Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Bioresour Technol ; 413: 131502, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39299351

ABSTRACT

l-Arabinose has been produced by hydrolyzing arabinan, a component of hemicellulose. However, l-arabinose has limitations in industrial applications owing to its relatively high cost. Here, d-xylulose 4-epimerase as a new-type enzyme was developed from d-tagaturonate 3-epimerase from Thermotoga petrophila using structure-guided enzyme engineering. d-Xylulose 4-epimerase, which epimerized d-xylulose to l-ribulose, d-xylulokinase and sugar phosphatase, which overcame the equilibrium of d-xylose isomerase, were included to establish a new efficient conversion pathway from d-xylose to l-arabinose. l-Arabinose at 34 g/L was produced from 100 g/L xylan in 45 h by multi-enzymatic cascade reaction using xylanase and enzymes involved in the established conversion pathway. As l-ribulokinase was used instead of d-xylulokinase in the established conversion pathway, an efficient reverse-directed conversion pathway from l-arabinose to d-xylose and the production of d-xylose from arabinan using arabinanase and enzymes involved in the proposed pathway are proposed.

2.
Small ; : e2402655, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949408

ABSTRACT

Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.

3.
Anal Chim Acta ; 1303: 342523, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38609265

ABSTRACT

BACKGROUND: l-lactate detection is important for not only assessing exercise intensity, optimizing training regimens, and identifying the lactate threshold in athletes, but also for diagnosing conditions like L-lactateosis, monitoring tissue hypoxia, and guiding critical care decisions. Moreover, l-lactate has been utilized as a biomarker to represent the state of human health. However, the sensitivity of the present l-lactate detection technique is inadequate. RESULTS: Here, we reported a sensitive ratiometric fluorescent probe for l-lactate detection based on platinum octaethylporphyrin (PtOEP) doped semiconducting polymer dots (Pdots-Pt) with enzymatic cascade reaction. With the help of an enzyme cascade reaction, the l-lactate was continuously oxidized to pyruvic and then reduced back to l-lactate for the next cycle. During this process, oxygen and NADH were continuously consumed, which increased the red fluorescence of Pdots-Pt that responded to the changes of oxygen concentration and decreased the blue fluorescence of NADH at the same time. By comparing the fluorescence intensities at these two different wavelengths, the concentration of l-lactate was accurately measured. With the optimal conditions, the probes showed two linear detection ranges from 0.5 nM to 5.0 µM and 5.0 µM-50.0 µM for l-lactate detection. The limit of detection was calculated to be 0.18 nM by 3σ/slope method. Finally, the method shows good detection performance of l-lactate in both bovine serum and artificial serum samples, indicating its potential usage for the selective analysis of l-lactate for health monitoring and disease diagnosis. SIGNIFICANCE: The successful application of the sensing system in the complex biological sample (bovine serum and artificial serum samples) demonstrated that this method could be used for sensitive l-lactate detection in practical clinical applications. This detection system provided an extremely low detection limit, which was several orders of magnitude lower than methods proposed in other literatures.


Subject(s)
Lactic Acid , NAD , Humans , Athletes , Organic Chemicals , Oxygen , Polymers
4.
Anal Chim Acta ; 1301: 342464, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553122

ABSTRACT

BACKGROUND: Organophosphorus pesticides (OPs) play important roles in the natural environment, agricultural fields, and biological prevention. The development of OPs detection has gradually become an effective strategy to avoid the dangers of pesticides abuse and solve the severe environmental and health problems in humans. Although conventional assays for OPs analysis such as the bulky instrument required analytical methods have been well-developed, it still remains the limitation of inconvenient, inefficient and lab-dependence analysis in real samples. Hence, there is an urgent demand to develop efficient detection methods for OPs analysis in real scenarios. RESULTS: Here, by virtue of the highly efficient catalytic performance in Fe7S8 nanoflakes (Fe7S8 NFs), we propose an OPs detection method that rationally integrated Fe7S8 NFs into the acetylcholine (ACh) triggered enzymatic cascade reaction (ATECR) for proceeding better detection performances. In this method, OPs serve as the enzyme inhibitors for inhibiting ATECR among ACh, acetylcholinesterase (AChE), and choline oxidase (CHO), then reduce the generation of H2O2 to suppress the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) that catalyzed by Fe7S8 NFs. Benefiting from the integration of Fe7S8 NFs and ATECR, it enables a sensitive detection for OPs (e.g. dimethoate). The proposed method has presented good linear ranges of OPs detection ranging from 0.1 to 10 µg mL-1. Compared to the other methods, the comparable limits of detection (LOD) of OPs are as low as 0.05 µg mL-1. SIGNIFICANCE: Furthermore, the proposed method has also achieved a favorable visual detection performance of revealing OPs analysis in real samples. The visual signals of OPs can be transformed into RGB values and gathered by using smartphones, indicating the great potential in simple, sensitive, instrument-free and on-site analysis of pesticide residues in environmental monitoring and biosecurity research.


Subject(s)
Biosensing Techniques , Pesticides , Piperidines , Humans , Pesticides/analysis , Acetylcholine/chemistry , Acetylcholinesterase/chemistry , Organophosphorus Compounds/analysis , Hydrogen Peroxide/chemistry , Catalysis , Biosensing Techniques/methods
5.
Enzyme Microb Technol ; 173: 110352, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37977052

ABSTRACT

Glucose oxidase (GOD) is widely used in the pharmaceutical industry, fermentation products and glucose biosensors for its essential role in catalyzing the conversion of glucose to gluconic acid and hydrogen peroxide (H2O2). As H2O2 is the by-product and will have a toxic effect on glucose oxidase, so introducing another enzyme that could consume H2O2 to form an enzymatic cascade reaction is a practical solution. However, this decision will lead to extra expenses and complex condition optimization such as the specific mass ratio, temperature and pH to improve the activity, stability and recyclability. Herein, we describe a mild and versatile strategy by anchoring GOD on carboxyl-activated MOF (Cu-TCPP(Fe)) through DNA-directed immobilization (DDI) technology. Robust MOF nanosheets were utilized as not only the carrier for the immobilization of GOD, but also a peroxidase-like catalyst for the decomposition of H2O2 to reduce its harmful impacts. In this work, the immobilized GOD retained 55.78% of its initial activity after being used for 7 times. More than 60% of the immobilized enzyme's catalytic activity was still maintained after 96 h of being stored at 50 â„ƒ. This study provides a new idea for preparing immobilized enzymes with enhanced stability, fast diffusion and high activity, which can be used in fields such as biocatalysis and biotechnology.


Subject(s)
Glucose Oxidase , Glucose , Hydrogen Peroxide , Enzymes, Immobilized/chemistry , Catalysis
6.
J Pharm Biomed Anal ; 234: 115536, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37343454

ABSTRACT

Commercial process of islatravir (MK-8591, EFdA) utilizes biocatalytic cascade reactions to construct the ribose moiety of the molecule which bears three chiral centers. However, this biocatalytic process also brought analytical challenges where all stereoisomers and process related compounds are controlled in one isolated intermediate, the final drug substance. A chiral LC method was developed to resolve all those compounds from islatravir and its minor enantiomer by thorough column screening and careful optimization. Detail of designing key method validation components such as method linearity, precision and robustness is discussed, and their results were presented. The method was successfully validated to fulfill various expectation from each individual health authority including FDA, EMA, PMDA, and ANVISA.


Subject(s)
Deoxyadenosines , Stereoisomerism
7.
Small ; 19(35): e2301148, 2023 08.
Article in English | MEDLINE | ID: mdl-37118853

ABSTRACT

As an emerging cancer treatment strategy, ferroptosis is greatly restricted by excessive glutathione (GSH) in tumor microenvironment (TME) and low reactive oxygen species (ROS) generation efficiency. Here, this work designs self-assembled copper-alanine nanoparticles (CACG) loaded with glucose oxidase (GOx) and cinnamaldehyde (Cin) for in situ glutathione activated and enzymatic cascade-enhanced ferroptosis and immunotherapy. In response to GSH-rich and acidic TME, CACG allows to effectively co-deliver Cu2+ , Cin, and GOx into tumors. Released Cin consumes GSH through Michael addition, accompanying with the reduction of Cu2+ into Cu+ for further GSH depletion. With the cascade of Cu+ -catalyzed Fenton reactions and enzyme-catalyzed reactions by GOx, CACG could get rid of the restriction of insufficient hydrogen peroxide in TME, leading to a robust and constant generation of ROS. With the high efficiency of GSH depletion and ROS production, ferroptosis is significantly enhanced by CACG in vivo. Moreover, elevated oxidative stress triggers robust immune responses by promoting dendritic cells maturation and T cell infiltration. The in vivo results prove that CACG could efficiently inhibit tumor growth in 4T1 tumor-bearing mouse model without causing obvious systemic toxicity, suggesting the great potential of CACG in enhancing ferroptosis and immunotherapy for effective cancer treatment.


Subject(s)
Ferroptosis , Nanoparticles , Neoplasms , Animals , Mice , Copper , Reactive Oxygen Species , Immunotherapy , Glucose Oxidase , Glutathione , Hydrogen Peroxide , Tumor Microenvironment , Cell Line, Tumor , Neoplasms/therapy
8.
ACS Sens ; 8(4): 1658-1666, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36945081

ABSTRACT

Metal-Organic Frameworks (MOFs) can deliver many advantages when acting as enzyme mimics to assist with signal amplification in molecular detection: they have abundant active catalytic sites per unit volume of the material; their structures and elemental compositions are highly tunable, and their high specific surface area and porous property can assist with target separation and enrichment. In the present work, we have demonstrated that, by adding the pore partition agent, 2,4,6-tris(4-pyridyl)pyridine (TPY) during synthesis of the bimetallic Fe/Co-MIL-88(NH2) MOF to block the open metal sites, a highly porous MOF of Fe/Co-TPY-MIL-88(NH2) can be produced. This material also exhibits high stability in basic solutions and biofluids and possesses high peroxidase-mimicking activity, which can be utilized to produce long-lasting chemiluminescence (CL) from luminol and H2O2. Moreover, acting as the peroxidase-mimic, the Fe/Co-TPY-MIL-88(NH2) MOF can form the enzymatic cascade with glucose oxidase (GOx) for biomarker detection. When applied to detect extracellular vesicles (EVs), the MOF material and GOx are brought to the proximity on the EVs through two surface proteins, which triggers the enzyme cascade to produce high CL from glucose and luminol. EVs within the concentration range of 5 × 105 to 4 × 107 particles/mL can be detected with an LOD of 1 × 105 particles/mL, and the method can be used to analyze EV contents in human serum without sample preparation and EV purification. Overall, our work demonstrates that the high versatility and tunability of the MOF structures could bring in significant benefits to biosensing and enable ultrasensitive detection of biomarkers with judicious material designs.


Subject(s)
Extracellular Vesicles , Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Luminescence , Luminol/chemistry , Hydrogen Peroxide/chemistry , Peroxidases/metabolism , Peroxidase , Glucose Oxidase/chemistry , Extracellular Vesicles/metabolism
9.
J Colloid Interface Sci ; 626: 768-774, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35820212

ABSTRACT

Biocatalytic reaction networks in eukaryotic cells is realized by the immobilized and compartmental multi-enzymatic system. Inspired by the spatial localization of natural cells, multiple enzymes were confined within the multicompartmental microcapsules, which were created using a gas-shearing method coupled with surface-triggered in situ gelation strategy. Heterogeneous multicompartmental (two-, three-, four-, six-, or eight-faced) core particles, due to their capacity for positional assembly, were encapsuled in alginate hydrogel shells. The generated microcapsules integrate logic network to access complex digital design through a three-step convergent enzymatic cascade reaction as a model, and the capsules with high stability, recyclability and cytocompatibility are ideal enzymatic reactor systems to be used for biomimetic biocatalysis process.


Subject(s)
Alginates , Hydrogels , Biocatalysis , Capsules , Water
10.
Chem Asian J ; 17(17): e202200560, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35761116

ABSTRACT

Compartmentalization is a crucial natural methodology to enable multiple biocatalytic transformations to proceed efficiently. Herein, we report a biocompatible multicompartmental colloidal motor that can achieve autonomous movement in the biological environment through two-enzyme cascade reactions of immobilized enzymes. The colloidal motors with the heterogeneous multicompartment structure were prepared in one step by microfluidic technology, and the compartmentalized encapsulation of glucose oxidase (GOD) and catalase (CAT) was realized. The fabricated colloidal motor was size controllable by tuning the flow rates of the microfluidic system, and its autonomous movement can be triggered by good responsiveness to the alkaline environment. In glucose medium of pH 7.5, the pH-responsive alginate cores of the colloidal motor swell to facilitate fuel penetration and enzyme-catalyzed reactions. The enzyme cascade between GOD and CAT immobilized in the colloidal motor chamber results in the self-propulsion of the colloid motor in glucose medium. The compartmentalized encapsulation of immobilized enzyme improves the stability of the enzyme and enables multicompartmental colloidal motors to self-propel in an alkaline intestinal environment through an enzyme cascade reaction. These features indicate that such multicompartmental colloidal motors actuated by enzyme cascade reaction in biocompatible fuel have great potential for co-encapsulation and autonomous movement in different applications.


Subject(s)
Enzymes, Immobilized , Glucose Oxidase , Biocatalysis , Enzymes, Immobilized/metabolism , Glucose/chemistry , Glucose Oxidase/chemistry , Microfluidics
11.
Anal Bioanal Chem ; 414(16): 4655-4666, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35534725

ABSTRACT

Multifunctional catalytic performance plays a crucial role in bio-applications through the diversity and durability of artificial nanozymes. An effective synergy with sufficient accessible active sites and high specific surface area is a challenge for composite catalysts, especially to avoid uncontrollable aggregation and structural instability. Here, we fabricated a CunO/Au heterostructure dendrimer on copper foam (CunO/Au HD/CF) as dual functional catalytic nanozyme to achieve enzyme mimic cascade reactions for efficient colorimetric analysis. A highly porous CF skeleton-based CuO nanowire array (CuO NWA) with a large specific surface area supported an efficient load capacity to assemble sufficient CunO/Au HD by electrodeposition. The bimetallic Au-Cu nanozyme successfully achieved an oxidase-like and peroxidase-like cascade catalysis by a target-responsive sensing mechanism. Due to the confirmed catalytic performance of selectivity, anti-interference ability, and reproducibility, a CunO/Au HD/CF-based quantitative analytical method was developed for glucose detection with a wide linear range and considerable detection limit of 8.4 µM. The robust nonenzymatic catalytic strategy for colorimetric detection not only confirmed the dual functional catalytic activity of CunO/Au HD/CF, but also showed great potential for applications in clinical diagnostics and biochemical analysis.


Subject(s)
Biosensing Techniques , Dendrimers , Catalysis , Colorimetry/methods , Glucose/analysis , Reproducibility of Results
12.
Sensors (Basel) ; 21(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34300636

ABSTRACT

Methanol (MeOH) in exhaled breath has potential for non-invasive assessment of intestinal flora. In this study, we have developed a biochemical gas sensor (bio-sniffer) for MeOH in the gas phase using fluorometry and a cascade reaction with two enzymes, alcohol oxidase (AOD) and formaldehyde dehydrogenase (FALDH). In the cascade reaction, oxidation of MeOH was initially catalyzed by AOD to produce formaldehyde, and then this formaldehyde was successively oxidized via FALDH catalysis together with reduction of oxidized form of ß-nicotinamide adenine dinucleotide (NAD+). As a result of the cascade reaction, reduced form of NAD (NADH) was produced, and MeOH vapor was measured by detecting autofluorescence of NADH. In the development of the MeOH bio-sniffer, three conditions were optimized: selecting a suitable FALDH for better discrimination of MeOH from ethanol in the cascade reaction; buffer pH that maximizes the cascade reaction; and materials and methods to prevent leaking of NAD+ solution from an AOD-FALDH membrane. The dynamic range of the constructed MeOH bio-sniffer was 0.32-20 ppm, which encompassed the MeOH concentration in exhaled breath of healthy people. The measurement of exhaled breath of a healthy subject showed a similar sensorgram to the standard MeOH vapor. These results suggest that the MeOH bio-sniffer exploiting the cascade reaction will become a powerful tool for the non-invasive intestinal flora testing.


Subject(s)
Biosensing Techniques , Gastrointestinal Microbiome , Breath Tests , Formaldehyde , Humans , Methanol
13.
Biosens Bioelectron ; 181: 113136, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33714857

ABSTRACT

For understanding the status of intestinal flora non-invasively, methanol (MeOH) has been attracting the attention. In this study, we have developed and compared two different liquid-phase methanol biosensors. One, referred to as the AOD electrosensor, utilized alcohol oxidase (AOD) and an oxygen electrode. It electrochemically measured the decrease in oxygen through AOD-catalyzed oxidation of MeOH. The other, referred to as the AOD-FALDH fluorosensor, exploited a cascade reaction of AOD and formaldehyde dehydrogenase (FALDH) in conjunction with a fiber-optic sensor. It measured increase in the fluorescence from reduced form of ß-nicotinamide adenine dinucleotide (NADH) that was a final product of the two-enzyme cascade reaction. Due to the cascade reaction, the AOD-FALDH fluorosensor showed 3 times better sensitivity along with 335 times wider dynamic range (494 nM-100 mM) than those of the AOD electrosensor (1.5-300 µM). The selectivity to MeOH was also improved by the cascade reaction with AOD-FALDH as no sensor output was observed from other aliphatic alcohols than MeOH in contrast to the AOD electrosensor. Although the use of FALDH resulted in the increase in the sensor output from aldehydes, such as acetaldehyde and formaldehyde, considering their concentrations in body fluids, the influence on the sensor output is limited. These results indicate that incorporating the cascade reaction into fluorometry enables enhanced biosensing of MeOH that will be useful for assessment of intestinal flora with little burden.


Subject(s)
Biosensing Techniques , Methanol , Acetaldehyde , Bacteria , Fluorometry
14.
ACS Appl Mater Interfaces ; 12(46): 51249-51262, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33161703

ABSTRACT

Glucose oxidase (GOx)-mediated starvation therapy has demonstrated good application prospect in cancer treatment. However, the glucose- and oxygen-depletion starvation therapy still suffers from some limitations like low therapeutic efficiency and potential side effects to normal tissues. To overcome these disadvantages, herein a novel enzymatic cascade nanoreactor (Pd@Pt-GOx/hyaluronic acid (HA)) with controllable enzymatic activities was developed for high-efficiency starving-enhanced chemodynamic cancer therapy. The Pd@Pt-GOx/HA was fabricated by covalent conjugation of GOx onto Pd@Pt nanosheets (NSs), followed by linkage with hyaluronic acid (HA). The modification of HA on Pd@Pt-GOx could block the GOx activity, catalase (CAT)-like and peroxidase (POD)-like activities of Pd@Pt, reduce the cytotoxicity to normal cells and organs, and effectively target CD44-overexpressed tumors by active targeting and passive enhanced permeability and retention (EPR) effect. After endocytosis by tumor cells, the intracellular hyaluronidase (Hyase) could decompose the outer HA and expose Pd@Pt-GOx for the enzymatic cascade reaction. The GOx on the Pd@Pt-GOx could catalyze the oxidation of intratumoral glucose by O2 for cancer starvation therapy, while the O2 produced from the decomposition of endogenous H2O2 by the Pd@Pt with the CAT-like activity could accelerate the O2-dependent depletion of glucose by GOx. Meanwhile, the upregulated acidity and H2O2 content in the tumor region generated by GOx catalytic oxidation of glucose dramatically facilitated the pH-responsive POD-like activity of the Pd@Pt nanozyme, which then catalyzed degradation of the H2O2 to generate abundant highly toxic •OH, thereby realizing nanozyme-mediated starving-enhanced chemodynamic cancer therapy. In vitro and in vivo results indicated that the controllable, self-activated enzymatic cascade nanoreactors exerted highly efficient anticancer effects with negligible biotoxicity.


Subject(s)
Biocompatible Materials/chemistry , Glucose Oxidase/metabolism , Hyaluronic Acid/chemistry , Nanostructures/chemistry , Palladium/chemistry , Platinum/chemistry , Animals , Apoptosis/drug effects , Biocatalysis , Biocompatible Materials/pharmacokinetics , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Cell Line, Tumor , Glucose/chemistry , Glucose/metabolism , Glucose Oxidase/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Nanostructures/therapeutic use , Nanostructures/toxicity , Neoplasms/drug therapy , Neoplasms/pathology , Oxygen/chemistry , Reactive Oxygen Species/metabolism , Tissue Distribution , Transplantation, Homologous
15.
Adv Synth Catal ; 361(11): 2607-2615, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31244575

ABSTRACT

Alcohol dehydrogenases are of high interest for stereoselective syntheses of chiral building blocks such as 1,2-diols. As this class of enzymes requires nicotinamide cofactors, their application in biotechnological synthesis reactions is economically only feasible with appropriate cofactor regeneration. Therefore, a co-substrate is oxidized to the respective co-product that accumulates in equal concentration to the desired target product. Co-product removal during the course of the reaction shifts the reaction towards formation of the target product and minimizes undesired side effects. Here we describe an atom efficient enzymatic cofactor regeneration system where the co-product of the ADH is recycled as a substrate in another reaction set. A 2-step enzymatic cascade consisting of a thiamine diphosphate (ThDP)-dependent carboligase and an alcohol dehydrogenase is presented here as a model reaction. In the first step benzaldehyde and acetaldehyde react to a chiral 2-hydroxy ketone, which is subsequently reduced by to a 1,2-diol. By choice of an appropriate co-substrate (here: benzyl alcohol) for the cofactor regeneration in the alcohol dehydrogenases (ADH)-catalyzed step, the co-product (here: benzaldehyde) can be used as a substrate for the carboligation step. Even without any addition of benzaldehyde in the first reaction step, this cascade design yielded 1,2-diol concentrations of >100 mM with optical purities (ee, de) of up to 99%. Moreover, this approach overcomes the low benzaldehyde solubility in aqueous systems and optimizes the atom economy of the reaction by reduced waste production. The example presented here for the 2-step recycling cascade of (1R,2R)-1-phenylpropane-1,2-diol can be applied for any set of enzymes, where the co-products of one process step serve as substrates for a coupled reaction.

16.
J Biotechnol ; 306S: 100008, 2019.
Article in English | MEDLINE | ID: mdl-34112373

ABSTRACT

Hydroxy fatty acids and carbonyl fatty acids are important multi-functional materials for the manufacture of fragrances and other fine chemicals. In this study, a novel oleate hydratase (PaOH) was cloned from Paracoccus aminophilus DSM 8538 and solubly expressed in Escherichia coli. The recombinant PaOH efficiently catalyzed the hydration of oleic acid, with a specific activity of 5.21 U mg-1 protein. Enzymatic hydration of oleic acid was optimized for the production of 10-hydroxystearic acid. Under the optimal conditions, a pilot reaction was performed on a 1-L scale, where 90 g L-1 of oleic acid was converted into 10-hydroxystearic acid by 10 g L-1 of lyophilized enzyme within 4 h, achieving a conversion of 96.1% and a space-time yield of up to 552 g L-1 d-1. The resultant 10-hydroxystearic acid was further converted into 10-oxostearic acid, via enzymatic cascade with a secondary alcohol dehydrogenase (MlADH) from Micrococcus luteus WIUJH20, using a lactate dehydrogenase (LdLDH) from Lactobacillus delbrueckii to drive the co-enzyme regeneration. The cascade reaction was carried out stepwise in one pot. Total conversion reached 95.0% after 10 h reaction at a scale of 1 L, with a space time yield of 217 g L-1 d-1. The final yield of 10-oxostearic acid isolated was 52.2% (mol mol-1), with a purity of >99.0%.

17.
Biosens Bioelectron ; 97: 21-25, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28549266

ABSTRACT

It is desirable but challenging to assemble various biomimetic properties into a functional catalytic cascade system. In this work, cupric oxide nanoparticles were investigated as oxidase mimics for the aerobic oxidation of cysteine to cystine with the generation of hydrogen peroxide. Coupling this property with the peroxidase-like activity of CuO nanoparticles, we constructed a self-organized cascade reaction system based on a single-component nanozyme, which includes the oxidation of cysteine to yield cystine and hydrogen peroxide and the hydrogen peroxide-mediated oxidation of terephthalic acid to produce a fluorescence change. Based on this artificial enzymatic cascade reaction system, a fluorometric assay method with a low detection limit of 6.6nM was established for cysteine determination. This platform was then applied for the detection of cysteine in pharmaceutical products and human plasma, which yielded satisfactory results. Our investigations open up a new route and holds promise for the development and applications of multifunctional nanomaterials as enzyme mimics.


Subject(s)
Biomimetic Materials/chemistry , Biosensing Techniques/methods , Copper/chemistry , Cysteine/analysis , Nanoparticles/chemistry , Catalysis , Cysteine Dioxygenase/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Oxidation-Reduction , Peroxidase/chemistry , Spectrometry, Fluorescence/methods
18.
Biotechnol Lett ; 39(8): 1141-1148, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28405835

ABSTRACT

OBJECTIVE: To produce tagatose from fructose with a high conversion rate and to establish a high-yield purification method of tagatose from the reaction mixture. RESULTS: Fructose at 1 M (180 g l-1) was converted to 0.8 M (144 g l-1) tagatose by a three-step enzymatic cascade reaction, involving hexokinase, plus ATP, fructose-1,6-biphosphate aldolase, phytase, over 16 h with a productivity of 9 g l-1 h-1. No byproducts were detected. Tagatose was recrystallized from ethanol to a purity of 99.9% and a yield of 96.3%. Overall, tagatose at 99.9% purity was obtained from fructose with a yield of 77%. CONCLUSION: This is the first biotechnological production of tagatose from fructose and the first application of solvent recrystallization for the purification of rare sugars.


Subject(s)
Bioreactors , Escherichia coli/metabolism , Fructose/metabolism , Hexoses/metabolism , Metabolic Engineering/methods , Adenosine Triphosphate/metabolism , Escherichia coli/genetics , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Hexoses/analysis , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL