Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.244
Filter
1.
Methods Mol Biol ; 2848: 169-186, 2025.
Article in English | MEDLINE | ID: mdl-39240523

ABSTRACT

The retinal explant culture system is a valuable tool for studying the pharmacological, toxicological, and developmental aspects of the retina. It is also used for translational studies such as gene therapy. While no photoreceptor-like cell lines are available for in vitro studies of photoreceptor cell biology, the retinal explant culture maintains the laminated retinal structure ex vivo for as long as a month. Human and nonhuman primate (NHP) postmortem retinal explants cut into small pieces offer the possibility of testing multiple conditions for safety and adeno-associated viral (AAV) vector optimization. In addition, the cone-enriched foveal area can be studied using the retinal explants. Here, we present a detailed working protocol for retinal explant isolation and culture from mouse, human, and NHP for testing drug efficacy and AAV transduction. Future applications of this protocol include combining live imaging and multiwell retinal explant culture for high-throughput drug screening systems in rodent and human retinal explants to identify new drugs against retinal degeneration.


Subject(s)
Dependovirus , Retina , Animals , Humans , Mice , Retina/cytology , Dependovirus/genetics , Primates , Genetic Vectors/genetics , Tissue Culture Techniques/methods , Transduction, Genetic
2.
Kidney Int ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222842

ABSTRACT

Chronic kidney disease (CKD) is one of the leading causes of mortality worldwide because of kidney failure and the associated challenges of its treatment including dialysis and kidney transplantation. About one-third of CKD cases are linked to inherited monogenic factors, making them suitable for potential gene therapy interventions. However, the intricate anatomical structure of the kidney poses a challenge, limiting the effectiveness of targeted gene delivery to the renal system. In this review, we explore the progress made in the field of targeted gene therapy approaches and their implications for rare genetic kidney disorders, examining preclinical studies and prospects for clinical application. In vivo gene therapy is most commonly used for kidney-targeted gene delivery and involves administering viral and non-viral vectors through various routes such as systemic, renal vein and renal arterial injections. Small nucleic acids have also been used in preclinical and clinical studies for treating certain kidney disorders. Unexpectedly, hematopoietic stem and progenitor cells have been used as an ex vivo gene therapy vehicle for kidney gene delivery, highlighting their ability to differentiate into macrophages within the kidney, forming tunneling nanotubes that can deliver genetic material and organelles to adjacent kidney cells, even across the basement membrane to target the proximal tubular cells. As gene therapy technologies continue to advance and our understanding of kidney biology deepens, there is hope for patients with genetic kidney disorders to eventually avoid kidney transplantation.

3.
Exp Dermatol ; 33(9): e15172, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39219105

ABSTRACT

The pemphigoid disease epidermolysis bullosa acquisita (EBA) is an autoimmune blistering skin disease characterized by autoantibodies against type VII collagen (COL7), immune cell infiltrates at the dermal-epidermal junction and subepidermal blistering. Proteases, particularly granzyme B (GzmB), have been established as therapeutic targets for the treatment of EBA and other pemphigoid diseases. We investigated the impact of the novel GzmB inhibitor SNT-6935 on anti-COL7 IgG-induced subepidermal blistering in a well-established EBA ex vivo model. Our findings demonstrate that pharmacological targeting of GzmB with its selective inhibitor SNT-6935 significantly reduced autoantibody-induced dermal-epidermal separation in human skin cryosections. Interestingly, treatment of skin cryosections with recombinant human GzmB alone did not cause dermal-epidermal separation, suggesting that additional mechanisms alongside GzmB are required for tissue damage in EBA. In conclusion, our study highlights the significant contribution of GzmB to the pathogenesis of EBA and supports the notion of GzmB as a therapeutic target in EBA and other pemphigoid diseases.


Subject(s)
Autoantibodies , Collagen Type VII , Epidermis , Epidermolysis Bullosa Acquisita , Granzymes , Epidermolysis Bullosa Acquisita/drug therapy , Epidermolysis Bullosa Acquisita/immunology , Humans , Granzymes/metabolism , Granzymes/antagonists & inhibitors , Collagen Type VII/immunology , Epidermis/pathology , Dermis/pathology , Skin/pathology
4.
Ther Deliv ; : 1-14, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225262

ABSTRACT

Aim: In this study, we aimed to prepare enteric encapsulated spheroids containing inclusion complex using quality by design approach. Methods: A Box-Behnken design was employed to determine effects of variables on selected responses. Risk assessment was conducted using Ishikawa fishbone diagram. A model with a p-value was less than 0.5 for being a significant error of model was determined based on significance 'lack of fit' value. Spheroids were formulated using the extrusion spheronization technique and were characterized using analytical techniques. Results: In vitro release was performed in both acidic (pH 1.2) and simulated intestinal (pH 6.8) conditions. Permeability studies demonstrated tenfold enhancement compared with arteether. In vivo studies further validated increase of 51.8% oral bioavailability. Ex vivo studies revealed 3.4-fold enhancement in antimalarial activity compared with arteether. Conclusion: These findings highlight effectiveness of inclusion complexation technique as a viable approach to enhance solubility and bioavailability for drugs with low aqueous solubility.


[Box: see text].

5.
J Oleo Sci ; 73(9): 1221-1240, 2024.
Article in English | MEDLINE | ID: mdl-39218639

ABSTRACT

Luteolin (LN), is an herbal bioactive flavone and exhibits many pharmacological activities. However, the bioavailability of LN is limited due to its inadequate solubility and significant first-pass metabolism. The present study developed transdermal LN-loaded invasomes (IVM) gel to improve the therapeutic efficacy. The LN-IVM was prepared and optimized by 2 3 factorial designs. LN-IVM was characterized for physicochemical parameters. The optimized LN-IVM (LN-IVMopt) was incorporated into HPMC-K4M gel and evaluated for viscosity, spreadability, and irritation. Further LN-IVM gel was evaluated for drug release, ex-vivo permeation, pharmacokinetic and pharmacodynamics study. LN-IVMopt showed 300.8±2.67 nm of VS, 0.258 of PDI, 89.92±1.29% of EE, and a zeta potential of -18.2 mV. LN-IVM exhibited spherical morphology. FTIR and XRD results demonstrated that LN was encapsulated into IVM matrix. The optimized IVM gel (LN-IVMoptG2) exhibited excellent viscosity, spreadability, and sustained release of LN (91.32±2.95% in 24 h). LN-IVMoptG2 exhibited statistically significant (p < 0.05) higher flux (5.79 µg/h/cm2 ) than LN-gel (2.09 µg/h/cm2 ). The apparent permeability coefficient of plain LN gel and LN- IVMoptG was 1.15×10-5 cm/min and 3.22×10-5 cm/min respectively. LN-IVMoptG2 showed no irritation (score 0.0) throughout the study (60 min). The relative bioavailability of LN from LN-IVMopt-G2 (transdermal) was 2.38±0.19 fold as compared to LN-Sus (oral) and 1.81±0.15-fold than plain LN-gel (transdermal). The LN-IVMoptG2 showed a substantial lessening in the paw volume up to 12 h (17.48±1.94% swelling) than plain LN-gel (44.77±2.82% swelling). The finding concluded that the IVM gel is a novel, effective, and safe approach for the delivery of LN transdermally to improve its therapeutic efficacy.


Subject(s)
Administration, Cutaneous , Drug Liberation , Gels , Luteolin , Animals , Luteolin/administration & dosage , Luteolin/pharmacokinetics , Viscosity , Skin Absorption/drug effects , Solubility , Male , Biological Availability , Drug Delivery Systems , Chemical Phenomena , Permeability , Rats, Sprague-Dawley
6.
Int J Cosmet Sci ; 46(4): 506-515, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113286

ABSTRACT

OBJECTIVE: Ex vivo skin has been used to study various skin conditions from atopic dermatitis to burn injury. The aim of this research is to identify a more effective barrier improvement strategy and to evaluate topical formulations in replenishing the skin. The skin can create new longer chain fatty acids and ceramides (CERs) from topically applied skin natural fatty acid to help renew the skin's barrier. METHODS: An ex vivo skin model damaged by sequential tape stripping of the stratum corneum (SC) was used to investigate the repair of the SC. Confocal laser scanning microscopy was used to assess the SC layers recovered. Ultrastructural analysis was performed using transmission electron microscopy to visualize the lamellar bodies and intercellular lipid lamellae. RESULTS: The data in this study provide the first direct ex vivo evidence comparing different marketed formulations containing three CERs with those containing fatty acids. Free fatty acid (FFA)-containing formulations, but not CER-containing formulations, directly applied to the damaged skin, showed an increased number of repaired SC layers and this was reflected at the ultrastructural level by an increased intercellular lipid lamellae length and an increased number of lamellar bodies. CONCLUSION: These findings demonstrate that FFA-containing formulations can repair damaged ex vivo skin and point to a repair mechanism in which topically applied palmitic and stearic acids, (which boost lipid levels and elongation) can increase the production and transport of lipids into a repaired SC and thus rebuild an effective skin barrier.


OBJECTIF: La peau ex vivo a été utilisée pour étudier diverses affections cutanées, allant de la dermatite atopique aux brûlures. L'objectif de cette étude est d'identifier une stratégie d'amélioration de la barrière cutanée plus efficace et d'évaluer les formulations topiques pour reconstituer la peau. La peau peut créer de nouveaux acides gras à chaîne plus longue et des céramides (CER) à partir d'acides gras naturels de la peau appliqués par voie topique pour aider à renouveler la barrière cutanée. MÉTHODES: Un modèle de peau ex vivo endommagé par un décapage séquentiel de la couche cornée a été utilisé pour étudier la réparation de la couche cornée. La microscopie confocale à balayage laser a été utilisée pour évaluer les couches de la couche cornée récupérées. Une analyse ultrastructurale a été réalisée par microscopie électronique à transmission pour visualiser les corps lamellaires et les lamelles lipidiques intercellulaires. RÉSULTATS: Les données de cette étude fournissent les premières preuves directes ex vivo comparant différentes formulations commercialisées contenant trois CER avec celles contenant des acides gras. Les formulations contenant des acides gras libres (AGL), mais pas celles contenant des CER, appliquées directement sur la peau endommagée, ont montré un nombre accru de couches de la couche cornée réparées, ce qui s'est traduit au niveau ultrastructural par une augmentation de la longueur des lamelles lipidiques intercellulaires et une augmentation du nombre de corps lamellaires. CONCLUSION: Ces résultats démontrent que les formulations contenant des AGL peuvent réparer la peau ex vivo endommagée et indiquent un mécanisme de réparation dans lequel les acides palmitique et stéarique appliqués par voie topique (qui stimulent les taux de lipides et leur allongement) peuvent augmenter la production et le transport de lipides dans une couche cornée réparée et ainsi reconstruire une barrière cutanée efficace.


Subject(s)
Fatty Acids , Skin , Skin/metabolism , Skin/drug effects , Administration, Topical , Humans , Microscopy, Confocal , Microscopy, Electron, Transmission
7.
Int J Cosmet Sci ; 46(4): 544-552, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113315

ABSTRACT

Lecithin:retinol acyltransferase (LRAT) is the main enzyme catalysing the esterification of retinol to retinyl esters and, hence, is of central importance for retinol homeostasis. As retinol, by its metabolite retinoic acid, stimulates fibroblasts to synthesize collagen fibres and inhibits collagen-degrading enzymes, the inhibition of LRAT presents an intriguing strategy for anti-ageing ingredients by increasing the available retinol in the skin. Here, we synthesized several derivatives mimicking natural lecithin substrates as potential LRAT inhibitors. By exploring various chemical modifications of the core scaffold consisting of a central amino acid and an N-terminal acylsulfone, we explored 10 different compounds in a biochemical assay, resulting in two compounds with IC50 values of 21.1 and 32.7 µM (compounds 1 and 2), along with a simpler arginine derivative with comparative inhibitory potency. Supported by computational methods, we investigated their structure-activity relationship, resulting in the identification of several structural features associated with high inhibition of LRAT. Ultimately, we conducted an ex vivo study with human skin, demonstrating an increase of collagen III associated with a reduction of the skin ageing process. In conclusion, the reported compounds offer a promising approach to boost retinol abundance in human skin and might present a new generation of anti-ageing ingredients for cosmetic application.


La lécithine/rétinol acyltransférase (LRAT) est la principale enzyme qui catalyse l'estérification du rétinol en esters de rétinyle et, par conséquent, est d'une importance centrale pour l'homéostasie du rétinol. Étant donné que le rétinol, par son métabolite l'acide rétinoïque, stimule les fibroblastes pour synthétiser les fibres de collagène et inhibe les enzymes de dégradation du collagène, l'inhibition de la LRAT constitue une stratégie intéressante pour les ingrédients anti­âge en augmentant le rétinol disponible dans la peau. Ici, nous avons synthétisé plusieurs dérivés imitant les substrats naturels de la lécithine comme inhibiteurs de LRAT potentiels. En étudiant différentes modifications chimiques du noyau composé d'un acide aminé central et d'un acylsulfone N­terminal, nous avons étudié dix composés différents dans le cadre d'un essai biochimique; il en est résulté deux composés avec des valeurs de CI50 de 21.1 et 32.7 µm (composés 1 et 2), ainsi qu'un dérivé d'arginine plus simple avec une puissance inhibitrice comparative. Avec le soutien de méthodes computationnelles, nous avons étudié leur relation structure­activité, ce qui a permis d'identifier plusieurs caractéristiques structurelles associées à une inhibition élevée de la LRAT. Enfin, nous avons mené une étude ex vivo sur la peau humaine, démontrant une augmentation du collagène III associée à une réduction du processus de vieillissement de la peau. En conclusion, les composés rapportés offrent une approche prometteuse pour stimuler l'abondance du rétinol dans la peau humaine et pourraient aboutir à une nouvelle génération d'ingrédients anti­âge pour des applications cosmétiques.


Subject(s)
Acyltransferases , Enzyme Inhibitors , Vitamin A , Vitamin A/pharmacology , Acyltransferases/antagonists & inhibitors , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Structure-Activity Relationship , Skin/drug effects , Skin/metabolism
8.
J Asthma ; : 1-14, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39096201

ABSTRACT

Purpose: This article illustrates the replication of asthma and COPD conditions in a laboratory setting and the potential applications of this methodology.Introduction: Biologic drugs have been shown to enhance the treatment of severe asthma and COPD. Monoclonal antibodies against specific targets have dramatically changed the management of these conditions. Although the inflammatory pathways of asthma and COPD have already been clearly outlined, alternative mechanisms of action remain mostly unexplored. They could provide additional insights into these diseases and their clinical management.Aims: In vivo or in vitro models have thus been developed to test alternative hypotheses. This study describes sophisticated ex vivo models that mimic the response of human respiratory mucosa to disease triggers, aiming to narrow the gap between laboratory studies and clinical practice.Results: These models successfully replicate crucial aspects of these diseases, such as inflammatory cell presence, cytokine production, and changes in tissue structure, offering a dynamic platform for investigating disease processes and evaluating potential treatments, such as monoclonal antibodies. The proposed models have the potential to enhance personalized medicine approaches and patient-specific treatments, helping to advance the understanding and management of respiratory diseases.

9.
Methods Mol Biol ; 2818: 133-145, 2024.
Article in English | MEDLINE | ID: mdl-39126471

ABSTRACT

Oogenesis is the central process required to produce viable oocytes in female mammals. It is initiated during embryonic development, and it involves the specification of primordial germ cells (PGCs) and progresses through the activation of the meiotic program, reaching a crucial phase in prophase I before pausing at diplotene around the time of birth. The significance of meiosis, particularly the prophase I stage, cannot be overstated, as it plays a pivotal role in ensuring the formation of healthy gametes, a prerequisite for successful reproduction. While research has explored meiosis across various organisms, understanding how environmental factors, including radiation, drugs, endocrine disruptors, reproductive age, or diet, influence this complex developmental process remains incomplete. In this chapter, we describe an ex vivo culture method to investigate meiotic prophase I and beyond and the disruption of oogenesis by external factors. Using this methodology, it is possible to evaluate the effects of individual xenobiotics by administering chemicals at specific points during oogenesis. This culture technique was optimized to study the effects of two selected endocrine disruptors (vinclozolin and MEHP), demonstrating that vinclozolin exposure delayed meiotic differentiation and MEHP exposure reduced follicle size. This approach also opens avenues for future applications, involving the exploration of established or novel pharmaceutical substances and their influence on essential events during prophase I, such as homologous recombination and chromosome segregation. These processes collectively dictate the ultimate fitness of oocytes, with potential implications for factors relevant to the reproductive age and fertility.


Subject(s)
Meiosis , Ovary , Animals , Female , Mice , Ovary/cytology , Meiosis/drug effects , Oogenesis/drug effects , Oocytes/cytology , Oocytes/drug effects , Meiotic Prophase I/drug effects , Endocrine Disruptors/pharmacology , Oxazoles/pharmacology , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects
10.
bioRxiv ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39091774

ABSTRACT

Lymph nodes (LNs) are common sites of metastatic invasion in breast cancer, often preceding spread to distant organs and serving as key indicators of clinical disease progression. However, the mechanisms of cancer cell invasion into LNs are not well understood. Existing in vivo models struggle to isolate the specific impacts of the tumor-draining lymph node (TDLN) milieu on cancer cell invasion due to the co-evolving relationship between TDLNs and the upstream tumor. To address these limitations, we used live ex vivo LN tissue slices with intact chemotactic function to model cancer cell spread within a spatially organized microenvironment. After showing that BRPKp110 breast cancer cells were chemoattracted to factors secreted by naïve LN tissue in a 3D migration assay, we demonstrated that ex vivo LN slices could support cancer cell seeding, invasion, and spread. This novel approach revealed dynamic, preferential cancer cell invasion within specific anatomical regions of LNs, particularly the subcapsular sinus (SCS) and cortex, as well as chemokine-rich domains of immobilized CXCL13 and CCL1. While CXCR5 was necessary for a portion of BRPKp110 invasion into naïve LNs, disruption of CXCR5/CXCL13 signaling alone was insufficient to prevent invasion towards CXCL13-rich domains. Finally, we extended this system to pre-metastatic TDLNs, where the ex vivo model predicted a lower invasion of cancer cells. The reduced invasion was not due to diminished chemokine secretion, but it correlated with elevated intranodal IL-21. In summary, this innovative ex vivo model of cancer cell spread in live LN slices provides a platform to investigate cancer invasion within the intricate tissue microenvironment, supporting time-course analysis and parallel read-outs. We anticipate that this system will enable further research into cancer-immune interactions and allow isolation of specific factors that make TDLNs resistant to cancer cell invasion, which are challenging to dissect in vivo.

11.
Cancer Med ; 13(15): e70075, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39087899

ABSTRACT

OBJECTIVES: To determine the imaging details and diagnostic information of the treatment response to neoadjuvant chemoradiotherapy (nCRT) of rectal adenocarcinoma at 9.4T magnetic resonance imaging (MRI) by ex vivo. METHODS: Fifteen cases with locally advanced rectal cancer (LARC) followed by radical surgery after nCRT between September 2022 and February 2023 were recruited. Resected specimens were fixed in a perfluoropolyether-filled test tube and scanned with a 3.0T and 9.4T MRI system ex vivo. The residual tumor depth and MRI-based tumor regression grade (TRG) were subjectively assessed and then compared with the pathological findings. RESULTS: The ex vivo 9.4T T2WI without fat suppression clearly differentiated tumor tissue, fibrosis and normal rectal wall, which clearly corresponded to the pathologic tissues of the rectal specimens. The TRG could be accurately assessed on ex vivo 9.4T images in 13/15 specimens (86.7%), while in 11/15 specimens (73.3%) on ex vivo 3.0T images. CONCLUSION: Ex vivo 9.4T MR imaging clearly displayed the components of rectal wall and proved excellent diagnostic performance for evaluating the treatment response to nCRT, which allow radiologists to understand and then assess more accurately the TRG of LARC after nCRT.


Subject(s)
Adenocarcinoma , Magnetic Resonance Imaging , Neoadjuvant Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/therapy , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/pathology , Neoadjuvant Therapy/methods , Magnetic Resonance Imaging/methods , Male , Female , Adenocarcinoma/therapy , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Middle Aged , Aged , Adult , Treatment Outcome , Rectum/diagnostic imaging , Rectum/pathology , Rectum/surgery , Chemoradiotherapy/methods
12.
Cell Mol Life Sci ; 81(1): 351, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147987

ABSTRACT

Deciphering the initial steps of SARS-CoV-2 infection, that influence COVID-19 outcomes, is challenging because animal models do not always reproduce human biological processes and in vitro systems do not recapitulate the histoarchitecture and cellular composition of respiratory tissues. To address this, we developed an innovative ex vivo model of whole human lung infection with SARS-CoV-2, leveraging a lung transplantation technique. Through single-cell RNA-seq, we identified that alveolar and monocyte-derived macrophages (AMs and MoMacs) were initial targets of the virus. Exposure of isolated lung AMs, MoMacs, classical monocytes and non-classical monocytes (ncMos) to SARS-CoV-2 variants revealed that while all subsets responded, MoMacs produced higher levels of inflammatory cytokines than AMs, and ncMos contributed the least. A Wuhan lineage appeared to be more potent than a D614G virus, in a dose-dependent manner. Amidst the ambiguity in the literature regarding the initial SARS-CoV-2 cell target, our study reveals that AMs and MoMacs are dominant primary entry points for the virus, and suggests that their responses may conduct subsequent injury, depending on their abundance, the viral strain and dose. Interfering on virus interaction with lung macrophages should be considered in prophylactic strategies.


Subject(s)
COVID-19 , Cytokines , Lung , Macrophages, Alveolar , Macrophages , SARS-CoV-2 , Humans , COVID-19/virology , COVID-19/immunology , SARS-CoV-2/physiology , Lung/virology , Lung/immunology , Lung/pathology , Macrophages/virology , Macrophages/metabolism , Macrophages/immunology , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Cytokines/metabolism , Monocytes/virology , Monocytes/metabolism , Monocytes/immunology , Male , Female , Single-Cell Analysis , Middle Aged
13.
Article in English | MEDLINE | ID: mdl-39177784

ABSTRACT

Psoriasis is a chronic inflammatory disease that is becoming widespread and is associated with many kinds of additional severe diseases. The present study aimed to develop a methotrexate-loaded almond oil-based nanoemulsion formulation (MTX NE) for topical administration. The drug-loaded nanoemulsion formulation was prepared by high shear homogenization technique. The formulation's stability, as well as other physical and chemical characteristics, including entrapment effectiveness, drug release kinetics, skin permeability, skin irritation, and in vivo evaluation of the optimized formulation, was assessed. Additionally, imiquimod-induced psoriasis in rats was employed to investigate the efficacy of MTX NE against skin disorders. The MTX NE formulation was developed with a particle size of 18.74 ± 9.748 nm, a polydispersity index (PDI) of 0.198 ± 0.01, and an average entrapment efficiency of 79.65 ± 3.84%. The release kinetics model estimates 81.08% drug release at pH 5.5 after 24 h. The major layers of the skin, the epidermis, and dermis were successfully fluidized by the optimized MTX NE formulation, as shown by FTIR results, most likely enhancing drug retention and permeability. However, since Tween 80 and PEG 400 are well-known penetration enhancers, their application greatly accelerates these effects. Permeation data indicate that after 24 h, methotrexate was released from the nano-emulsion at 76.83 ± 4.98 g/cm2 with a flux rate of 2.385 ± 0.61 µg/cm2/h. The in vivo study conducted on rabbit skin showed that the enhanced skin penetration of the prepared MTX-loaded nanoemulsion formulation does not cause any structural modifications in the inter-cellular lipid layers of the stratum corneum. Rabbits used in the in vivo anti-psoriatic investigation demonstrated that MTX NE produced a 95% reduction in PASI. The pharmacokinetic profile revealed that the Cmax, Tmax, and t1/2 values were 8.63 µg/mL, 12.5 h, and 17.77 ± 2.21 h, respectively. These findings suggest that the formulation MTX NE is effective in treating psoriasis and may reduce psoriasis symptoms.

14.
Acta Biomater ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181177

ABSTRACT

Decellularised extracellular matrix (dECM) produced by mesenchymal stromal cells (MSCs) is a promising biomaterial for improving the ex vivo expansion of MSCs. The dECMs are often deposited on high modulus surfaces such as tissue culture plastic or glass, and subsequent differentiation assays often bias towards osteogenesis. We tested the hypothesis that dECM deposited on substrates of varying modulus will produce cell culture environments that are tailored to promote the proliferation and/or lineage-specific differentiation of MSCs. dECM was produced on type I collagen-functionalised polyacrylamide hydrogels with discrete moduli (∼4, 10, and 40 kPa) or in a linear gradient of modulus that spans the same range, and the substrates were used as culture surfaces for MSCs. Fluorescence spectroscopy and mass spectrometry characterization revealed structural compositional changes in the dECM as a function of substrate modulus. Softer substrates (4 kPa) with dECM supported the largest number of MSCs after 7 days (∼1.6-fold increase compared to glass). Additionally, osteogenic differentiation was greatest on high modulus substrates (40 kPa and glass) with dECM. Nuclear translocation of YAP1 was observed on all surfaces with a modulus of 10 kPa or greater and may be a driver for the increased osteogenesis on the high modulus surfaces. These data demonstrate that dECM technology can be integrated with environmental parameters such as substrate modulus to improve/tailor MSC proliferation and differentiation during ex vivo culture. These results have potential impact in the improved expansion of MSCs for tailored therapeutic applications and in the development of advanced tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE: Mesenchymal stromal cells (MSCs) are extensively used in tissue engineering and regenerative medicine due to their ability to proliferate, differentiate, and modulate the immune environment. Controlling MSC behavior is critical for advances in the field. Decellularized extracellular matrix (dECM) can maintain MSC properties in culture, increase their proliferation rate and capacity, and enhance their stimulated differentiation. Substrate stiffness is another key driver of cell function, and previous reports have primarily looked at dECM deposition and function on stiff substrates such as glass. Herein, we produce dECM on substrates of varying stiffness to create tailored environments that enhance desired MSC properties such as proliferation and differentiation. Additionally, we complete mechanistic studies including quantitative mass spec of the ECM to understand the biological function.

15.
Pharm Dev Technol ; : 1-14, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39159078

ABSTRACT

Given the extensive first pass metabolism of rizatriptan in oral administration and its delayed absorption during a migraine attack as a result of gastric stasis, focus has been on transdermal delivery. The main purpose of this study is to prepare and assess transdermal formulation of rizatriptan, loaded on hydrogel microneedles delivery system, to avoid first pass metabolism and also improve its percutaneous permeation rate. Rizatriptan hydrogel microneedles were prepared using micromolding method and evaluated in terms of mechanical strength, encapsulation efficiency, permeation and in-vivo skin absorption. Different formulations of rizatriptan microneedles (F1-F5) were successfully prepared using different concentrations of carboxymethyl cellulose and gelatin type A. Rizatriptan hydrogel microneedles demonstrated favorable mechanical properties, including withstanding insertion forces, thereby enhancing its skin insertion ability. In permeation study, the percent cumulative drug released after 24 h ranged between 93.1-100% which means that microneedles were able to deliver the drug effectively. For in-vivo study, F3 formulation was selected due to its superior characteristics over other formulations as it exhibited the highest swelling capacity, and demonstrated favorable mechanical properties. Furthermore, F3 showcased the most controlled drug release over a 24-hour period. Relative bioavailability of F3 microneedles was 179.59% compared to oral administration based on the AUC0-24. The observed AUC0-24 in F3 microneedles was statistically significant and 1.80 times greater than that in oral administration. The higher rizatriptan level in the microneedle demonstrated adequate drug permeability through the rat skin, suggesting the potential of microneedles for enhanced therapeutic effectiveness.

16.
Heart Fail Rev ; 29(5): 1079-1096, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39093495

ABSTRACT

Due to the discrepancy between patients awaiting a heart transplant and the availability of donor hearts, strategies to expand the donor pool and improve the transplant's success are crucial. This review aims to summarize current knowledge on the ex vivo heart preservation (EVHP) experience as an alternative to standard cold static storage (CSS). EVHP techniques can improve the preservation of the donor's heart before transplantation and allow for pre-transplant organ evaluation.


Subject(s)
Heart Transplantation , Organ Preservation , Perfusion , Humans , Heart Transplantation/methods , Organ Preservation/methods , Perfusion/methods , Tissue Donors
17.
Methods Mol Biol ; 2831: 97-111, 2024.
Article in English | MEDLINE | ID: mdl-39134846

ABSTRACT

To investigate the cell behavior underlying neuronal differentiation in a physiologically relevant context, differentiating neurons must be studied in their native tissue environment. Here, we describe an accessible protocol for fluorescent live imaging of differentiating neurons within ex vivo embryonic chicken spinal cord slice cultures, which facilitates long-term observation of individual cells within developing tissue.


Subject(s)
Cell Differentiation , Electroporation , Neurons , Spinal Cord , Animals , Electroporation/methods , Spinal Cord/cytology , Spinal Cord/embryology , Chick Embryo , Neurons/cytology , Neurons/metabolism , Chickens , Neurogenesis
18.
Methods Mol Biol ; 2831: 199-208, 2024.
Article in English | MEDLINE | ID: mdl-39134851

ABSTRACT

The use of time-lapse live imaging enables us to track the dynamic changes in neurites during their formation. Ex vivo live imaging with acute brain slices provides a more physiological environment than cultured cells. To accomplish this, a certain method of labeling is necessary to visualize and identify neurite morphology. To understand the dynamics of neurite structure at early stages of neurite formation, we describe in this chapter ex vivo live imaging using a confocal microscope at P0 in combination with in utero electroporation (IUE).


Subject(s)
Brain , Electroporation , Neurites , Animals , Electroporation/methods , Neurites/metabolism , Brain/cytology , Brain/embryology , Brain/diagnostic imaging , Mice , Female , Microscopy, Confocal/methods , Time-Lapse Imaging/methods , Pregnancy , Neurogenesis
19.
Artif Organs ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135423

ABSTRACT

BACKGROUND: Ex vivo lung perfusion (EVLP) conducted outside of the transplant center has increased in recent years to mitigate its limitation by resources and expertise. We sought to evaluate EVLP performed at transplant centers and externally. METHODS: Lung transplant recipients were identified from the United Network for Organ Sharing Database. Recipients were then stratified into two groups based where they were perfused: Transplant Program (TP) or External Perfusion Centers (EPC). The groups were assessed with comparative statistics and long-term survival was assessed by Kaplan-Meier method. The groups were then 1:1 propensity and this process was repeated. RESULTS: EPC use was generally restricted to the Southern United States. Following matching, there were no significant differences in post-operative outcomes to include post-operative stroke, dialysis, airway dehiscence, ECMO use, ventilator use or incidence of primary graft dysfunction Grade 3. Adjusted 3-year survival was 68.9% (95% Confidence Interval [CI]: 60.9%-77.9%) for the TP group and 67.6% (95% CI: 61.0%-74.9%) for the EPC group (p = 0.69). In allografts with extended ischemia (14+ h), those in the TP group had significantly longer length of stay, prolonged ventilation and treated rejection in the 1st year, though no significant difference in mid-term survival (p = 0.66). CONCLUSION: EVLP performed at an EPC can be carried out with results and survival similar to allografts undergoing EVLP at a TP. EPCs will extend the valuable resource of EVLP to lung transplant programs without the resources to perform EVLP.

20.
J Neural Eng ; 21(5)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39163886

ABSTRACT

The somatosensory system is widely studied to understand its functioning mechanisms. Multiple tests, based on different devices and methods, have been performed not only on humans but also on animals andex-vivomodels. Depending on the nature of the sample under analysis and on the scientific aims of interest, several solutions for experimental stimulation and for investigations on sensation or pain have been adopted. In this review paper, an overview of the available devices and methods has been reported, also analyzing the representative values adopted during literature experiments. Among the various physical stimulations used to study the somatosensory system, we focused only on mechanical and thermal ones. Based on the analysis of their main features and on literature studies, we pointed out the most suitable solution for humans, rodents, andex-vivomodels and investigation aims (sensation and pain).


Subject(s)
Physical Stimulation , Somatosensory Cortex , Humans , Animals , Physical Stimulation/methods , Somatosensory Cortex/physiology , Hot Temperature , Pain/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL