Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Stress Biol ; 4(1): 39, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276279

ABSTRACT

To assess the effects of a time-restricted feeding (TRF) regimen on meat quality of pigs exposed to high ambient temperature, a two-month feeding and heat treatment (HT) trial was conducted using a 2 × 2 factorial design. A total of 24 growing pigs (11.0 ± 1.9 kg) were randomly divided into four groups: thermal neutral group (NT, 24 ± 3 °C), HT group (exposed to a high temperature at 35 ± 2 °C from 11:00 to 15:00), TRF group and HT + TRF group (HT and TRF co-treatment group, n = 6 for each group). Pigs in TRF groups got access to feed within 5 h from 9:00 to14:00, while the others were fed at 6:00, 11:30, and 16:00. All pigs received the same diet during the trail. The results showed that HT increased the drip loss, shear force, lightness, and malondialdehyde production in Longissimus thoracis et lumborum (LTL) muscle. TRF reversely reduced the shear force and drip loss, accompanied by decreased intramuscular fat and increased moisture content. Enhanced fiber transformation from type 1 to type 2b and down-regulated expression of muscle growth-related genes were observed by HT, while TRF suppressed the fiber transformation and expression of muscle atrophy-related genes. Furthermore, TRF restored the diminished protein expressions of Nrf2 and HO-1 in LTL muscle by chronic HT. Accumulation of HSP70 in muscle of HT group was reduced by treatment of TRF. HT declined the expression of vital genes involved in fatty acids poly-desaturation and the proportion of (polyunsaturated fatty acids) PUFAs, mainly omega-6 in LTL muscle, while TRF group promoted the expression of poly-desaturation pathway and displayed the highest proportion of PUFAs. These results demonstrated that TRF relieved the chronic high temperature affected meat quality by the restored expression of Nrf2/HO-1 anti-oxidative cascade, modified muscle fiber composition, and enriched PUFAs in LTL muscle.

2.
Meat Sci ; 217: 109610, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39047658

ABSTRACT

This study evaluates longitudinal and transversal intramuscular variations in muscle fiber and meat quality characteristics in bovine M. longissimus thoracis et lumborum (LTL). The LTL muscles (n = 5) from the left side of the beef carcass were cut at intervertebral segment intervals (between 1st thoracic vertebra (TV) and 6th lumbar vertebra (LV)). The pennation angle demonstrated an increasing trend from the anterior to posterior regions regardless of the medial (M-zone) and lateral (L-zone) regions (P < 0.05). The M -zone had a higher pennation angle than the L-zone in the TV and 1st LV (P < 0.05). The cross-sectional area (CSA) of muscle fibers, excluding type I, was larger in the posterior region than the anterior region (P < 0.05). A larger CSA of type I/IIA, IIA, IIAX, and IIX was observed on the lateral side than on the medial side of the 13th TV (P < 0.05). Fiber types were more oxidative (types I and IIA) in the anterior region and more glycolytic (types IIA/IIX and IIX) in the posterior region. Fat content was higher in the anterior region than in the posterior region (P < 0.05). The lowest redness, yellowness, and Warner-Bratzler shear force values were observed in the middle of the muscle, whereas the lightness value was lower in the posterior region regardless of the transversal region (P < 0.05). Therefore, bovine LTL muscles exhibit unique morphological properties and contribute to understanding meat quality associated with morphological and muscle fiber characteristics in relation to their intramuscular variations.


Subject(s)
Muscle Fibers, Skeletal , Red Meat , Animals , Cattle , Red Meat/analysis , Muscle, Skeletal/chemistry , Color , Shear Strength , Glycolysis
3.
Am J Physiol Endocrinol Metab ; 327(2): E172-E182, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38836779

ABSTRACT

Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r = 0.49; P < 0.001) and negatively related to resting heart rate (HR, r = -0.39; P < 0.001), which was also negatively related to expression of type I muscle fibers (r = -0.41; P < 0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59 ± 6%; HR = 57 ± 9 beats/min; SIgalvin = 1.8 ± 0.7 units) or low percentage of type I fibers (30 ± 6%; HR = 71 ± 11; SIgalvin = 0.8 ± 0.3 units; P < 0.001 for all variables vs. first group). eNOS expression was 1) higher in subjects with high type I expression; 2) almost twofold higher in pools of type I versus II fibers; 3) only detected in capillaries surrounding muscle fibers; and 4) linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.NEW & NOTEWORTHY Insulin resistance (IR) is a risk factor for the development of several metabolic diseases. In healthy young individuals, an elevated heart rate (HR) correlates with low insulin sensitivity and high expression of type II skeletal muscle fibers, which express low levels of endothelial nitric oxide synthase (eNOS) and, hence, a limited capacity to induce vasodilation in response to insulin. Early targeting of the autonomic nervous system and microvasculature may attenuate development of diseases stemming from insulin resistance.


Subject(s)
Heart Rate , Insulin Resistance , Muscle, Skeletal , Nitric Oxide Synthase Type III , Humans , Insulin Resistance/physiology , Nitric Oxide Synthase Type III/metabolism , Male , Heart Rate/physiology , Young Adult , Muscle, Skeletal/metabolism , Female , Adult , Glucose Tolerance Test , Muscle Fibers, Slow-Twitch/metabolism , Insulin/metabolism , Insulin/blood
4.
Environ Manage ; 73(5): 1005-1015, 2024 May.
Article in English | MEDLINE | ID: mdl-38300314

ABSTRACT

Rangeland-based livestock production constitutes a primary source of livelihood for many inhabitants of dryland regions. Their subsistence relies heavily on maintaining the productivity, biodiversity and services of these ecosystems. Harsh environmental conditions (e.g., drought) combined with land use intensification (e.g., overgrazing) make dryland ecosystems vulnerable and prone to degradation. However, the interplay between livestock grazing intensity and aridity conditions in driving the conservation and nutritional value of forage in arid and semi-arid rangelands is still not fully understood. In this study, we performed structural equation models (SEM) to assess the simultaneous direct and indirect effects of livestock grazing intensity and aridity level on community structure, diversity, biomass, forage production, forage C:N ratio and forage fiber composition in two semi-arid Mediterranean rangelands, NE Spain. Not surprisingly, we found that higher livestock grazing intensity led to lower community plant cover, especially when combined with higher aridity. However, both increasing grazing intensity and aridity were associated with higher forage production after one year of grazing exclusion. We did not find any adverse effect of livestock grazing on plant diversity, although plant species composition differed among grazing intensity levels. On the other hand, we found an aridity-driven trade-off in regard of the nutritional value of forage. Specifically, higher aridity was associated with a decrease in the least digestible fiber fraction (i.e., lignin) and an increase in forage C:N ratio. More interestingly, we found that livestock grazing modulated this trade-off by improving the overall forage nutritional value. Altogether, our results provide further insights into the management of semi-arid Mediterranean rangelands, pointing out that maintaining traditional rangeland-based livestock production may be a sustainable option as long as rangeland conservation (e.g., community plant cover) is not severely compromised.


Subject(s)
Ecosystem , Livestock , Animals , Spain , Biodiversity , Plants
5.
BMC Pregnancy Childbirth ; 24(1): 95, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297206

ABSTRACT

OBJECTIVE: This study investigated morphological changes in the composition of the pelvic floor muscles, degree of atrophy, and urethral function in a rat of simulated birth trauma induced by vaginal distension (VD) model. METHODS: Female Sprague-Dawley rats were classified into four groups: a sham group, and 1, 2, and 4 weeks post-VD (1 W, 2 W, and 4 W, respectively) groups. We measured the amplitude of urethral response to electrical stimulation (A-URE) to evaluate urethral function. After measuring the muscle wet weight of the pubococcygeus (Pcm) and iliococcygeus (Icm) muscles, histochemical staining was used to classify muscle fibers into Types I, IIa, and IIb, and the occupancy and cross-sectional area of each muscle fiber were determined. RESULTS: There were 24 Sprague-Dawley rats used. A-URE was significantly lower in the 1 W group versus the other groups. Muscle wet weight was significantly lower in the VD groups versus the sham group for Pcm. The cross-sectional area of Type I Pcm and Icm was significantly lower in the VD groups versus the sham group. Type I muscle fiber composition in Pcm was significantly lower in the VD groups versus the sham groupand lowest in the 2 W group. Type I muscle fiber composition in Icm was significantly lower in the 2 and 4 W groups versus the sham group. CONCLUSION: Muscle atrophy and changes in muscle composition in the pelvic floor muscles were observed even after improvements in urethral function. These results may provide insight into the pathogenesis of stress urinary incontinence after VD.


Subject(s)
Parturition , Urinary Incontinence, Stress , Pregnancy , Humans , Rats , Female , Animals , Rats, Sprague-Dawley , Parturition/physiology , Pelvic Floor , Delivery, Obstetric/adverse effects , Urinary Incontinence, Stress/etiology
6.
Eur J Appl Physiol ; 124(2): 585-594, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37656281

ABSTRACT

PURPOSE: The aim of the present study was to investigate the association between muscle fiber composition, body composition, resting glycemic-lipidemic blood profiles, in apparently healthy, young, active females. METHODS: Thirty-four young healthy female volunteers were allocated into two groups, depending on their Vastus Lateralis type IIx muscle fibers percent cross-sectional area (%CSA; H: high type IIx %CSA; L: low type IIx %CSA). Body composition was determined via dual-energy X-ray absorptiometry. Venous blood samples were collected for the determination of resting serum glucose, Insulin, Apo-A1, HOMA-IR, triglycerides (TG), total cholesterol (TC), High-density lipoprotein (HDL-C), and Low-density lipoprotein (LDL-C) concentrations. Nutritional intake was also evaluated. RESULTS: Individuals of the H group have significantly higher body mass, body fat percentage-mass, and resting blood indices of glycemic and lipidemic profiles, compared to those of L group (p < 0.001). Increased type IIx and low type I, IIa muscle fibers %CSAs were linked with poorer body composition, glycemic and lipidemic blood profiles (r: - 0.722 to 0.740, p < 0.001). Linear regression analyses revealed that the impact of muscle fibers %CSA (B coefficients ranged between - 0.700 and 0.835) on the above parameters, was at least, of the same or even of greater magnitude as that of body composition and daily nutritional intake (B: - 0.700 to 0.666). CONCLUSION: Increased type IIx and low Type I, IIa %CSAs are associated with poorer body composition and glycemic-lipidemic profiles in young healthy females. The contribution of the muscle fiber %CSA on health status seems to be comparable to that of nutrition and body composition.


Subject(s)
Body Composition , Muscle Fibers, Skeletal , Humans , Female , Muscle Fibers, Skeletal/physiology , Quadriceps Muscle/physiology , Insulin , Nutritional Status
7.
Data Brief ; 50: 109520, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37701714

ABSTRACT

Herein, the dataset generated for Queeno et al. [1] is presented and described. Mammalian skeletal muscle slow (MyHC-I) fiber composition data was collated from 269 eligible studies identified via a systematic literature search and meta-analysis, following a structure similar to PRISMA [2]. Academic search systems were queried with terms relating to mammalian skeletal muscle fiber content and reference lists of selected articles were thoroughly investigated for additional studies. Eligible studies were those that provided skeletal muscle fiber composition data from mammalian species that were not subjected to experimental manipulations. Taxonomic information, sex, age, number of individuals sampled, average body mass (kg), average slow fiber content (%) of each skeletal muscle under investigation and fiber-typing methodology were collated from eligible studies when available. Muscle fiber composition data was collected from more than 200 skeletal muscles across 174 mammalian species, which will be of value to those interested in muscle physiology, interspecific muscle comparisons, and connections between muscle physiology, taxonomy, body mass, ecomorphology and locomotor strategy (among others).

8.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37627494

ABSTRACT

Obesity-induced skeletal muscle (SKM) inflexibility is closely linked to mitochondrial dysfunction. The present study aimed to evaluate the effects of melatonin on the red vastus lateralis (RVL) muscle in obese rat models at the molecular and morphological levels. Five-week-old male Zücker diabetic fatty (ZDF) rats and their age-matched lean littermates (ZL) were orally treated either with melatonin (10 mg/kg body weight (BW)/24 h) (M-ZDF and M-ZL) or non-treated (control) (C-ZDF and C-ZL) for 12 weeks. Western blot analysis showed that mitochondrial fission, fusion, and autophagy were altered in the C-ZDF group, accompanied by reduced SIRT1 levels. Furthermore, C-ZDF rats exhibited depleted ATP production and nitro-oxidative stress, as indicated by increased nitrites levels and reduced SOD activity. Western blotting of MyH isoforms demonstrated a significant decrease in both slow and fast oxidative fiber-specific markers expression in the C-ZDF group, concomitant with an increase in the fast glycolytic fiber markers. At the tissue level, marked fiber atrophy, less oxidative fibers, and excessive lipid deposition were noted in the C-ZDF group. Interestingly, melatonin treatment partially restored mitochondrial fission/fusion imbalance in the RVL muscle by enhancing the expression of fission (Fis1 and DRP1) markers and decreasing that of fusion (OPA1 and Mfn2) markers. It was also found to restore autophagy, as indicated by increased p62 protein level and LC3BII/I ratio. In addition, melatonin treatment increased SIRT1 protein level, mitochondrial ATP production, and SOD activity and decreased nitrites production. These effects were associated with enhanced oxidative phenotype, as evidenced by amplified oxidative fiber-specific markers expression, histochemical reaction for NADH enzyme, and muscular lipid content. In this study, we showed that melatonin might have potential therapeutic implications for obesity-induced SKM metabolic inflexibility among patients with obesity and T2DM.

9.
Front Physiol ; 14: 1163078, 2023.
Article in English | MEDLINE | ID: mdl-37435303

ABSTRACT

Introduction: Tensiomyography (TMG) is a non-invasive and cost-effective tool that is gaining popularity in fields such as sports science, physical therapy, and medicine. In this narrative review, we examine the different applications of TMG and its strengths and limitations, including its use as a tool for sport talent identification and development. Methods: In the course of crafting this narrative review, an exhaustive literature search was carried out. Our exploration spanned several renowned scientific databases, such as PubMed, Scopus, Web of Science, and ResearchGate. The materials we sourced for our review included a broad spectrum of both experimental and non-experimental articles, all focusing on TMG. The experimental articles featured varied research designs including randomized controlled trials, quasi-experiments, as well as pre-post studies. As for the non-experimental articles, they encompassed a mix of case-control, cross-sectional, and cohort studies. Importantly, all articles included in our review were written in English and had been published in peer-reviewed journals. The assortment of studies considered provided a holistic view of the existing body of knowledge on TMG, and formed the basis of our comprehensive narrative review. Results: A total of 34 studies were included in the review, organized into three sections: 1) assessing muscle contractile properties of young athletes, 2) using TMG in the talent identification and development process and 3) Future research and perspectives. According to data presented here, the most consistent TMG parameters for determining muscle contractile properties are radial muscle belly displacement, contraction time, and delay time. Biopsy findings from the vastus lateralis (VL) confirmed TMG as a valid tool for estimating the ratio of myosin heavy chain (%MHC-I). Conclusion: TMGs ability to estimate the ratio of %MHC-I has the potential to aid in the selection of athletes with the muscle characteristics best suited for a particular sport, eliminating the need for more invasive procedures. However, more research is warranted to fully understand TMG's potential and its reliability when used with young athletes. Importantly, the use of TMG technology in this process can positively impact health status, reducing the frequency and severity of injuries and the duration of recovery, and subsequently can reduce drop out rates among youth athletes. Future studies should look at twin youth athletes, as a model capable of discriminating between the influence of hereditary factors vs. environmental factors, in therms of muscle contractility and TMG's potential for instance.

10.
Am J Physiol Endocrinol Metab ; 324(5): E390-E401, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36791323

ABSTRACT

There is a debate on whether lipid-mediated insulin resistance derives from an increased or decreased capacity of muscle to oxidize fats. Here, we examine the involvement of muscle fiber composition in the metabolic responses to a 3-day fast (starvation, which results in increases in plasma lipids and insulin resistance) in two groups of healthy young subjects: 1), area occupied by type I fibers = 61.0 ± 11.8%; 2), type I area = 36.0 ± 4.9% (P < 0.001). Muscle biopsies and intravenous glucose tolerance tests were performed after an overnight fast and after starvation. Biopsies were analyzed for muscle fiber composition and mitochondrial respiration. Indices of glucose tolerance and insulin sensitivity were determined. Glucose tolerance was similar in both groups after an overnight fast and deteriorated to a similar degree in both groups after starvation. In contrast, whole body insulin sensitivity decreased markedly after starvation in group 1 (P < 0.01), whereas the decrease in group 2 was substantially smaller (P = 0.06). Nonesterified fatty acids and ß-hydroxybutyrate levels in plasma after an overnight fast were similar between groups and increased markedly and comparably in both groups after starvation, demonstrating similar degrees of lipid load. The capacity of permeabilized muscle fibers to oxidize lipids was significantly higher in group 1 versus 2, whereas there was no significant difference in pyruvate oxidation between groups. The data demonstrate that loss of whole body insulin sensitivity after short-term starvation is a function of muscle fiber composition and is associated with an elevated rather than a diminished capacity of muscle to oxidize lipids.NEW & NOTEWORTHY Whether lipid-mediated insulin resistance occurs as a result of an increased or decreased capacity of skeletal muscle to oxidize lipids has been debated. We show that a 3-day fast results in increases in circulating lipids and insulin resistance in subjects expressing a high or low proportion of type I muscle fibers. High expression of type I is associated with a higher capacity to oxidize lipids and a greater loss of insulin sensitivity after starvation.


Subject(s)
Insulin Resistance , Starvation , Humans , Fatty Acids, Nonesterified/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Starvation/metabolism , Lipids , Lipid Metabolism , Oxidation-Reduction
11.
Genes (Basel) ; 13(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36292594

ABSTRACT

Brisk walkers are physically more active, taller, have reduced body fat and greater physical fitness and muscle strength. The aim of our study was to determine whether genetic variants associated with increased walking pace were overrepresented in elite sprinters compared to controls. A total of 70 single-nucleotide polymorphisms (SNPs) previously identified in a genome-wide association study (GWAS) of self-reported walking pace in 450,967 European individuals were explored in relation to sprinter status. Genotyping of 137 Russian elite sprinters and 126 controls was performed using microarray technology. Favorable (i.e., high-speed-walking) alleles of 15 SNPs (FHL2 rs55680124 C, SLC39A8 rs13107325 C, E2F3 rs4134943 T, ZNF568 rs1667369 A, GDF5 rs143384 G, PPARG rs2920503 T, AUTS2 rs10452738 A, IGSF3 rs699785 A, CCT3 rs11548200 T, CRTAC1 rs2439823 A, ADAM15 rs11264302 G, C6orf106 rs205262 A, AKAP6 rs12883788 C, CRTC1 rs11881338 A, NRXN3 rs8011870 G) were identified as having positive associations with sprinter status (p < 0.05), of which IGSF3 rs699785 survived correction for multiple testing (p = 0.00004) and was linked (p = 0.042) with increased proportions of fast-twitch muscle fibers of m. vastus lateralis in physically active men (n = 67). Polygenic analysis revealed that individuals with ≥18 favorable alleles of the 15 SNPs have an increased odds ratio of being an elite sprinter when compared to those with ≤17 alleles (OR: 7.89; p < 0.0001). Using UK Biobank data, we also established the association of 14 favorable alleles with low BMI and fat percentage, 8 alleles with increased handgrip strength, and 7 alleles with increased height and fat-free mass. In conclusion, we have identified 15 new genetic markers associated with sprinter status.


Subject(s)
Genome-Wide Association Study , Hand Strength , Male , Humans , Hand Strength/physiology , Genetic Markers , PPAR gamma , Walking , Genomics , Calcium-Binding Proteins , Membrane Proteins/genetics , ADAM Proteins
12.
J Foot Ankle Res ; 15(1): 61, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986404

ABSTRACT

BACKGROUND: The purpose of this parametric design of experiments was to identify and summarize how the influence of knit structure (single jersey vs. terry), fiber composition (polyester vs. cotton), fiber linear density (30/1 Ne vs. 18/1 Ne & 1/150/34 vs. 2/150/34), and yarn type (filament vs. spun) affected the frictional profile across the sock-skin interface. METHODS: Friction testing trials were completed against both a polypropylene probe and a synthetic skin material (Lorica soft®) to determine if there was a difference in friction based on interface interaction. Friction testing was completed by sliding a probe across the inside bottom surface of the sock (the part that is usually in-contact with the bottom of the foot) while instantaneously measuring the frictional force every tenth of a second. RESULTS: For both trials (plastic probe and synthetic skin), in the dry condition, knit structure was found to be the most prominent fabric parameter affecting the frictional force experienced at the sock-skin interface. It was also determined that fiber linear density, and yarn type are tertiary factors affecting the frictional force measured at the sock-skin interface. Finally, in the dry state, it was determined that fiber composition had seemingly no effect on the frictional force experienced at the sock-skin interface. CONCLUSION: This parametric design of experiments has further enhanced the understanding of the tribology at the sock-skin interface. Through strategic design, four different textile parameters have been investigated, measured, and justified as to how each influence the friction measured between the two interfaces. This knowledge can be used to develop socks that mitigate the risk of friction blisters formation.


Subject(s)
Skin , Textiles , Blister , Foot , Friction , Humans
13.
J Neurosci ; 42(17): 3599-3610, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35332080

ABSTRACT

Brain size significantly impacts the organization of white matter fibers. Fiber length scaling, the degree to which fiber length varies according to brain size, was overlooked. We investigated how fiber lengths within the corpus callosum, the most prominent white matter tract, vary according to brain size. The results showed substantial variation in length scaling among callosal fibers, replicated in two large healthy cohorts (∼2000 human subjects, including both sexes). The underscaled callosal fibers mainly connected the precentral gyrus and parietal cortices, whereas the overscaled callosal fibers mainly connected the prefrontal cortices. The variation in such length scaling was biologically meaningful: larger scaling corresponded to larger neurite density index but smaller fractional anisotropy values; cortical regions connected by the callosal fibers with larger scaling were more lateralized functionally as well as phylogenetically and ontogenetically more recent than their counterparts. These findings highlight an interaction between interhemispheric communication and organizational and adaptive principles underlying brain development and evolution.SIGNIFICANCE STATEMENT Brain size varies across evolution, development, and individuals. Relative to small brains, the neural fiber length in large brains is inevitably increased, but the degree of such increase may differ between fiber tracts. Such a difference, if it exists, is valuable for understanding adaptive neural principles in large versus small brains during evolution and development. The present study showed a substantial difference in the length increase between the callosal fibers that connect the two hemispheres, replicated in two large healthy cohorts. Together, our study demonstrates that reorganization of interhemispheric fibers length according to brain size is intrinsically related to fiber composition, functional lateralization, cortical myelin content, and evolutionary and developmental expansion.


Subject(s)
Corpus Callosum , White Matter , Brain/diagnostic imaging , Corpus Callosum/diagnostic imaging , Female , Humans , Male , Neural Pathways , Organ Size
14.
Biochim Biophys Acta Gen Subj ; 1866(2): 130048, 2022 02.
Article in English | MEDLINE | ID: mdl-34728329

ABSTRACT

Human skeletal muscle fiber is heterogenous due to its diversity of slow- and fast-twitch fibers. In human, slow-twitched fiber gene expression is correlated to MOTS-c, a mitochondria-derived peptide that has been characterized as an exercise mimetic. Within the MOTS-c open reading frame, there is an East Asian-specific m.1382A>C polymorphism (rs111033358) that changes the 14th amino acid of MOTS-c (i.e., K14Q), a variant of MOTS-c that has less biological activity. Here, we examined the influence of the m.1382A>C polymorphism causing MOTS-c K14Q on skeletal muscle fiber composition and physical performance. The myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx) as an indicator of muscle fiber composition were assessed in 211 Japanese healthy individuals (102 men and 109 women). Muscular strength was measured in 86 physically active young Japanese men by using an isokinetic dynamometer. The allele frequency of the m.1382A>C polymorphism was assessed in 721 Japanese athletes and 873 ethnicity-matched controls. The m.1382A>C polymorphism genotype was analyzed by TaqMan SNP Genotyping Assay. Individuals with the C allele of the m.1382A>C exhibited a higher proportion of MHC-IIx, an index of fast-twitched fiber, than the A allele carriers. Men with the C allele of m.1382A>C exhibited significantly higher peak torques of leg flexion and extension. Furthermore, the C allele frequency was higher in the order of sprint/power athletes (6.5%), controls (5.1%), and endurance athletes (2.9%). Additionally, young male mice were injected with the MOTS-c neutralizing antibody once a week for four weeks to mimic the C allele of the m.1382A>C and assessed for protein expression levels of MHC-fast and MHC-slow. Mice injected with MOTS-c neutralizing antibody showed a higher expression of MHC-fast than the control mice. These results suggest that the C allele of the East Asian-specific m.1382A>C polymorphism leads to the MOTS-c K14Q contributes to the sprint/power performance through regulating skeletal muscle fiber composition.


Subject(s)
DNA, Mitochondrial
15.
Micron ; 146: 103070, 2021 07.
Article in English | MEDLINE | ID: mdl-33971478

ABSTRACT

As a natural biomass resource, corn cob has excellent mechanical properties and a special layered structure. To investigate the relationship between the mechanical properties and microstructure of corn cob, the ultra-deep field 3D microscope was used to characterize the macro geometric parameters, and the scanning electron microscopy (SEM) was observe the microstructure of the corn cob. The Fourier transform infrared spectrometer was used to analyze the fiber composition, revealing the contribution of fiber composition to the mechanical properties. Axial compression, radial compression, and three-point bending tests were performed on corn cob using a universal testing machine. Moreover, an impact testing machine was used for impact tests. The results show that a corn cob is structurally divided into the pith, woody ring, and glume, mainly composed of cellulose, hemicellulose, and lignin in fiber composition, respectively. The pith is a porous sponge-like tissue that has a greater bearing capacity while maintaining a low density. It is also a progressively hardening material with good buffering properties under impact loads. The woody ring is the primary source of mechanical strength, whose microstructure is a hollow tubular structure composed of cellulose and bonded by lignin. The internal microstructure of the glume is also porous and spongy, but the mechanical properties are mainly manifested in its macrostructure. The results of this study may provide a reference for the subsequent processing and industrial application of corn cob, and the unique structure of corn cob is also an excellent bionic prototype for lightweight design.


Subject(s)
Lignin , Zea mays , Biomass , Cellulose , Porosity
16.
Int J Sports Physiol Perform ; 16(11): 1670-1675, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33873156

ABSTRACT

PURPOSE: To determine the influence of muscle fiber typology (MFT) on the pacing strategy of elite swimmers competing in the 200-m freestyle event. METHOD: The top 3 career-best performances from 25 elite 200-m freestyle swimmers were analyzed-12 women (1:58.0 [0:01.3] min:s) and 13 men (1:48.4 [0:02.5]). Muscle carnosine concentration was quantified by proton magnetic resonance spectroscopy in the gastrocnemius and soleus muscles and expressed as a carnosine aggregate z score (CAZ score) relative to an age- and gender-matched nonathlete control group to estimate MFT. Linear regression models were employed to examine the influence of MFT on the percentage of overall race time spent in each 50-m lap. RESULTS: Swimmers with a higher CAZ score spent a greater percentage of race time in lap 3 compared with swimmers with a lower CAZ score (0.1%, 0.0% to 0.2%; mean, 90% confidence interval, P = .02). For every 1% increase in the percentage of race time spent in lap 1, the percentage of race time spent in lap 3 decreased by 0.4% for swimmers with a higher CAZ score (0.2% to -0.5%, P = .00, r = -.51), but not for swimmers with a lower CAZ score (-0.1%, -0.3% to 0.1%, P = .28, r = -.18). The percentage of race time spent in lap 4 decreased by 0.8% for higher-CAZ-score swimmers (-0.5% to -1.0%, P = .00, r = -.66) and by 0.9% for lower-CAZ-score swimmers (-0.6% to -1.3%, P = .00, r = -.65) when lap 1 percentage increased by 1%. CONCLUSION: MFT may influence the pacing strategy of swimmers in the 200-m freestyle event, which provides an avenue for maximizing individualized pacing strategies of elite swimmers.


Subject(s)
Athletic Performance , Athletic Performance/physiology , Female , Humans , Linear Models , Male , Muscle Fibers, Skeletal , Muscle, Skeletal , Swimming/physiology
17.
Front Plant Sci ; 12: 608940, 2021.
Article in English | MEDLINE | ID: mdl-33679827

ABSTRACT

Forage quality determined mainly by protein content and fiber composition has a crucial influence on digestibility and nutrition intake for animal feeding. To explore the genetic basis of quality traits, we conducted QTL mapping based on the phenotypic data of crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and lignin of an F1 alfalfa population generated by crossing of two alfalfa parents with significant difference in quality. In total, 83 QTLs were identified with contribution to the phenotypic variation (PVE) ranging from 1.45 to 14.35%. Among them, 47 QTLs interacted significantly with environment and 12 QTLs were associated with more than one trait. Epistatic effect was also detected for 73 pairs of QTLs with PVE of 1.08-14.06%. The results suggested that the inheritance of quality-related traits was jointly affected by additive, epistasis and environment. In addition, 83.33% of the co-localized QTLs were shared by ADF and NDF with the same genetic direction, while the additive effect of crude protein-associated QTLs was opposite to that fiber composition on the same locus, suggesting that the loci may antagonistically contribute to protein content and fiber composition. Further analysis of a QTL related to all the three traits of fiber composition (qNDF1C, qADF1C-2, and qlignin1C-2) showed that five candidate genes were homologs of cellulose synthase-like protein A1 in Medicago truncatula, indicating the potential role in fiber synthesis. For the protein-associated loci we identified, qCP4C-1 was located in the shortest region (chr 4.3 39.3-39.4 Mb), and two of the seven corresponding genes in this region were predicted to be E3 ubiquitin-protein ligase in protein metabolism. Therefore, our results provide some reliable regions significantly associated with alfalfa quality, and identification of the key genes would facilitate marker-assisted selection for favorable alleles in breeding program of alfalfa quality improvement.

18.
Int J Sports Physiol Perform ; 16(6): 834-840, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33561822

ABSTRACT

PURPOSE: To determine the association between estimated muscle fiber typology and the start and turn phases of elite swimmers during competition. METHODS: International and national competition racing performance was analyzed from 21 female (FINA points = 894 ± 39: 104.5 ± 1.8% world record ratio [WRR]) and 25 male (FINA points = 885 ± 54: 104.8 ± 2.1% WRR) elite swimmers. The start, turn, and turn out times were determined from each of the swimmers' career best performance times (FINA points = 889 ± 48: 104.7 ± 2.0% WRR). Muscle carnosine concentration was quantified by proton magnetic resonance spectroscopy in the gastrocnemius and soleus and was expressed as a carnosine aggregate z score relative to an age- and gender-matched nonathlete control group to estimate muscle fiber typology. Linear mixed models were employed to determine the association between muscle fiber typology and the start and turn times. RESULTS: While there was no significant influence of carnosine aggregate z score on the start and turn times when all strokes and distance events were entered into the model, the swimmers with a higher carnosine aggregate z score (ie, faster muscle typology) had a significantly faster start time in 100-m events compared with the swimmers with a lower carnosine aggregate z score (P = .02, F = 5.825). The start and turn times were significantly faster in the male compared with the female swimmers in the 100-m events compared with other distances, and between the 4 different swimming strokes (P < .001). CONCLUSION: This study suggests that start times in sprint events are partly determined (and limited) by muscle fiber typology, which is highly relevant when ∼12% of the overall performance time is determined from the start time.


Subject(s)
Athletic Performance , Carnosine , Female , Humans , Male , Muscle Fibers, Skeletal , Muscle, Skeletal , Swimming
19.
Appl Physiol Nutr Metab ; 46(2): 108-116, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32640173

ABSTRACT

We studied the effects of age on different physiological parameters, including those derived from (i) maximal cardiopulmonary exercise testing (CPET), (ii) moderate-intensity step transitions, and (iii) tensiomyography (TMG)-derived variables in moderately active women. Twenty-eight women (age, 19 to 53 years), completed 3 laboratory visits, including baseline data collection, TMG assessment, maximal oxygen uptake test via CPET, and a step-transition test from 20 W to a moderate-intensity cycling power output (PO), corresponding to oxygen uptake at 90% gas exchange threshold. During the step transitions, breath-by-breath pulmonary oxygen uptake, near infrared spectroscopy derived muscle deoxygenation (ΔHHb), and beat-by-beat cardiovascular response were continuously monitored. There were no differences observed between the young and middle-aged women in their maximal oxygen uptake and peak PO, while the maximal heart rate (HR) was 12 bpm lower in middle-aged compared with young (p = 0.016) women. Also, no differences were observed between the age groups in τ pulmonary oxygen uptake, ΔHHb, and τHR during on-transients. The first regression model showed that age did not attenuate the maximal CPET capacity in the studied population (p = 0.638), while in the second model a faster τ pulmonary oxygen uptake, combined with shorter TMG-derived contraction time (Tc) of the vastus lateralis (VL), were associated with a higher maximal oxygen uptake (∼30% of explained variance, p = 0.039). In conclusion, long lasting exercise involvement protects against a maximal oxygen uptake and τpulmonary oxygen uptake deterioration in moderately active women. Novelty: Faster τ pulmonary oxygen uptake and shorter Tc of the VL explain 33% of the variance in superior maximal oxygen uptake attainment. No differences between age groups were found in τ pulmonary oxygen uptake, τΔHHb, and τHR during on-transients.


Subject(s)
Aging/physiology , Exercise/physiology , Oxygen Consumption , Pulmonary Gas Exchange , Quadriceps Muscle/metabolism , Adolescent , Adult , Blood Pressure , Cardiorespiratory Fitness , Cross-Sectional Studies , Energy Metabolism , Exercise Test , Female , Heart Rate , Hemoglobinometry , Humans , Middle Aged , Myography , Spectroscopy, Near-Infrared , Young Adult
20.
J Sci Med Sport ; 23(10): 999-1004, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32371120

ABSTRACT

OBJECTIVES: Military-, rescue- and law-enforcement personnel require a high physical capacity including muscular strength. The present study hypothesized that 9 weeks of volume matched concurrent short frequent training sessions increases strength more efficiently than less frequent longer training sessions. DESIGN: A randomized training intervention study with functional and physiological tests before and after the intervention. METHODS: Military conscripts (n=290) were assigned to micro-training (four 15-min strength and four 15-min endurance bouts weekly); classical-training (one 60-min strength and one 60-min endurance training session weekly) or a control-group (two 60-min standard military physical training sessions weekly). RESULTS: There were no group difference between micro-training and classical-training in measures of strength. Standing long jump remained similar while shotput performance was reduced (P≤0.001) in all three groups. Pull-up performance increased (P≤0.001) in micro-training (7.4±4.6 vs. 8.5±4.0 repetitions, n=59) and classical-training (5.7±4.1 vs. 7.1±4.2 repetitions, n=50). Knee extensor MVC increased (P≤0.01) in all groups (micro-training, n=30, 11.5±8.9%; classical-training, n=24, 8.3±11.5% and control, n=19, 7.5±11.8%) while elbow flexor and hand grip MVC remained similar. Micro-training increased (P≤0.05) type IIa percentage from 32.5±11.0% to 37.6±12.3% (n=20) and control-group increased (P≤0.01) type IIax from 4.4±3.0% to 11.6±7.9% (n=8). In control-group type I, fiber size increased (P≤0.05) from 5121±959µm to 6481±2084µm (n=5). Satellite cell content remained similar in all groups. CONCLUSIONS: Weekly distribution of low-volume concurrent training completed as either eight 15-min bouts or two 60-min sessions of which 50% was strength training did not impact strength gains in a real-world setting.


Subject(s)
Endurance Training/methods , Military Personnel , Muscle Strength/physiology , Resistance Training/methods , Female , Healthy Volunteers , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL