Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 12(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399704

ABSTRACT

The administration of Bacilli to dairy cows exerts beneficial effects on dry matter intake, lactation performance, and milk composition, but the rationale behind their efficacy is still poorly understood. In this work, we sought to establish whether cellulases and xylanases, among the enzymes secreted by B. subtilis, are involved in the positive effect exerted by Bacilli on ruminal performance. We took advantage of two isogenic B. subtilis strains, only differing in the secretion levels of those two enzymes. A multi-factorial study was conducted in which eight feed ingredients were treated in vitro, using ruminal fluid from cannulated cows, with cultures of the two strains conveniently grown in a growth medium based on inexpensive waste. Feed degradability and gas production were assessed. Fiber degradability was 10% higher (p < 0.001) in feeds treated with the enzyme-overexpressing strain than in the untreated control, while the non-overexpressing strain provided a 5% increase. The benefit of the fibrolytic enzymes was maximal for maize silage, the most recalcitrant feed. Gas production also correlated with the amount of enzymes applied (p < 0.05). Our results revealed that B. subtilis cellulases and xylanases effectively contribute to improving forage quality, justifying the use of Bacilli as direct-fed microbials to increase animal productivity.

2.
J Dairy Sci ; 106(11): 7530-7547, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37532627

ABSTRACT

Branched-chain amino acids are deaminated by amylolytic bacteria to branched-chain volatile fatty acids (BCVFA), which are growth factors for cellulolytic bacteria. Our objective was to determine the dietary conditions that would increase the uptake of BCVFA by rumen bacteria. We hypothesized that increased forage would increase cellulolytic bacterial abundance and incorporation of BCVFA into their structure. Supplemental polyunsaturated fatty acids, supplied via corn oil (CO), should inhibit cellulolytic bacteria growth, but we hypothesized that additional BCVFA would alleviate that inhibition. Further, supplemental BCVFA should increase neutral detergent fiber degradation and efficiency of bacterial protein synthesis more with the high forage and low polyunsaturated fatty acid dietary combination. The study was an incomplete block design with 8 dual-flow continuous cultures used in 4 periods with 8 treatments (n = 4 per treatment) arranged as a 2 × 2 × 2 factorial. The factors were: high forage (HF) or low forage (LF; 67 or 33%), without or with supplemental CO (3% dry matter), and without or with 2.15 mmol/d (which included 5 mg/d of 13C each of BCVFA isovalerate, isobutyrate, and 2-methylbutyrate). The isonitrogenous diets consisted of 33:67 alfalfa:orchardgrass pellet, and was replaced with a concentrate pellet that mainly consisted of ground corn, soybean meal, and soybean hulls for the LF diet. The main effect of supplementing BCVFA increased neutral detergent fiber (NDF) degradability by 7.6%, and CO increased NDF degradability only in LF diets. Supplemental BCVFA increased bacterial N by 1.5 g/kg organic matter truly degraded (6.6%) and 0.05 g/g truly degraded N (6.5%). The relative sequence abundance decreased with LF for Fibrobacter succinogenes, Ruminococcus flavefaciens, and genus Butyrivibrio compared with HF. Recovery of the total 13C dose in bacterial pellets decreased from 144 µg/ mg with HF to 98.9 µg/ mg with LF. Although isotope recovery in bacteria was greater with HF, BCVFA supplementation increased NDF degradability and efficiency of microbial protein synthesis under all dietary conditions. Therefore, supplemental BCVFA has potential to improve feed efficiency in dairy cows even with dietary conditions that might otherwise inhibit cellulolytic bacteria.

3.
Environ Sci Pollut Res Int ; 26(29): 30220-30228, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31422537

ABSTRACT

The effects of patchouli essential oil (PEO) as an alternative to antibiotics on ruminal methanogenesis, feed degradability, and enzyme activities were evaluated. The basal substrate was incubated without additives (control, CTL) and with monensin (MON, 6 µM/g DM) or patchouli essential oil (PEO, 90 µg/g DM) for 24 h. In three different runs, the gas production (GP) was recorded at 2, 4, 8, 12, and 24 h of incubation using a semi-automatic system. The results revealed that MON had decreased (P < 0.05) the net GP and CH4 production and digestible and metabolizable energy relative to PEO supplementation. The in vitro truly degraded organic matter was not influenced by PEO application, while was reduced (P = 0.027) with MON. Both PEO and MON had similar reducing effect on the activity of carboxymethylcellulase (P = 0.030), in vitro truly degraded neutral detergent fiber (P = 0.010), NH3-N concentrations (P = 0.012), acetate proportion (C2, P = 0.046), C2 to C3 ratio (P = 0.023), and total protozoal count (P = 0.017). Both additives recorded similar elevating potential on the α-amylase activity (P = 0.012), propionate (C3) proportion (P = 0.011), and microbial protein (P = 0.034) compared with CTL. Effects of MON and PEO on ruminal feed degradability, microbial enzyme activities, and total protozoa counts may be responsible for modifying rumen fermentation ecology. Addition of PEO may act as a desirable alternative rumen modifier for MON in ruminant diets.


Subject(s)
Digestion/drug effects , Methane/metabolism , Oils, Volatile/pharmacology , Pogostemon/chemistry , Rumen/metabolism , alpha-Amylases/metabolism , Animal Feed/analysis , Animals , Dietary Supplements , Energy Metabolism/drug effects , Fermentation/drug effects , Methane/analysis , Monensin/pharmacology , Oils, Volatile/isolation & purification , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL