Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
J Hazard Mater ; 480: 135945, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39342855

ABSTRACT

Electrochemical technology has emerged as an effective method to remediate soils in a laboratory environment. However, its practical application is often challenging due to the complexity of adopting small-scale parameters and identifying all the potential problems during the operation of electrokinetic plants. Here, a prototype demonstration in a space environment (Technology Readiness Level 7) is reported to remediate a 5 × 5 m2 plot of a leachate pond from a landfill containing dense sludge contaminated with chlorinated organic compounds. Bench-scale tests (50 kg per mock-up) were initially carried out to evaluate the effects of the key parameters (electric field, surfactants, and electrode materials) and demonstrated the feasibility of reducing contaminant concentrations in the sludge through dehalogenation and volatilisation. The average electro-osmotic flux was 0.23 cm day-1, comparable to that reported for silty soils. Iron electrodes enhanced electrokinetic water transport and reduced acidification, while glassy carbon electrodes increased water volatilisation, acidity near the anode, and dehalogenation of chlorinated hydrocarbons. Based on these findings, the full-scale design and operating conditions were selected. After 590 h of operation, the total pollutant concentration was reduced by 34 %, mainly due to volatilisation, using a sequence of six iron-electrode arrays at 1 V cm-1, which increased the sludge temperature over 60 °C. An evaporation rate of 0.021 cm d-1 and an electro-osmotic flux of 0.62 cm d-1 were achieved, consistent with the bench tests. These findings demonstrate the potential of electrokinetic plants for the remediation of sludges and provide expertise applicable to future remediation at other contaminated sites.

2.
Environ Pollut ; 356: 124343, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38852659

ABSTRACT

Sewage sludge applications release contaminants to agricultural soils, such as potentially toxic metals and microplastics (MPs). However, factors determining the subsequent mobility of MPs in long-term field conditions are poorly understood. This study aimed to understand the vertical distribution of MPs in soils amended with sewage sludge in comparison to conventional mineral fertiliser for 24 years. The depth-dependent MP mass and number concentrations, plastic types, sizes and shapes were compared with the distribution of organic carbon and metals to provide insights into potentially transport-limiting factors. Polyethylene, polypropylene and polystyrene mass concentrations were screened down to 90 cm depth via pyrolysis-gas chromatography/mass spectrometry. MP number concentrations, additional plastic types, sizes, and shapes were analysed down to 40 cm depth using micro-Fourier transform-infrared imaging. Across all depths, MP numbers were twice and mass concentrations 8 times higher when sewage sludge was applied, with a higher share of textile-related plastics, more fibres and on average larger particles than in soil receiving mineral fertiliser. Transport of MPs beyond the plough layer (0-20 cm) is often assumed negligible, but substantial MP numbers (42 %) and mass (52 %) were detected down to 70 cm in sewage sludge-amended soils. The initial mobilization of MPs was shape- and size-dependent, because the fractions of fragmental-shaped and relatively small MPs increased directly below the plough layer, but not at greater depths. The sharp decline of total MP concentrations between 20 and 40 cm depth resembled that of metals and organic matter suggesting similar transport limitations. We hypothesize that the effect of soil management, such as ploughing, on soil compactness and subsequent transport by bioturbation and via macropores drives vertical MP distribution over long time scales. Risk assessment in soils should therefore account for considerable MP displacement to avoid underestimating soil exposure.


Subject(s)
Agriculture , Environmental Monitoring , Fertilizers , Microplastics , Sewage , Soil Pollutants , Soil , Fertilizers/analysis , Sewage/chemistry , Soil Pollutants/analysis , Microplastics/analysis , Soil/chemistry , Plastics/analysis
3.
Sci Total Environ ; 919: 170566, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38331271

ABSTRACT

Aqueous film forming foams (AFFFs) have been used to extinguish fires since the 1960s, leading to widespread subsurface contamination by per- and polyfluoroalkyl substances (PFAS), an essential component of AFFF. This study presents 1-D simulations of PFAS migration in the vadose zone resulting from AFFF releases. Simulation scenarios used soil profiles from three US Air Force (USAF) installations, encompassing a range of climatic conditions and hydrogeologic environments. A three-component mixture, representative of major constituents of AFFF, facilitated the exploration of competitive and synergistic effects of co-constituents on PFAS migration. To accurately capture unsaturated transport of PFAS in porous media, the model considers (1) surfactant-induced flow, (2) non-linear sorption to the solid phase, (3) competitive accumulation at the air-water interface, and (4) the moisture-dependence of the air-water interfacial area. Defined PFAS releases were consistent with fire training exercises, emergency responses, and accidental spills of record. Simulation results illustrate the importance of hydrogeologic, climatic, geochemical, and AFFF release conditions on PFAS transport and retention. Comparison of field observations and model simulations for Ellsworth AFB indicate that much of the PFOA and PFOS mass is associated with the air-water interface and the solid phase, which limits their migration potential in the vadose zone. Results also show that rates of migration in the aqueous phase are largely controlled by hydrogeologic properties, including recharge rates and hydraulic conductivity. AFFF spill scenarios varying in volume, concentration, and frequency reveal the importance of release characteristics in determining rates of PFAS migration and concentration peaks. Variability is attributed to non-linear sorption processes, where, contrary to simple linear partitioning formulations, transport is strongly affected by the concentration of PFAS species. Simulations also demonstrate the importance of modeling the AFFF as a mixture since competitive interfacial accumulation effects are shown to enhance the mobility of less surface-active PFAS compounds.

4.
Environ Monit Assess ; 195(12): 1508, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987867

ABSTRACT

In some developing countries, particularly China, a significant number of individual farmers manage small field scale of cultivated land. However, the existing research on cultivated land quality assessment mainly focuses on large-scale regions, establishing comprehensive index systems from a macro perspective, while lacking evaluations customized to individual farmers, who constitute a crucial component in agricultural production, and a demand-driven field-scale assessment of cultivated land quality. Therefore, we developed a field-scale index system that meets the needs of individual farmers in the black soil region of Northeast China. Additionally, we proposed a machine learning model for field-scale cultivated land quality assessment. The experimental results showed that our model achieved an [Formula: see text] value of 0.9660 and an [Formula: see text] of [Formula: see text] under fourfold cross-validation, which represents an improvement of 5.19% and a reduction of 1.13%, respectively, relative to the XGBoost model. Ultimately, we conducted obstacle factor diagnosis, aiming to assist individual farmers in identifying the existing issues in their cultivated land fields. This study not only provides guidance to individual farmers but also addresses the research gap in cultivated land quality assessment by offering an individual farmer demand-driven index system for field-scale studies.


Subject(s)
Conservation of Natural Resources , Soil , Environmental Monitoring , Agriculture , China
5.
J Environ Manage ; 345: 118871, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37657292

ABSTRACT

Controlling nonpoint source pollution (NPSP) is very important for protecting the water environment, and surface-flow constructed wetlands (SFCWs) have been widely established to mitigate NPSP loads. In this study, the pollutant removal efficiencies, greenhouse gas (GHG) emissions, and chemical and microbial community properties of the sediment in a large-scale SFCW established beside a plateau lake (Qilu Lake) in southwestern China to treat agricultural runoff were evaluated over a year. The SFCW performed best in terms of nitrogen removal in autumn (average efficiency of 63.5% at influent concentrations of 9.3-35.4 mg L-1) and demonstrated comparable efficiency in other seasons (23.7-40.0%). The removal rates of total phosphorus (TP) and chemical oxygen demand (COD) were limited (18.6% and 12.4% at influent concentrations of 1.1 and 45.5 mg L-1 on average, respectively). The SFCW was a hotspot of CH4 emissions, with an average flux of 31.6 mg m-2·h-1; moreover, CH4 emissions contributed the most to the global warming potential (GWP) of the SFCW. Higher CH4 and N2O fluxes were detected in winter and in the front-end section of the SFCW with high pollutant concentrations, and plant presence increased CH4 emissions. Significant positive relationships between nutrient and heavy metal contents in the SFCW sediment were detected. The microbial community compositions were similar in autumn and winter, with Thiobacillus, Lysobacter, Acinetobacter and Pseudomonas dominating, and this distribution pattern was clearly distinct from those in spring and summer, with high proportions of Spirochaeta_2 and Denitratisoma. The microbial co-occurrence network in spring was more complex with stronger positive correlations than those in winter and autumn, while it was more stable in autumn with more keystone taxa. Optimization of the construction, operation and management of SFCWs treating NPSP in lake watersheds is necessary to promote their environmental benefits.


Subject(s)
Environmental Pollutants , Greenhouse Gases , Microbiota , Seasons , Wetlands
6.
Chemosphere ; 341: 140023, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37657697

ABSTRACT

Urban aquifers are an alternative to obtain freshwater, but they are frequently polluted by contaminants of emerging concern (CECs). Therefore, there is a need to ascertain whether CECs are a water management challenge as they might limit the use of groundwater as safe drinking water even at ng L-1 concentration levels. To answer this question, it is required to evaluate human health-risk effects of measured CECs in the groundwater and to understand their behaviour at a field-scale. This study compiles data about the presence of CECs in the aquifers of Barcelona and its metropolitan area, evaluates health risk effects of measured CECs in the groundwater and presents approaches implemented to identify and quantify the coupled hydro-thermo-chemical processes that govern their fate in the subsurface. Some CECs might be harmful to humans, such as 5-methyl-1H-benzotriazole and the pharmaceuticals azithromycin valsartan, valsartan acid, lamotrigine, gabapentin, venlafaxine and lidocaine, which show very high to intermediate health risk effects. The number of harmful CECs and the level of their hazard increase from the groups of adults and 14-18 years old teens to the groups of 4-8 years old and 1-2 years old children. Thus, some CECs can limit the use of groundwater in Barcelona as potential drinking water source. Finally, knowledge gaps in understanding the integration of these processes into urban water resources management plans are identified, which will help to define groundwater potential uses and to assure the adequate protection of the human health and the environment.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Child , Humans , Adolescent , Child, Preschool , Water Pollutants, Chemical/analysis , Water Resources , Valsartan , Environmental Monitoring
7.
Sci Total Environ ; 905: 167216, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37734600

ABSTRACT

Phytoextraction with Sedum plumbizincicola is an in-situ, environmentally friendly and highly efficient remediation technique for slightly Cd-polluted soils but it remains a challenge to remediate highly Cd-polluted soils under field conditions. Here, an 8-ha field experiment was conducted to evaluate the feasibility of repeated phytoextraction by S. plumbizincicola of a highly Cd-polluted acid agricultural soil (pH 5.61, [Cd] 2.58 mg kg-1) in Yunnan province, southwest China. Mean shoot dry biomass production, Cd concentration and Cd uptake were 1.95 t ha-1, 170 mg kg-1 and 339 g ha-1 at the first harvest, and 0.91 t ha-1, 172 mg kg-1 and 142 g ha-1 at the second harvest. After two seasons of phytoextraction, soil total and CaCl2-extractable Cd concentrations decreased from 2.58 ± 0.69 to 1.53 ± 0.43 mg kg-1 and 0.22 ± 0.12 to 0.14 ± 0.07 mg kg-1, respectively. Stepwise multiple linear regression analysis shows that the shoot Cd concentration and uptake of S. plumbizincicola were positively related to soil CaCl2-extractable Cd concentrations, especially in the first crop. A negative relationship indicates that soil organic matter content played an important role in soil Cd availability and shoot Cd concentration in the first crop. In addition, the rhizosphere effect on soil CaCl2-extractable Cd concentration was negatively correlated with soil pH in the first crop. The accuracy of the calculation of soil Cd phytoextraction efficiency at field scale depends on all of the following factors being considered: shoot Cd uptake, cropping pattern, standardized sampling points, and the leaching and surface runoff of Cd. Phytoextraction with S. plumbizincicola is a feasible technique for efficient Cd removal from highly polluted soils and wide variation in soil properties can influence phytoextraction efficiency at the field scale.


Subject(s)
Sedum , Soil Pollutants , Cadmium/analysis , Zinc/analysis , Sedum/chemistry , Calcium Chloride , Soil Pollutants/analysis , Biodegradation, Environmental , China , Soil/chemistry
8.
Sci Total Environ ; 900: 165778, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37495144

ABSTRACT

Artificial groundwater recharge is a relatively economic and efficient method for solving shortages and uneven spatial-temporal distribution of water resources. Changes in groundwater quality during the recharge process are a key issue that must be addressed. Identifying the hydrogeochemical reactions that occur during recharge can be vital in predicting trends in groundwater quality. However, there are few studies on the evolution of groundwater quality during artificial recharge that comprehensively consider environmental, chemical, organic matter, and microbiological indicators. Based on an artificial groundwater recharge experiment in Xiong'an New Area, this study investigated the hydrogeochemical changes during groundwater recharge through a well. The results indicate that (1) as large amounts of recharge water (RW) were injected, the groundwater level initially rose rapidly, then fluctuated slowly, and finally rose again. (2) Water quality indicators, dissolved organic matter (DOM), and microbial communities were influenced by the mixture of RW and the background groundwater before recharge (BGBR), as well as by water-rock interactions, such as mineral dissolution-precipitation and redox reactions. (3) During well recharge, aerobic respiration, nitrification, denitrification, high-valence manganese (Mn) and iron (Fe) minerals reduction dissolution, and Mn2+ and Fe2+ oxidation-precipitation occurred sequentially. (4) DOM analysis showed that protein-like substances in the BGBR were the main carbon sources for aerobic respiration and denitrification, while humic-like substances carried by the RW significantly enhanced Mn and Fe minerals reduction dissolution. Therefore, RW quality significantly affects groundwater quality after artificial groundwater well recharge. Controlling indicators, such as dissolved oxygen (DO) and DOM, in the RW can effectively reduce harm to groundwater quality after recharge. This study is of theoretical and practical significance for in-depth analysis of the evolution of groundwater quality during artificial well recharge, prediction of trends in groundwater quality during and after recharge and ensuring groundwater quality safety.

9.
Animals (Basel) ; 13(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37106968

ABSTRACT

Improving nutrient management in grazing system dairy farms requires determining nutrient flows through animals, the placement of cows within farms and potential for collection, and the re-use and loss of nutrients. We applied a model incorporating data collected at a range of temporal and spatial scales to quantify nutrient excretion in all locations that lactating herds visited on five days over a year on 43 conventional and organic grazing system dairy farms. The calculated nutrient loads excreted by cows in different places were highly skewed; while N, P and K deposited loads were consistent across the year, S, Ca and Mg loads varied between sampling times and seasons. The greatest mean and range in nutrient loads were deposited in paddocks, with the smallest amounts deposited in dairy sheds. All excreted nutrient loads increased with farm and herd sizes and milk production. Mean daily loads of 112, 15, 85, 11, 22 and 13 kg of N, P, K, S, Ca and Mg were deposited by the herds which, when standardised to a 305-day lactation, amounted to 24, 4, 20, 3, 5 and 3 t excreted annually, respectively. In addition to routine manure collection in dairy sheds, ensuring collection and recycling of nutrients excreted on feed pads and holding areas would decrease potential nutrient losses by 29% on average. Non-collected, recycled nutrients were disproportionately returned to paddocks in which cows spent time overnight, and except for S and Ca, nutrient loading rates were greater than rates applied as fertilisers. These data demonstrate the extent of excreted nutrients in grazing dairy systems and indicate the need to account for these nutrients in nutrient management plans for Australian dairy farms. We propose incorporating excretion data in current budgeting tools using data currently collected on most Australian grazing system dairy farms.

10.
Chemosphere ; 329: 138604, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028730

ABSTRACT

The use of cover crops (CCs) in viticulture is threatened by the contamination of vineyard soils by copper (Cu). This study investigated the response of CCs to increased concentrations of Cu in soil as a way to assess their sensitivity to Cu and their Cu phytoextraction ability. Our first experiment used microplots to compare the effect of increasing soil Cu content from 90 to 204 mg kg-1 on the growth, Cu accumulation level, and elemental profile of six CC species (Brassicaceae, Fabaceae and Poaceae) commonly sown in vineyard inter-row. The second experiment quantified the amount of Cu exported by a mixture of CCs in vineyards with contrasted soil characteristics. Experiment 1 showed that increasing the soil Cu content from 90 to 204 mg kg-1 was detrimental to the growth of Brassicaceae and faba bean. The elemental composition of plant tissues was specific to each CC and almost no change in composition resulted from the increase in soil Cu content. Crimson clover was the most promising CC for Cu phytoextraction as it produced the most aboveground biomass, and, along with faba bean, accumulated the highest concentration of Cu in its shoots. Experiment 2 showed that the amount of Cu extracted by CCs depended on the availability of Cu in the topsoil and CC growth in the vineyard, and ranged from 25 to 166 g per hectare. Taken together, these results emphasize the fact that the use of CCs in vineyards may be jeopardised by the contamination of soils by Cu, and that the amount of Cu exported by CCs is not sufficiently high to offset the amount of Cu supplied by Cu-based fungicides. Recommendations are provided for maximizing the environmental benefits provided by CCs in Cu-contaminated vineyard soils.


Subject(s)
Brassicaceae , Soil Pollutants , Copper/analysis , Farms , Soil , Soil Pollutants/analysis , Crops, Agricultural
11.
Sci Total Environ ; 879: 163102, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36966835

ABSTRACT

Wheat-rice cropping system in China, characterized by smallholder with conventional practice, is energy- and carbon-intensive. Cooperative with scientific practice is a promising practice to increase resource use while reducing environmental impact. However, comprehensive studies of the energy and carbon (C) budgeting of management practices on the actual field-scale production under different production types are lacking. The present research examined the energy and C budgeting of smallholder and cooperative using conventional practice (CP) or scientific practice (SP) at the field scale level in the Yangtze River Plain, China. The SPs and cooperatives exhibited 9.14 % and 6.85 % and 4.68 % and 2.49 % higher grain yields over the corresponding CPs and smallholders, respectively, while maintaining 48.44 % and 28.50 % and 38.81 % and 20.16 % higher net income. Compared to the CPs, the corresponding SPs reduced the total energy input by 10.35 % and 7.88 %, and the energy savings were primarily attributable to reductions in fertilizer, water, and seeds through the use of improved techniques. The total energy input in the cooperatives was 11.53 % and 9.09 % lower than that for the corresponding smallholders due to the mechanistic enhancements and improved operational efficiency. As a result of the increased yields and reduced energy inputs, the SPs and cooperatives ultimately increased energy use efficiency. The high productivity attributed to increased C output in the SPs, which increased C use efficiency and the C sustainability index (CSI) but decreased the C footprint (CF) over the corresponding CPs. The higher productivity and more efficient machinery of cooperatives increased the CSI and reduced the CF compared to the corresponding smallholders. Overall, the SPs coupled with cooperatives were the most energy efficient, C efficient, profitable and productive for wheat-rice cropping systems. In the future, improved fertilization management practices and integration of smallholder farms were effective means for developing sustainable agriculture and promoting environmental safety.

12.
Sci Total Environ ; 876: 162752, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36906021

ABSTRACT

Accurate estimation of groundwater recharge is a precondition for assessing its spatial variation at different scales, especially field scale. In the field, the limitations and uncertainties of different methods are first evaluated based on site-specific conditions. In this study, we evaluated field variation in groundwater recharge via multiple tracers in the deep vadose zone on the Chinese Loess Plateau. Five deep soil profiles (approximately 20 m deep) were collected in the field. Soil water content and particle compositions were measured to analyse soil variation, and soil water isotope (3H, 18O, and 2H) and anion (NO3- and Cl-) profiles were used to estimate recharge rates. Distinct peaks in soil water isotope and nitrate profiles indicated a vertical one-dimensional water flow in the vadose zone. Although the soil water content and particle composition were moderately variable, no significant differences were observed in recharge rates among the five sites (p > 0.05) owing to the identical climate and land use. The recharge rates did not show a significant difference (p > 0.05) between different tracers' methods. However, recharge estimates by the chloride mass balance method indicated higher variations (23.5 %) than those by the peak depth method (11.2 % to 18.7 %) among five sites. Moreover, if considering the contribution of immobile water in vadose zone, groundwater recharge would be overestimated (25.4 % to 37.8 %) using the peak depth method. This study provides a favourable reference for accurate groundwater recharge and its variation evaluated using different tracers' methods in deep vadose zone.

13.
MethodsX ; 10: 102074, 2023.
Article in English | MEDLINE | ID: mdl-36865651

ABSTRACT

Shallow, unit process open water wetlands harbor a benthic microbial mat capable of removing nutrients, pathogens, and pharmaceuticals at rates that rival or exceed those of more traditional systems. A deeper understanding of the treatment capabilities of this non-vegetated, nature-based system is currently hampered by experimentation limited to demonstration-scale field systems and static lab-based microcosms that integrate field-derived materials. This limits fundamental mechanistic knowledge, extrapolation to contaminants and concentrations not present at current field sites, operational optimization, and integration into holistic water treatment trains. Hence, we have developed stable, scalable, and tunable laboratory reactor analogs that offer the capability to manipulate variables such as influent rates, aqueous geochemistry, light duration, and light intensity gradations within a controlled laboratory environment. The design is composed of an experimentally adaptable set of parallel flow-through reactors and controls that can contain field-harvested photosynthetic microbial mats ("biomat") and could be adapted for analogous photosynthetically active sediments or microbial mats. The reactor system is contained within a framed laboratory cart that integrates programable LED photosynthetic spectrum lights. Peristaltic pumps are used to introduce specified growth media, environmentally derived, or synthetic waters at a constant rate, while a gravity-fed drain on the opposite end allows steady-state or temporally variable effluent to be monitored, collected, and analyzed. The design allows for dynamic customization based on experimental needs without confounding environmental pressures and can be easily adapted to study analogous aquatic, photosynthetically driven systems, particularly where biological processes are contained within benthos. The diel cycles of pH and dissolved oxygen (DO) are used as geochemical benchmarks for the interplay of photosynthetic and heterotrophic respiration and likeness to field systems. Unlike static microcosms, this flow-through system remains viable (based on pH and DO fluctuations) and has at present been maintained for more than a year with original field-based materials.•Lab-scale flow-through reactors enable controlled and accessible exploration of shallow, open water constructed wetland function and applications.•The footprint and operating parameters minimize resources and hazardous waste while allowing for hypothesis-driven experiments.•A parallel negative control reactor quantifies and minimizes experimental artifacts.

14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-988207

ABSTRACT

Objective To construct a rapid prediction system to improve the accuracy and efficiency of evaluation of the consequences of nuclear accidents at a field scale. Methods Base on a diagnostic wind field model and Lagrangian particle diffusion, we established a rapid prediction method for wind field and pollutant dispersion around complex underlying surfaces within a field scale, in a way of visual discrimination of buildings and vegetation distribution. With data simulation and the use of a real urban field example, the simulated results were compared with wind tunnel test measurements and computational fluid dynamics results to study the influence of complex underlying surfaces on wind field and pollutant transport in the region. Results The rapid prediction system could clearly simulate the high-resolution wind field and pollutant concentration distribution of the region in about five minutes. It could interface with geographic information software and couple with a mesoscale weather prediction model. In terms of accuracy, the system performed well in wind field simulation, with the fractional deviations of wind speed and wind direction being 0.33 and −0.08, respectively. Concentration field simulation was greatly affected by the wind field, and the ratios of simulated concentrations to observed concentrations were between 0.05 and 3.4, except for a few low concentration points. Conclusion The rapid prediction system can effectively simulate the distribution characteristics of the flow field and improve calculation efficiency when ensuring calculation accuracy, which provides an important reference for emergency response to nuclear accidents.

15.
PeerJ ; 10: e14275, 2022.
Article in English | MEDLINE | ID: mdl-36353602

ABSTRACT

Background: High-resolution soil moisture estimates are critical for planning water management and assessing environmental quality. In-situ measurements alone are too costly to support the spatial and temporal resolutions needed for water management. Recent efforts have combined calibration data with machine learning algorithms to fill the gap where high resolution moisture estimates are lacking at the field scale. This study aimed to provide calibrated soil moisture models and methodology for generating gridded estimates of soil moisture at multiple depths, according to user-defined temporal periods, spatial resolution and extent. Methods: We applied nearly one million national library soil moisture records from over 100 sites, spanning the U.S. Midwest and West, to build Quantile Random Forest (QRF) calibration models. The QRF models were built on covariates including soil moisture estimates from North American Land Data Assimilation System (NLDAS), soil properties, climate variables, digital elevation models, and remote sensing-derived indices. We also explored an alternative approach that adopted a regionalized calibration dataset for the Western U.S. The broad-scale QRF models were independently validated according to sampling depths, land cover type, and observation period. We then explored the model performance improved with local samples used for spiking. Finally, the QRF models were applied to estimate soil moisture at the field scale where evaluation was carried out to check estimated temporal and spatial patterns. Results: The broad-scale QRF model showed moderate performance (R2 = 0.53, RMSE = 0.078 m3/m3) when data points from all depth layers (up to 100 cm) were considered for an independent validation. Elevation, NLDAS-derived moisture, soil properties, and sampling depth were ranked as the most important covariates. The best model performance was observed for forest and pasture sites (R2 > 0.5; RMSE < 0.09 m3/m3), followed by grassland and cropland (R2 > 0.4; RMSE < 0.11 m3/m3). Model performance decreased with sampling depths and was slightly lower during the winter months. Spiking the national QRF model with local samples improved model performance by reducing the RMSE to less than 0.05 m3/m3 for grassland sites. At the field scale, model estimates illustrated more accurate temporal trends for surface than subsurface soil layers. Model estimated spatial patterns need to be further improved and validated with management data. Conclusions: The model accuracy for top 0-20 cm soil depth (R2 > 0.5, RMSE < 0.08 m3/m3) showed promise for adopting the methodology for soil moisture monitoring. The success of spiking the national model with local samples showed the need to collect multi-year high frequency (e.g., hourly) sensor-based field measurements to improve estimates of soil moisture for a longer time period. Future work should improve model performance for deeper depths with additional hydraulic properties and use of locally-selected calibration datasets.


Subject(s)
Remote Sensing Technology , Soil , Remote Sensing Technology/methods , Climate , Water/analysis , Midwestern United States , Machine Learning
16.
Article in English | MEDLINE | ID: mdl-36293661

ABSTRACT

The presence of residual Cr(VI) in soils causes groundwater contamination in aquifers, affecting the health of exposed populations. Initially, permeable reactive barriers(PRB) effectively removed Cr(VI) from groundwater. However, as PRB clogging increased and Cr(VI) was released from upstream soils, the contamination plume continued to spread downstream. By 2020, the level of contamination in the downstream was nearly identical to that in the upstream. The study results show that during normal operation, the PRB can successfully remove Cr(VI) from contaminated groundwater and reduce the carcinogenic and non-carcinogenic risks to humans from the downstream side of groundwater. However, the remediated groundwater still poses an unacceptable risk to human health. The sensitivity analysis revealed that the concentration of the pollutant was the most sensitive parameter and interacted significantly with other factors. Ultimately, it was determined that the residual Cr(VI) in the soil of the study region continues to contaminate the groundwater and constitutes a serious health danger to residents in the vicinity. As remediated groundwater still poses a severe threat to human health, PRB may not be as effective as people believe.


Subject(s)
Environmental Pollutants , Groundwater , Water Pollutants, Chemical , Humans , Groundwater/analysis , Chromium/analysis , Soil , Risk Assessment , Environmental Pollutants/analysis , Water Pollutants, Chemical/analysis
17.
Front Plant Sci ; 13: 1001779, 2022.
Article in English | MEDLINE | ID: mdl-36275598

ABSTRACT

Scientific and accurate estimation of rice yield is of great significance to food security protection and agricultural economic development. Due to the weak penetration of high frequency microwave band, most of the backscattering comes from the rice canopy, and the backscattering coefficient is highly correlated with panicle weight, which provides a basis for inversion of wet biomass of rice ear. To solve the problem of rice yield estimation at the field scale, based on the traditional water cloud model, a modified water-cloud model based on panicle layer and the radar data with Ku band was constructed to estimate rice yield at panicle stage. The wet weight of rice ear scattering model and grain number per rice ear scattering model were constructed at field scale for rice yield estimation. In this paper, the functional area of grain production in Xiashe Village, Xin'an Town, Deqing County, Zhejiang Province, China was taken as the study area. For the first time, the MiniSAR radar system carried by DJI M600 UAV was used in September 2019 to obtain the SAR data with Ku band under polarization HH of the study area as the data source. Then the rice yield was estimated by using the newly constructed modified water-cloud model based on panicle layer. The field investigation was carried out simultaneously for verification. The study results show: the accuracies of the inversion results of wet weight of rice ear scattering model and grain number per rice ear scattering model in parcel B were 95.03% and 94.15%; and the accuracies of wet weight of rice ear scattering model and grain number per rice ear scattering model in parcel C+D+E were over 91.8%. In addition, different growth stages had effects on yield estimation accuracy. For rice at fully mature, the yield estimation accuracies of wet weight of ear and grain number per ear were basically similar, both exceeding 94%. For rice at grouting stage, the yield estimation accuracy of wet weight of ear was 92.7%, better than that of grain number per ear. It was proved that it can effectively estimate rice yield using the modified water-cloud model based on panicle layer constructed in this paper at panicle stage at field scale.

18.
Water Res ; 226: 119206, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36244141

ABSTRACT

The fate and transport of nanoparticles (NPs) in streams is critical for understanding their overall environmental impact. Using a unique field-scale stream at the Notre Dame-Linked Experimental Ecosystem Facility, we investigated the impact of biofilms and the presence of dissolved organic matter (DOM) on the transport of titanium dioxide (TiO2) NPs. Experimental breakthrough curves were analyzed using temporal moments and fit using a mobile-immobile model. The presence of biofilms in the stream severely reduced the transport of the TiO2 NPs, but this was mitigated by the presence of DOM. Under minimal biofilm conditions, the presence of DOM increased the mass recovery of TiO2 from 4.2% to 32% for samples taken 50 m downstream. For thriving biofilm conditions only 0.5% of the TiO2 mass was recovered (50 m), but the presence of DOM improved the mass recovery TiO2 to 36%. The model was suitable for predicting early, peak, tail, and truncation time portions of the breakthrough curves, which attests to its ability to capture a range of processes in the mobile and immobile domains of the stream. The model outcomes supported the hypothesis that DOM changed the interaction of NP-biofilm from an irreversible to a reversible process. Collectively, these outcomes stress the importance of considering biogeological complexity when predicting the transport of NPs in streams.


Subject(s)
Dissolved Organic Matter , Nanoparticles , Ecosystem , Titanium , Biofilms
19.
Environ Sci Pollut Res Int ; 29(20): 30169-30183, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34997502

ABSTRACT

Field-scale combined ecological treatment systems (FCETS) are designed to remove nutrients from aquaculture wastewater in ponds according to the characteristics of the nutrients present. We designed and established a numerical model based on the system dynamic (SD) method, to optimize the parameters of FCETS. Results showed that the mean removal rates of TSS, TN, NO3--N, NH4+-N, TP, DP, and CODMn ranged from 83.3 to 125.8%, 41.1 to 49.1%, 44.8 to 56.2%, 49.3 to 55.6%, 80.0 to 88.2%, 52.6 to 65.0%, and 52.0 to 61.5%, respectively. The SD model provided satisfactory estimates of water quality at the outlet throughout both the validation and calibration periods. In addition, we conducted a sensitivity analysis to determine the key parameters of the SD model. This also involved optimization of the N and P removal capacity of FCETS, and their corresponding discharge (Q), and concentration (C) at the inlet. This made it possible to use R and MATLAB to simulate seasonal differences in the removal of N and P. Our results indicate that a FCETS can be used to efficiently remove nutrients from rural wastewater in ponds. In addition, we demonstrated that the SD-based numerical model is a useful management support tool to ensure that decisions are made which result in the stable operation of a FCETS. This illustrates that contamination-free aquaculture from rural inland ponds is a feasible goal.


Subject(s)
Ponds , Water Pollutants , China , Nitrogen/analysis , Ponds/analysis , Wastewater/analysis , Water Pollutants/analysis , Water Quality
20.
Environ Monit Assess ; 194(1): 4, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34870763

ABSTRACT

Deterioration of groundwater quality due to nitrate loss from intensive agricultural systems can only be mitigated if methods for in-situ monitoring of nitrate leaching under active farmers' fields are available. In this study, three methods were used in parallel to evaluate their spatial and temporal differences, namely ion-exchange resin-based Self-Integrating Accumulators (SIA), soil coring for extraction of mineral N (Nmin) from 0 to 90 cm in Mid-October (pre-winter) and Mid-February (post-winter), and Suction Cups (SCs) complemented by a HYDRUS 1D model. The monitoring, conducted from 2017 to 2020 in the Gäu Valley in the Swiss Central Plateau, covered four agricultural fields. The crop rotations included grass-clover leys, canola, silage maize and winter cereals. The monthly resolution of SC samples allowed identifying a seasonal pattern, with a nitrate concentration build-up during autumn and peaks in winter, caused by elevated water percolation to deeper soil layers in this period. Using simulated water percolation values, SC concentrations were converted into fluxes. SCs sampled 30% less N-losses on average compared to SIA, which collect also the wide macropore and preferential flows. The difference between Nmin content in autumn and spring was greater than nitrate leaching measured with either SIA or SCs. This observation indicates that autumn Nmin was depleted not only by leaching but also by plant and microbial N uptake and gaseous losses. The positive correlation between autumn Nmin content and leaching fluxes determined by either SCs or SIA suggests autumn Nmin as a useful relative but not absolute indicator for nitrate leaching. In conclusion, all three monitoring techniques are suited to indicate N leaching but represent different transport and cycling processes and vary in spatio-temporal resolution. The choice of monitoring method mainly depends (1) on the project's goals and financial budget and (2) on the soil conditions. Long-term data, and especially the combination of methods, increase process understanding and generate knowledge beyond a pure methodological comparison.


Subject(s)
Environmental Monitoring , Nitrates , Agriculture , Nitrates/analysis , Nitrogen Oxides , Soil
SELECTION OF CITATIONS
SEARCH DETAIL