Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nano Lett ; 22(4): 1604-1608, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35129990

ABSTRACT

Generally speaking, for a semiconductor, the temperature dependence of excitonic emission corresponds to that of its band gap. However, an anomalous behavior is exhibited by the excitonic luminescence of diamond where as the temperature increases (from 10 to 300 K), its indirect exciton luminescence peak displays a spectral-distinguishable blue shift, whereas the indirect band-gap absorption shows a weak red shift. According to experimental high-resolution deep-ultraviolet spectra and theoretical analysis, the weak red shift of its indirect band gap is ascribed to its large Debye temperature (ΘD ≈ 2220 K), which makes the lattice constant change comparatively little in a large temperature range, so the change of its band gap is relatively small; in this case, as the temperature rises, the thermal population of valence-band holes that moves to a high-energy state far away from the Fermi surface contributes to the macroscopic blue shift of its excitonic emission.

2.
Sci Bull (Beijing) ; 62(22): 1525-1529, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-36659430

ABSTRACT

It is firmly demonstrated in experiment that the self-absorption (SA) effect can lead to the extinction of the zero-phonon line and the first-order longitudinal optical phonon sideband of free excitonic luminescence of ZnO at room temperature. Moreover, effectiveness degree of SA effect is found to be dependent on both absorption coefficient and travelling distance of emitted photons, as well as even lattice temperature, which is uniquely reflected by the redshift amount in emission peak in ZnO. It is also unambiguously proved that the SA effect still strictly obeys the Beer-Lambert law of absorption. This work not only uncovers the long-term puzzle of significant redshift of emission peak of ZnO at higher temperatures, but also shows that the SA effect may have to be carefully taken into consideration in the study of spontaneous emission, laser and relevant optoelectronic processes in luminescent materials and optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL