labeling/methodsABSTRACT
In the study of the neural code, information-theoretical methods have the advantage of making no assumptions about the probabilistic mapping between stimuli and responses. In the sensory domain, several methods have been developed to quantify the amount of information encoded in neural activity, without necessarily identifying the specific stimulus or response features that instantiate the code. As a proof of concept, here we extend those methods to the encoding of kinematic information in a navigating rodent. We estimate the information encoded in two well-characterized codes, mediated by the firing rate of neurons, and by the phase-of-firing with respect to the theta-filtered local field potential. In addition, we also consider a novel code, mediated by the delta-filtered local field potential. We find that all three codes transmit significant amounts of kinematic information, and informative neurons tend to employ a combination of codes. Cells tend to encode conjunctions of kinematic features, so that most of the informative neurons fall outside the traditional cell types employed to classify spatially-selective units. We conclude that a broad perspective on the candidate stimulus and response features expands the repertoire of strategies with which kinematic information is encoded.
ABSTRACT
INTRODUCTION: The aims of this study were to survey neurodegenerative changes detected by abnormal protein deposits in the Entorhinal Cortex (EC) of subjects aged 50 years or older and to correlate these findings with suspected dementia, as detected by the IQCODE (Informant Questionnaire on Cognitive Decline in the Elderly). METHODS: Fourteen brains were submitted to the immunohistochemistry technique for different proteins (beta-amyloid, tau, α-synuclein and phospho-TDP-43) and data obtained compared with IQCODE scores. RESULTS: Fifty-seven percent of the individuals exhibited IQCODE results compatible with dementia, being classified into the demented group (DG): 87.5% of patients had neuropathological findings corresponding to Alzheimer's-like brain pathology (ALBP). Of the patients in the non-demented group (NDG), 16.7% met neuropathological criteria for ALBP. All individuals in the DG showed deposits of more than one kind of protein in the EC. The most common association was hyperphosphorylated tau and beta-amyloid protein (87.5%). DISCUSSION: Most individuals with dementia had neuropathological findings of ALBP, as did one individual with no signs of dementia, characterizing a preclinical stage. The results of this study suggest that deposits of a single type of anomalous protein are normal findings in an aging brain, while more than one kind of protein or the combined presence of anomalous protein deposits indicate the presence of dementia.
INTRODUÇÃO: Este trabalho visa avaliar alterações neurodegenerativas detectadas por depósitos proteicos anormais em Córtex Entorrinal (CE) de indivíduos acima de 50 anos e correlacionar os achados com suspeição de demência detectada por meio do IQCODE (Informant Questionnaire on Cognitive Decline in the Elderly). MÉTODOS: Catorze encéfalos foram submetidos à técnica imuno-histoquímica para diferentes proteínas (beta-amiloide, tau, alfa-sinucleína e fosfo-TDP-43) e esses dados foram comparados com os valores obtidos pelo IQCODE. RESULTADOS: 57% dos indivíduos mostraram resultados de IQCODE compatíveis com demência, sendo classificados no grupo com demência (GD): 87,5% desses pacientes tinham achados neuropatológicos correspondentes a patologia cerebral Alzheimer-símile (ALBP). Entre os pacientes do grupo sem demência (GSD), 16,7% apresentaram critérios neuropatológicos para ALBP. Todos os indivíduos do GD tinham depósitos de mais de um tipo de proteína no CE. A associação proteica mais comum foi tau hiperfosforilada e proteína beta-amiloide (87,5%). DISCUSSÃO: A maioria dos indivíduos com demência apresentaram achados neuropatológicos de ALBP e um indivíduo, que não tinha evidências de demência, apresentou achados compatíveis com ALBP, caracterizando um estágio pré-clínico. Este trabalho sugere que depósitos de um único tipo de proteína anômala são achados normais do cérebro em envelhecimento, enquanto mais de um tipo de proteínas ou a presença combinada de depósitos proteicos anômalos indica manifestações de demência.
ABSTRACT
BACKGROUND: We have obtained previous evidence of limbic dysfunction in middle-aged, asymptomatic offspring of late-onset Alzheimer's disease (LOAD) patients, and failure to recover from proactive semantic interference has been shown to be a sensitive cognitive test in other groups at risk for LOAD. OBJECTIVE: To assess the effects of specific proactive semantic interference deficits as they relate to functional magnetic resonance imaging (fMRI) neocortical and limbic functional connectivity in middle aged offspring of individuals with LOAD (O-LOAD) and age-equivalent controls. METHODS: We examined 21 O-LOAD and 20 controls without family history of neurodegenerative disorders (CS) on traditional measures of cognitive functioning and the LASSI-L, a novel semantic interference test uniquely sensitive to the failure to recover from proactive interference (frPSI). Cognitive tests then were correlated to fMRI connectivity of seeds located in entorhinal cortex and anterodorsal thalamic nuclei among O-LOAD and CS participants. RESULTS: Relative to CS, O-LOAD participants evidenced lower connectivity between entorhinal cortex and orbitofrontal, anterior cingulate, and anterior temporal cortex. In the offspring of LOAD patients, LASSI-L measures of frPSI were inversely associated with connectivity between anterodorsal thalamus and contralateral posterior cingulate. Intrusions on the task related to frPSI were inversely correlated with a widespread connectivity network involving hippocampal, insular, posterior cingulate, and dorsolateral prefrontal cortices, along with precunei and anterior thalamus in this group. Different patterns of connectivity associated with frPSI were observed among controls. CONCLUSION: The present results suggest that both semantic interference deficits and connectivity abnormalities might reflect limbic circuit dysfunction as a very early clinical signature of LOAD pathology, as previously demonstrated for other limbic phenotypes, such as sleep and circadian alterations.
Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Cognition , Genetic Predisposition to Disease , Limbic System/physiopathology , Adult Children , Age of Onset , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Brain Mapping , Cross-Sectional Studies , Female , Humans , Limbic System/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Neuropsychological Tests , Prodromal Symptoms , SemanticsABSTRACT
ABSTRACT. Introduction: The aims of this study were to survey neurodegenerative changes detected by abnormal protein deposits in the Entorhinal Cortex (EC) of subjects aged 50 years or older and to correlate these findings with suspected dementia, as detected by the IQCODE (Informant Questionnaire on Cognitive Decline in the Elderly) . Methods: Fourteen brains were submitted to the immunohistochemistry technique for different proteins (beta-amyloid, tau, ï¡-synuclein and phospho-TDP-43) and data obtained compared with IQCODE scores. Results: Fifty-seven percent of the individuals exhibited IQCODE results compatible with dementia, being classified into the demented group (DG): 87.5% of patients had neuropathological findings corresponding to Alzheimer's-like brain pathology (ALBP). Of the patients in the non-demented group (NDG), 16.7% met neuropathological criteria for ALBP. All individuals in the DG showed deposits of more than one kind of protein in the EC. The most common association was hyperphosphorylated tau and beta-amyloid protein (87.5%). Discussion: Most individuals with dementia had neuropathological findings of ALBP, as did one individual with no signs of dementia, characterizing a preclinical stage. The results of this study suggest that deposits of a single type of anomalous protein are normal findings in an aging brain, while more than one kind of protein or the combined presence of anomalous protein deposits indicate the presence of dementia.
RESUMO. Introdução: Este trabalho visa avaliar alterações neurodegenerativas detectadas por depósitos proteicos anormais em Córtex Entorrinal (CE) de indivíduos acima de 50 anos e correlacionar os achados com suspeição de demência detectada por meio do IQCODE (Informant Questionnaire on Cognitive Decline in the Elderly). Métodos: Catorze encéfalos foram submetidos à técnica imuno-histoquímica para diferentes proteínas (beta-amiloide, tau, alfa-sinucleína e fosfo-TDP-43) e esses dados foram comparados com os valores obtidos pelo IQCODE. Resultados: 57% dos indivíduos mostraram resultados de IQCODE compatíveis com demência, sendo classificados no grupo com demência (GD): 87,5% desses pacientes tinham achados neuropatológicos correspondentes a patologia cerebral Alzheimer-símile (ALBP). Entre os pacientes do grupo sem demência (GSD), 16,7% apresentaram critérios neuropatológicos para ALBP. Todos os indivíduos do GD tinham depósitos de mais de um tipo de proteína no CE. A associação proteica mais comum foi tau hiperfosforilada e proteína beta-amiloide (87,5%). Discussão: A maioria dos indivíduos com demência apresentaram achados neuropatológicos de ALBP e um indivíduo, que não tinha evidências de demência, apresentou achados compatíveis com ALBP, caracterizando um estágio pré-clínico. Este trabalho sugere que depósitos de um único tipo de proteína anômala são achados normais do cérebro em envelhecimento, enquanto mais de um tipo de proteínas ou a presença combinada de depósitos proteicos anômalos indica manifestações de demência.
Subject(s)
Humans , Immunohistochemistry , Entorhinal Cortex , Dementia , Alzheimer DiseaseABSTRACT
We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm(3) resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI [Yushkevich et al., 2010], our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic mild cognitive impairment (aMCI) and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797), and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest nonuniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions.
Subject(s)
Brain Mapping , Cognitive Dysfunction/pathology , Electronic Data Processing , Hippocampus/pathology , Temporal Lobe/pathology , Algorithms , Female , Humans , Image Processing, Computer-Assisted , Learning/physiology , Magnetic Resonance Imaging , MaleABSTRACT
Seizure susceptibility appears to be greater in males than females during the early developmental stages of the brain when the gamma-aminobutyric acid (GABA), acting through its GABA-A receptor, predominantly produces neuronal depolarization. GABA-mediated excitation has been observed when the NKCC1 (chloride importer) expression level is higher than KCC2 (chloride exporter). In this study, the relative protein expression of NKCC1 and KCC2 over ß-actin was evaluated in the hippocampus and entorhinal cortex of male and female rats during postnatal days (PND) 1, 3, 5, 7, 9, 11, 13 and 15 using Western blotting assays. For both cerebral regions in the females, the NKCC1/ß-actin expression ratio was constant during all evaluated ages, whereas the KCC2/ß-actin expression ratio increased gradually until reaching a maximal level at PND9 that was nearly three- and ten-fold higher in the hippocampus and entorhinal cortex, respectively, compared with the initial level. In males, the NKCC1/ß-actin expression ratio was constant during the first week, peaking almost three-fold higher than the initial level at PND9 in the hippocampus and at PND11 in the entorhinal cortex and then returning to the initial values at PND13, whereas the KCC2/ß-actin expression ratio increased gradually to reach a maximal and steady level at PND5, which were nearly two- and four-fold higher in the hippocampus and entorhinal cortex, respectively, compared with the intial level. In conclusion, the NKCC1/ß-actin and KCC2/ß-actin expression ratios displayed a specific expression profile for each gender and cerebral region, which could be related with the differences in seizure susceptibility observed between genders.
Subject(s)
Entorhinal Cortex/metabolism , Hippocampus/metabolism , Sex Characteristics , Solute Carrier Family 12, Member 2/biosynthesis , Symporters/biosynthesis , Actins/biosynthesis , Animals , Animals, Newborn/metabolism , Female , Gene Expression Regulation, Developmental , Male , Rats , Time Factors , K Cl- CotransportersABSTRACT
Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.