Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
J Mech Behav Biomed Mater ; 157: 106655, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991359

ABSTRACT

The present work, utilizing the finite volume-based phase field method (FV-based PFM), aims to investigate the initiation and propagation of cracks in the second molar of the left mandible under occlusal loading. By reconstructing cone beam computed tomography scans of the patient, the true morphology and internal mesostructure of the entire tooth are implemented into numerical simulations, including both 2D slice models and a realistic 3D model. Weibull functions are introduced to represent the tooth's heterogeneity, enabling the stochastic distribution characteristics of mechanical parameters. The results indicate that stronger heterogeneity leads to greater crack tortuosity, uneven damage distribution, and lower fracture stress. Additionally, different cusp angles (50° and 70°) and pre-existing fissure morphologies (i.e., U-shape, V-shape, IK-shape, I-shape, and IY-shape) also significantly affect the mechanical performance of the tooth. The study reveals that different cusp angles affect the location of crack initiation. Overall, this work demonstrates the utility of the FV-based PFM framework in capturing the complex fracture behavior of teeth, which can contribute to improved clinical treatment and prevention of tooth fractures. The insights gained from this study can inform the design of dental crown restorations and the optimization of cusp inclination and contact during clinical occlusal adjustments.


Subject(s)
Finite Element Analysis , Humans , Tooth Fractures , Biomechanical Phenomena , Stress, Mechanical , Mechanical Phenomena , Cone-Beam Computed Tomography , Tooth/physiology , Molar
2.
Sensors (Basel) ; 24(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38931683

ABSTRACT

For the RRT* algorithm, there are problems such as greater randomness, longer time consumption, more redundant nodes, and inability to perform local obstacle avoidance when encountering unknown obstacles in the path planning process of autonomous vehicles. And the artificial potential field method (APF) applied to autonomous vehicles is prone to problems such as local optimality, unreachable targets, and inapplicability to global scenarios. A fusion algorithm combining the improved RRT* algorithm and the improved artificial potential field method is proposed. First of all, for the RRT* algorithm, the concept of the artificial potential field and probability sampling optimization strategy are introduced, and the adaptive step size is designed according to the road curvature. The path post-processing of the planned global path is carried out to reduce the redundant nodes of the generated path, enhance the purpose of sampling, solve the problem where oscillation may occur when expanding near the target point, reduce the randomness of RRT* node sampling, and improve the efficiency of path generation. Secondly, for the artificial potential field method, by designing obstacle avoidance constraints, adding a road boundary repulsion potential field, and optimizing the repulsion function and safety ellipse, the problem of unreachable targets can be solved, unnecessary steering in the path can be reduced, and the safety of the planned path can be improved. In the face of U-shaped obstacles, virtual gravity points are generated to solve the local minimum problem and improve the passing performance of the obstacles. Finally, the fusion algorithm, which combines the improved RRT* algorithm and the improved artificial potential field method, is designed. The former first plans the global path, extracts the path node as the temporary target point of the latter, guides the vehicle to drive, and avoids local obstacles through the improved artificial potential field method when encountered with unknown obstacles, and then smooths the path planned by the fusion algorithm, making the path satisfy the vehicle kinematic constraints. The simulation results in the different road scenes show that the method proposed in this paper can quickly plan a smooth path that is more stable, more accurate, and suitable for vehicle driving.

3.
Biosensors (Basel) ; 14(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785690

ABSTRACT

Magnetic Induction Tomography (MIT) is a non-invasive imaging technique used for dynamic monitoring and early screening of cerebral hemorrhage. Currently, there is a significant challenge in cerebral hemorrhage MIT due to weak detection signals, which seriously affects the accuracy of the detection results. To address this issue, a dual-plane enhanced coil was proposed by combining the target field method with consideration of the spatial magnetic field attenuation pattern within the imaging target region. Simulated detection models were constructed using the proposed coil and cylindrical coil as excitation coils, respectively, and simulation imaging tests were conducted using the detection results. The simulation results indicate that compared to the cylindrical coil, the proposed coil enhances the linearity of the magnetic field within the imaging target region by 60.43%. Additionally, it effectively enhances the detection voltage and phase values. The simulation results of hemorrhage detection show that the proposed coil improves the accuracy of hemorrhage detection by 18.26%. It provides more precise detection results, offering a more reliable solution for cerebral hemorrhage localization and detection.


Subject(s)
Cerebral Hemorrhage , Cerebral Hemorrhage/diagnostic imaging , Humans , Tomography , Computer Simulation
4.
Chemphyschem ; 25(14): e202400086, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38661573

ABSTRACT

When a multi-component fluid contacts arigid solid substrate, the van der Waals interaction between fluids and substrate induces a depletion/adsorption layer depending on the intrinsic wettability of the system. In this study, we investigate the depletion/adsorption behaviors of A-B fluid system. We derive analytical expressions for the equilibrium layer thickness and the equilibrium composition distribution near the solid wall, based on the theories of de Gennes and Cahn. Our derivation is verified through phase-field simulations, wherein the substrate wettability, A-B interfacial tension, and temperature are systematically varied. Our findings underscore two pivotal mechanisms governing the equilibrium layer thickness. With an increase in the wall free energy, the substrate wettability dominates the layer formation, aligning with de Gennes' theory. When the interfacial tension increases, or temperature rises, the layer formation is determined by the A-B interactions, obeying Cahn's theory. Additionally, we extend our study to non-equilibrium systems where the initial composition deviates from the binodal line. Notably, macroscopic depletion/adsorption layers form on the substrate, which are significantly thicker than the equilibrium microscopic layers. This macroscopic layer formation is attributed to the interplay of phase separation and Ostwald ripening. We anticipate that the present finding could deepen our knowledge on the depletion/adsorption behaviors of immiscible fluids.

5.
Heliyon ; 10(4): e25971, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38375269

ABSTRACT

Electron beam melting is a powder bed fusion process capable of manufacturing thin structural features. However, as the thickness of these features approaches typical microstructure grain sizes, it becomes vital to understand how the manufacturing process contributes to local crystallographic texture and anisotropy in micromechanical response. Therefore, this article investigates Ti-6Al-4V ⍺/ß-phase formation within thin components using a variety of experimental and numerical approaches. Optical and scanning electron microscopy are used to determine through-thickness distributions of prior-ß width ([top, middle, bottom]:[81.2 ± 44.2, 76.02 ± 30.4, 75.6 ± 31.2] µm), ⍺-lath thickness ([top, middle, bottom]:[1.0 ± 1.3, 1.3 ± 1.2, 1.4 ± 1.8] µm; average), and ⍺/ß-phase fractions ([top, middle, bottom]:[0.87 ± 0.05, 0.82 ± 0.03, 0.88 ± 0.03]; average). Manufacturing process (i.e., "logfile") data is used within a layer-by-layer finite element "birth/death" model. This model is loosely coupled with the Kim-Kim-Suzuki phase field model and a CALPHAD thermodynamic database to predict ⍺-lath growth throughout the process. In general, good correlation is found between the experimental data and the predicted temperature history, ⍺-lath coarsening, and phase fraction. This indicates that these tools would be useful in predicting process-structure-properties-performance relationships for thin features.

6.
Anal Bioanal Chem ; 416(11): 2677-2682, 2024 May.
Article in English | MEDLINE | ID: mdl-37994920

ABSTRACT

Rice is a staple food and known to accumulate inorganic arsenic (iAs), which is a class 1 carcinogen to humans. Arsenic field-deployable method kits, designed for water testing, are able to screen iAs in rice, to assure food safety and quick decision-making without the need for laboratory analysis. For the arsenic extraction within the field method, nitric acid is used. To make the field method on-site safer, cost-effective and easier to handle, the method was adapted using a Cola in the extraction process. The adapted field-deployable method was tested by screening a total of 30 rice and rice products from the Austrian market. To verify the results obtained by the Cola extraction field-deployable method, the obtained iAs concentration was compared to HPLC-ICP-MS results. The Cola extraction field method obtained an LOD of 39 µg iAs kg-1 rice, and with an average reproducibility of 14% RSD, the method was capable of recording no false-negative but 7% false-positive values at the 2023 updated European Commission (EC) limits for rice. All, but one, screened rice samples were within the EU limits for iAs in rice and rice products.


Subject(s)
Arsenic , Arsenicals , Oryza , Humans , Arsenic/analysis , Reproducibility of Results , Food Contamination/analysis , Arsenicals/analysis
7.
Sensors (Basel) ; 23(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38067990

ABSTRACT

The robotics industry and associated technology applications are a vital support for modern production and manufacturing. With the intelligent development of the manufacturing industry, the application of collaboration robots and human-robot collaboration technology is becoming more and more extensive. In a human-robot collaboration scenario, there are uncertainties such as dynamic impediments, especially in the human upper limb, which puts forward a higher assessment of the manipulator's route planning technology. As one of the primary branches of the artificial potential field (APF), the velocity potential field (VPF) offers the advantages of good real-time performance and convenient mathematical expression. However, the traditional VPF algorithm is prone to local oscillation phenomena near obstacles, which degrades the smoothness of the movement of the manipulators. An improved velocity potential field algorithm is proposed in this paper. This method solves the problem of sudden velocity change when the manipulator enters and departs the region of the potential field by setting new functions for attraction velocity and repulsion velocity functions. A virtual target point construction method is given to overcome the local oscillation problem of the manipulators near obstacles. The simulation and practical findings of the manipulators reveal that the improved VPF algorithm can not only avoid collision but also effectively reduce the local oscillation problem when dealing with the human upper limb as a dynamic obstacle. The implementation of this algorithm can increase the safety and real-time performance of the human-robot collaboration process and ensure that the collaborative robot is safer and smoother in the working process.

8.
Materials (Basel) ; 16(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138690

ABSTRACT

The phase-field method, coupled with the micro-elastic model and irradiation-induced cascade mixing model, has been employed to investigate the spinodal decomposition in U-Mo and U-Mo-Zr alloys. The microstructure evolution of U-Mo or U-Mo-Zr alloys under different initial conditions, such as the alloy composition, aging temperature and irradiation intensity, were simulated to study the effect of cascade mixing on the miscibility gap, morphology and volume fraction of the decomposed phases. The simulation results demonstrate that irradiation-induced cascade mixing impedes the process of spinodal decomposition, and that irradiation shrinks the composition range of the miscibility gap in the alloys. Irradiation-induced cascade mixing slows down the anisotropic growth rate of the spinodal decomposition, yet this phenomenon can be weakened with increasing aging temperature. Adding an appropriate amount of Zr to a U-Mo alloy can effectively prevent the contraction of the miscibility gap caused by irradiation.

9.
Polymers (Basel) ; 15(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765606

ABSTRACT

This study focuses on the measurement and analysis of the complex permittivities of polymer blends using the field enhancement method (FEM). The blends, consisting of air-powder or solvent-solute mixtures, are placed in a Teflon holder and inserted into the FEM cavity to determine the complex permittivity. The resonant frequency and quality factor of the FEM cavity coupled with the samples provide information on the blends' dielectric constant and loss tangents. To extract the complex permittivities of three specific samples of DC-840, MCL-805, and MCL-Siloxane, we employ effective medium theories and the high-frequency structure simulator (HFSS) together with the measured data. The results reveal that when the volume fraction of the DC-840 solute in the xylene solvent surpasses a specific threshold, the dielectric constants and the loss tangents experience a notable increase. This phenomenon, known as percolation, strongly correlates with the viscosity of polymer blends. The observed percolation effect on the dielectric behavior is further elucidated using the generalized dielectric constant and the Debye model. By employing these models, the percolation effect and its impact on the dielectric properties of the blends can be explained.

10.
Acta Biomater ; 168: 252-263, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37433358

ABSTRACT

Soft tissue injuries (such as ligament, tendon, and meniscus tears) are the result of extracellular matrix damage from excessive tissue stretching. Deformation thresholds for soft tissues, however, remain largely unknown due to a lack of methods that can measure and compare the spatially heterogeneous damage and deformation that occurs in these materials. Here, we propose a full-field method for defining tissue injury criteria: multimodal strain limits for biological tissues analogous to yield criteria that exist for crystalline materials. Specifically, we developed a method for defining strain thresholds for mechanically-driven fibrillar collagen denaturation in soft tissues, using regional multimodal deformation and damage data. We established this new method using the murine medial collateral ligament (MCL) as our model tissue. Our findings revealed that multiple modes of deformation contribute to collagen denaturation in the murine MCL, contrary to the common assumption that collagen damage is driven only by strain in the direction of fibers. Remarkably, hydrostatic strain (computed here with an assumption of plane strain) was the best predictor of mechanically-driven collagen denaturation in ligament tissue, suggesting crosslink-mediated stress transfer plays a role in molecular damage accumulation. This work demonstrates that collagen denaturation can be driven by multiple modes of deformation and provides a method for defining deformation thresholds, or injury criteria, from spatially heterogeneous data. STATEMENT OF SIGNIFICANCE: Understanding the mechanics of soft tissue injuries is crucial for the development of new technology for injury detection, prevention, and treatment.  Yet, tissue-level deformation thresholds for injury are unknown, due to a lack of methods that combine full-field measurements of multimodal deformation and damage in mechanically loaded soft tissues. Here, we propose a method for defining tissue injury criteria: multimodal strain thresholds for biological tissues. Our findings reveal that multiple modes of deformation contribute to collagen denaturation, contrary to the common assumption that collagen damage is driven by strain in the fiber direction alone. The method will inform the development of new mechanics-based diagnostic imaging, improve computational modeling of injury, and be employed to study the role of tissue composition in injury susceptibility.


Subject(s)
Collagen , Soft Tissue Injuries , Animals , Mice , Ligaments , Fibrillar Collagens , Extracellular Matrix , Biomechanical Phenomena , Stress, Mechanical
11.
Sensors (Basel) ; 23(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37299899

ABSTRACT

The search efficiency of a rapidly exploring random tree (RRT) can be improved by introducing a high-probability goal bias strategy. In the case of multiple complex obstacles, the high-probability goal bias strategy with a fixed step size will fall into a local optimum, which reduces search efficiency. Herein, a bidirectional potential field probabilistic step size rapidly exploring random tree (BPFPS-RRT) was proposed for the path planning of a dual manipulator by introducing a search strategy of a step size with a target angle and random value. The artificial potential field method was introduced, combining the search features with the bidirectional goal bias and the concept of greedy path optimization. According to simulations, taking the main manipulator as an example, compared with goal bias RRT, variable step size RRT, and goal bias bidirectional RRT, the proposed algorithm reduces the search time by 23.53%, 15.45%, and 43.78% and decreases the path length by 19.35%, 18.83%, and 21.38%, respectively. Moreover, taking the slave manipulator as another example, the proposed algorithm reduces the search time by 6.71%, 1.49%, and 46.88% and decreases the path length by 19.88%, 19.39%, and 20.83%, respectively. The proposed algorithm can be adopted to effectively achieve path planning for the dual manipulator.

12.
Materials (Basel) ; 16(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37297309

ABSTRACT

Porosity in sintered materials negatively affects its fatigue properties. In investigating its influence, the application of numerical simulations reduces experimental testing, but they are computationally very expensive. In this work, the application of a relatively simple numerical phase-field (PF) model for fatigue fracture is proposed for estimation of the fatigue life of sintered steels by analysis of microcrack evolution. A model for brittle fracture and a new cycle skipping algorithm are used to reduce computational costs. A multiphase sintered steel, consisting of bainite and ferrite, is examined. Detailed finite element models of the microstructure are generated from high-resolution metallography images. Microstructural elastic material parameters are obtained using instrumented indentation, while fracture model parameters are estimated from experimental S-N curves. Numerical results obtained for monotonous and fatigue fracture are compared with data from experimental measurements. The proposed methodology is able to capture some important fracture phenomena in the considered material, such as the initiation of the first damage in the microstructure, the forming of larger cracks at the macroscopic level, and the total life in a high cycle fatigue regime. However, due to the adopted simplifications, the model is not suitable for predicting accurate and realistic crack patterns of microcracks.

13.
Materials (Basel) ; 16(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37176361

ABSTRACT

Primary dendrite arm spacing (PDAS) is a crucial microstructural feature in nickel-based superalloys produced by laser cladding. In order to investigate the effects of process parameters on PDAS, a multi-scale model that integrates a 3D transient heat and mass transfer model with a quantitative phase-field model was proposed to simulate the dendritic growth behavior in the molten pool for laser cladding Inconel 718. The values of temperature gradient (G) and solidification rate (R) at the S/L interface of the molten pool under different process conditions were obtained by multi-scale simulation and used as input for the quantitative phase field model. The influence of process parameters on microstructure morphology in the deposition layer was analyzed. The result shows that the dendrite morphology is in good agreement with the experimental result under varying laser power (P) and scanning velocity (V). PDAS was found to be more sensitive to changes in laser scanning velocity, and as the scanning velocity decreased from 12 mm/s to 4 mm/s, the PDAS increased by 197% when the laser power was 1500 W. Furthermore, smaller PDAS can be achieved by combining higher scanning velocity with lower laser power.

14.
Materials (Basel) ; 16(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37109804

ABSTRACT

In this study, a phase field method based on the Cahn-Hilliard equation was used to simulate the spinodal decomposition in Zr-Nb-Ti alloys, and the effects of Ti concentration and aging temperature (800-925 K) on the spinodal structure of the alloys for 1000 min were investigated. It was found that the spinodal decomposition occurred in the Zr-40Nb-20Ti, Zr-40Nb-25Ti and Zr-33Nb-29Ti alloys aged at 900 K with the formation of the Ti-rich phases and Ti-poor phases. The spinodal phases in the Zr-40Nb-20Ti, Zr-40Nb-25Ti and Zr-33Nb-29Ti alloys aged at 900 K were in an interconnected non-oriented maze-like shape, a discrete droplet-like shape and a clustering sheet-like shape in the early aging period, respectively. With the increase in Ti concentration of the Zr-Nb-Ti alloys, the wavelength of the concentration modulation increased but amplitude decreased. The aging temperature had an important influence on the spinodal decomposition of the Zr-Nb-Ti alloy system. For the Zr-40Nb-25Ti alloy, with the increase in the aging temperature, the shape of the rich Zr phase changed from an interconnected non-oriented maze-like shape to a discrete droplet-like shape, and the wavelength of the concentration modulate increased quickly to a stable value, but the amplitude decreased in the alloy. As the aging temperature increased to 925 K, the spinodal decomposition did not occur in the Zr-40Nb-25Ti alloy.

15.
Sensors (Basel) ; 23(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904594

ABSTRACT

In this paper, aiming at the problem of control and obstacle avoidance in quadrotor formation when mathematical modeling is not accurate, the artificial potential field method with virtual force is used to plan the obstacle avoidance path of quadrotor formation to solve the problem that the artificial potential field method may fall into local optimal. The adaptive predefined-time sliding mode control algorithm based on RBF neural networks enables the quadrotor formation to track the planned trajectory in a predetermined time and also adaptively estimates the unknown interference in the mathematical model of the quadrotor to improve the control performance. Through theoretical derivation and simulation experiments, this study verified that the proposed algorithm can make the planned trajectory of the quadrotor formation avoid obstacles and make the error between the true trajectory and the planned trajectory converge within a predetermined time under the premise of adaptive estimation of unknown interference in the quadrotor model.

16.
Ecol Evol ; 13(3): e9857, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950367

ABSTRACT

Small rodents are prevalent and functionally important across the world's biomes, making their monitoring salient for ecosystem management, conservation, forestry, and agriculture. There is a growing need for cost-effective and noninvasive methods for large-scale, intensive sampling. Fecal pellet counts readily provide relative abundance indices, and given suitable analytical methods, feces could also allow for the determination of multiple ecological and physiological variables, including community composition. In this context, we developed calibration models for rodent taxonomic determination using fecal near-infrared reflectance spectroscopy (fNIRS). Our results demonstrate fNIRS as an accurate and robust method for predicting genus and species identity of five coexisting subarctic microtine rodent species. We show that sample exposure to weathering increases the method's accuracy, indicating its suitability for samples collected from the field. Diet was not a major determinant of species prediction accuracy in our samples, as diet exhibited large variation and overlap between species. fNIRS could also be applied across regions, as calibration models including samples from two regions provided a good prediction accuracy for both regions. We show fNIRS as a fast and cost-efficient high-throughput method for rodent taxonomic determination, with the potential for cross-regional calibrations and the use on field-collected samples. Importantly, appeal lies in the versatility of fNIRS. In addition to rodent population censuses, fNIRS can provide information on demography, fecal nutrients, stress hormones, and even disease. Given the development of such calibration models, fNIRS analytics could complement novel genetic methods and greatly support ecosystem- and interaction-based approaches to monitoring.

17.
Sensors (Basel) ; 23(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36992048

ABSTRACT

Complex space missions require more space robotic extravehicular operations required to crawl on spacecraft surfaces with discontinuous features at the graspable point, greatly increasing the difficulty of space robot motion manipulation. Therefore, this paper proposes an autonomous planning method for space dobby robots based on dynamic potential fields. This method can realize the autonomous crawling of space dobby robots in discontinuous environments while considering the task objectives and the self-collision problem of robotic arms when crawling. In this method, a hybrid event-time trigger with event triggering as the main trigger is proposed by combining the working characteristics of space dobby robots and improving the gait timing trigger; the dynamic potential field function is designed to adjust the space robot robotic arm grasping point adaptively according to the space robot state. Simulation results verify the effectiveness of the proposed autonomous planning method.

18.
Sci Total Environ ; 867: 161427, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36623650

ABSTRACT

Adaptive pumping, changing pumping rates or exchanging injection and extraction wells, is an enhancement of traditional Pump-and-Treat (P&T) technology. Since most previous studies on adaptive pumping are conducted through field-scale simulations, the mechanism behind it is not fully understood. An in-depth investigation of the pore-scale remediation mechanism of adaptive pumping is undoubtedly helpful in combining it with other decontamination methods to further enhance the remediation efficiency. In this study, coupling the Cahn-Hilliard phase field method and the Navier-Stokes equations, the dynamic displacement process in a heterogeneous porous medium is obtained. The effects of initial injection direction, boundary exchange times, and displacement regimes on the interface evolution and the remediation efficiency are systematically investigated. The results present that a significant increase in phase interface area is the most critical remediation mechanism for adaptive pumping. The effects of injection directions and boundary exchange times on remediation performance are mainly determined by the differences in pore connectivity and flow parameters. Higher pore connectivity under high and low viscosity ratios inhibits and promotes remediation performance, respectively. At high viscosity ratios, the residual oil morphology in the matrix after adaptive pumping is similar to that obtained by positive pumping with the opposite initial injection direction. The improvement in remediation performance of adaptive pumping is more significant under low viscosity ratio conditions. These results provide new pore-scale insights into the remediation mechanism of adaptive pumping, which contribute to the design and application of innovative remediation methods.

19.
Sensors (Basel) ; 23(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36679837

ABSTRACT

In order to address the shortcomings of the traditional bidirectional RRT* algorithm, such as its high degree of randomness, low search efficiency, and the many inflection points in the planned path, we institute improvements in the following directions. Firstly, to address the problem of the high degree of randomness in the process of random tree expansion, the expansion direction of the random tree growing at the starting point is constrained by the improved artificial potential field method; thus, the random tree grows towards the target point. Secondly, the random tree sampling point grown at the target point is biased to the random number sampling point grown at the starting point. Finally, the path planned by the improved bidirectional RRT* algorithm is optimized by extracting key points. Simulation experiments show that compared with the traditional A*, the traditional RRT, and the traditional bidirectional RRT*, the improved bidirectional RRT* algorithm has a shorter path length, higher path-planning efficiency, and fewer inflection points. The optimized path is segmented using the dynamic window method according to the key points. The path planned by the fusion algorithm in a complex environment is smoother and allows for excellent avoidance of temporary obstacles.


Subject(s)
Robotics , Algorithms , Computer Simulation , Records , Research Design
20.
Materials (Basel) ; 16(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36676470

ABSTRACT

Compared with single-phase ceramics, the thermal shock crack propagation mechanism of multiphase layered ceramics is more complex. There is no experimental method and theoretical framework that can fully reveal the thermal shock damage mechanism of ceramic materials. Therefore, a multiphase phase-field fracture model including the temperature dependence of material for thermal shock-induced fracture of multilayer ceramics is established. In this study, the effects of residual stress on the crack propagation of ATZ (Al2O3-5%tZrO2)/AMZ (Al2O3-30%mZrO2) layered ceramics with different layer thickness ratios, layers, and initial temperatures under bending and thermal shock were investigated. Simulation results of the fracture phase field under four-point bending are in good agreement with the experimental results, and the crack propagation shows a step shape, which verifies the effectiveness of the proposed method. With constant thickness, high-strength compressive stress positively changes with the layer thickness ratio, which contributes to crack deflection. The cracks of the ceramic material under thermal shock have hierarchy and regularity. When the layer thickness ratio is constant, the compressive residual stress decreases with the increase in the layer number, and the degree of thermal shock crack deflection decreases.

SELECTION OF CITATIONS
SEARCH DETAIL