Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.655
Filter
1.
J Fish Biol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992894

ABSTRACT

Haemoglobin concentration ([Hb]) assessment in fish blood has become a routine parameter to measure the health and welfare status of the animals. The original method (haemoglobincyanide method, best known as the Drabkin method) for measuring Hb in human and animals is not well suited for work outside of a laboratory setting. It is relatively time consuming, contains hazardous cyanide elements, and requires specific laboratory material. As an alternative to the Drabkin method, portable analysers have been developed for human blood, but they need to be first validated for fish blood before being used in experiments. In this study, the performance of the new HemoCue Hb 801 portable haemoglobin analyser was compared to the validated Drabkin method to determine [Hb] in three fish species. Hb readings between the two methods were not different for any of the species tested (rainbow trout, Onchorynchus mykiss, Atlantic wolffish, Anarhichas lupus, and Nile tilapia, Oreochromis niloticus). Therefore, this new portable device can be readily used to measure Hb in fish blood. Unlike the previous model from HemoCue, the Hb 201+, this device does not need an incubation time or a correction factor, representing a major gain of time and precision.

2.
Animals (Basel) ; 14(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38997962

ABSTRACT

Aquaculture requires precise non-invasive methods for biomass estimation. This research validates a novel computer vision methodology that uses a signature function-based feature extraction algorithm combining statistical morphological analysis of the size and shape of fish and machine learning to improve the accuracy of biomass estimation in fishponds and is specifically applied to tilapia (Oreochromis niloticus). These features that are automatically extracted from images are put to the test against previously manually extracted features by comparing the results when applied to three common machine learning methods under two different lighting conditions. The dataset for this analysis encompasses 129 tilapia samples. The results give promising outcomes since the multilayer perceptron model shows robust performance, consistently demonstrating superior accuracy across different features and lighting conditions. The interpretable nature of the model, rooted in the statistical features of the signature function, could provide insights into the morphological and allometric changes at different developmental stages. A comparative analysis against existing literature underscores the competitiveness of the proposed methodology, pointing to advancements in precision, interpretability, and species versatility. This research contributes significantly to the field, accelerating the quest for non-invasive fish biometrics that can be generalized across various aquaculture species in different stages of development. In combination with detection, tracking, and posture recognition, deep learning methodologies such as the one provided in the latest studies could generate a powerful method for real-time fish morphology development, biomass estimation, and welfare monitoring, which are crucial for the effective management of fish farms.

3.
Animals (Basel) ; 14(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38997987

ABSTRACT

Cartilaginous fish face significant threats due to overfishing and slow reproductive rates, leading to rapid declines in their populations globally. Traditional capture-based surveys, while valuable for gathering ecological information, pose risks to the health and survival of these species. Baited Remote Underwater Video Systems (BRUVS) offer a non-invasive alternative, allowing for standardized surveys across various habitats with minimal disturbance to marine life. This study presents a comprehensive review of BRUVS applications in studying cartilaginous fish, examining 81 peer-reviewed papers spanning from 1990 to 2023. The analysis reveals a significant increase in BRUVS usage over the past three decades, particularly in Australia, South Africa, and Central America. The most common BRUVS configurations include benthic setups, mono-camera systems, and the use of fish from the Clupeidae and Scombridae families as bait. BRUVS have been instrumental in studying 195 chondrichthyan species, providing insights into up to thirteen different aspects of the life histories. Moreover, BRUVS facilitate the monitoring of endangered and data-deficient species, contributing crucial data for conservation efforts. Overall, this study underscores the value of BRUVS as a powerful tool for studying and conserving cartilaginous fish populations worldwide.

4.
Animals (Basel) ; 14(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998011

ABSTRACT

The confinement of transgenic fish is essential to prevent their escape and reproduction in natural ecosystems. Reversible transgenic sterilization is a promising approach to control the reproduction of transgenic fish. Therefore, the present study was conducted to develop a reversibly sterile channel catfish (Ictalurus punctatus) via the transgenic overexpression of the goldfish (Carassius auratus) glutamic acid decarboxylase (GAD) gene driven by the common carp (Cyprinus carpio) ß-actin promoter to disrupt normal gamma-aminobutyric acid (GABA) regulation. Three generations of GAD-transgenic fish were produced. All studied generations showed repressed reproductive performance; however, this was not always statistically significant. In F1, 5.4% of the transgenic fish showed a sexual maturity score ≥ 4 (maximum = 5) at five years of age, which was lower (p = 0.07) than that of the control group (16.8%). In the spawning experiments conducted on F1 transgenic fish at six and nine years of age, 45.5% and 20.0% of fish spawned naturally, representing lower values (p = 0.09 and 0.12, respectively) than the percentages in the sibling control fish of the same age (83.3% and 66.7%, respectively). Four of six pairs of the putative infertile six-year-old fish spawned successfully after luteinizing hormone-releasing hormone analog (LHRHa) therapy. Similar outcomes were noted in the three-year-old F2 fish, with a lower spawning percentage in transgenic fish (20.0%) than in the control (66.7%). In one-year-old F2-generation transgenic fish, the observed mean serum gonadotropin-releasing hormone (GnRH) levels were 9.23 ± 2.49 and 8.14 ± 2.21 ng/mL for the females and males, respectively. In the control fish, the mean levels of GnRH were 11.04 ± 4.06 and 9.03 ± 2.36 ng/mL for the females and males, respectively, which did not differ significantly from the control (p = 0.15 and 0.27 for females and males, respectively). There was no significant difference in the estradiol levels of the female transgenic and non-transgenic fish in the one- and four-year-old F2-generation fish. The four-year-old F2-generation male transgenic fish exhibited significantly (p < 0.05) lower levels of GnRH and testosterone than the control fish. In conclusion, while overexpressing GAD repressed the reproductive abilities of channel catfish, it did not completely sterilize transgenic fish. The sterilization rate might be improved through selection in future generations.

5.
Animals (Basel) ; 14(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998085

ABSTRACT

The experiment was conducted to evaluate the supplementary effects of gamma aminobutyric acid (GABA) and sodium butyrate (SB) when a graded level of fish meal (FM) was replaced with soy protein concentrate (SPC) in diets for juvenile red seabream (Pagrus major). A control diet was designed to contain 60% FM (F60). Two other diets were formulated by reducing FM levels to 40% and 20% with SPC (F40 and F20). Six more diets were formulated by adding 0.02% GABA or 0.2% SB to each F60, F40 and F20 diets (F60G, F60S, F40G, F40S, F20G and F20S). Each diet was randomly assigned to a triplicate group of fish (5.52 g/fish) and provided for eight weeks. Final body weight, weight gain and specific growth rate of fish fed F60G, F60S, F40G and F40S diets were comparable and significantly higher (p < 0.05) than other groups. The growth of fish fed SB-containing diets was significantly increased (p < 0.05) compared to fish fed the respective control diets. The feed efficiency and protein efficiency ratios were significantly higher (p < 0.05) in the fish fed all diets containing 60% and 40% FM compared to F20 and F20G groups. The F40S diet resulted in the highest feed utilization values. The F20S group exhibited significantly higher (p < 0.05) feed utilization than the F20 and F20G groups. Serum lysozyme activity was significantly higher (p < 0.05) in fish fed the GABA- and SB-containing diets compared to the F20 group. The F60S group exhibited the highest lysozyme activity which was significantly higher (p < 0.05) than in the F20 and F40 groups. Therefore, the growth performance, feed utilization and innate immunity of red seabream can be enhanced by dietary supplementation with GABA or SB in low-FM diets containing SPC. The FM level in the juvenile red seabream diet can be reduced to 40% with SPC and GABA or SB while maintaining performance better than a diet containing 60% FM.

6.
One Health ; 18: 100685, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39010965

ABSTRACT

Transmission of extended-spectrum ß-lactamase (ESBL) genes has increased the global prevalence of ESBL-producing bacteria, especially in developing countries. Human infection with these bacteria may be food-mediated but has not been fully elucidated. Therefore, we aimed to examine ESBL-producing bacteria in edible river fish and elucidate their potential for horizontal gene transfer. A total of 173 ESBL-producing Enterobacterales were isolated (Escherichia coli [n = 87], Klebsiella pneumoniae [n = 52], Enterobacter cloacae complex [n = 18], Citrobacter freundii complex [n = 14], Atlantibacter hermannii [n = 1] and Serratia fonticola [n = 1]) from 56 of 80 fish intestinal contents sampled. Among the bacterial bla CTX-M genotypes, bla CTX-M-55 was the most predominant, followed by bla CTX-M-15, bla CTX-M-27, and bla CTX-M-65. Furthermore, we found that ESBL-producing Enterobacterales were able to transfer their bla CTX-M genes to E. coli. In summary, our results suggest that ESBL-producing Enterobacterales transfer bla CTX-M to indigenous gut E. coli in humans, following the consumption of contaminated fish.

7.
Comp Biochem Physiol B Biochem Mol Biol ; 274: 111006, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977177

ABSTRACT

Psalidodon bifasciatus is a fish species sensitive to physical and chemical changes in water. It serves as a good bioindicator of temperature variations and is utilized in environmental monitoring studies in Brazilian rivers. The objective of this study was to evaluate antioxidant defense biomarkers in the heart, brain, and muscle of P. bifasciatus exposed to a 10 °C thermal increase. P. bifasciatus were collected and divided into a control group (21 °C) and groups subjected to thermal shock (31 °C) for periods of 2, 6, 12, 24, and 48h. Two-way ANOVA indicated that a 10 °C temperature increase caused oxidative stress in P. bifasciatus. This was evidenced by altered levels of lipid peroxidation (LPO), carbonylated proteins (PCO), and glutathione peroxidase (GPx) in the heart, catalase (CAT) and LPO in the brain, and LPO in the muscle. Principal component analysis (PCA) and integrated biomarker response (IBR) analysis indicated that, compared to the heart and muscle, the brain exhibited a greater activation of the antioxidant response. Sensitivity analysis indicated that the muscle was the most sensitive organ, followed by the brain and heart. Our results indicate that the stress response is tissue-specific through the activation of distinct mechanisms. These responses may be associated with the tissue's function as well as its energy demand. As expected, P. bifasciatus showed changes in response to thermal stress, with the brain showing the greatest alteration in antioxidant defenses and the muscle being the most sensitive tissue.

8.
Cancers (Basel) ; 16(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001512

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by multiple copy number alterations (CNAs) and somatic mutations that are central to disease prognosis, risk stratification, and mechanisms of therapy resistance. Fluorescence in situ hybridization (FISH) panels are widely used in clinical applications as the gold standard for screening prognostic chromosomal abnormalities in CLL. DNA sequencing is an alternative approach to identifying CNAs but is not an established method for clinical CNA screening. We sequenced DNA from 509 individuals with CLL or monoclonal B-cell lymphocytosis (MBL), the precursor to CLL, using a targeted sequencing panel of 59 recurrently mutated genes in CLL and additional amplicons across regions affected by clinically relevant CNAs [i.e., del(17p), del(11q), del(13q), and trisomy 12]. We used the PatternCNV algorithm to call CNA and compared the concordance of calling clinically relevant CNAs by targeted sequencing to that of FISH. We found a high accuracy of calling CNAs via sequencing compared to FISH. With FISH as the gold standard, the specificity of targeted sequencing was >95%, sensitivity was >86%, positive predictive value was >90%, and negative predictive value was >84% across the clinically relevant CNAs. Using targeted sequencing, we were also able to identify other common CLL-associated CNAs, including del(6q), del(14q), and gain 8q, as well as complex karyotype, defined as the presence of 3 or more chromosomal abnormalities, in 26 patients. In a single and cost-effective assay that can be performed on stored DNA samples, targeted sequencing can simultaneously detect CNAs, somatic mutations, and complex karyotypes, which are all important prognostic features in CLL.

9.
Environ Sci Technol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39003765

ABSTRACT

Perfluoroethylcyclohexane sulfonate (PFECHS) is an emerging per- and polyfluoroalkyl substance used to replace perfluorooctane sulfonate (PFOS), mainly in aircraft hydraulic fluids. However, previous research indicates the potential neurotoxicity of this replacement chemical. In this study, marine medaka (Oryzias melastigma) was exposed to environmentally relevant concentrations of PFECHS (concentrations: 0, 0.08, 0.26, and 0.91 µg/L) from the embryonic stage for 90 days. After exposure, the brain and eyes of the medaka were collected to investigate the bioconcentration potential of PFECHS stereoisomers and their effects on the nervous systems. The determined bioconcentration factors (BCFs) of PFECHS ranged from 324 ± 97 to 435 ± 89 L/kg and from 454 ± 60 to 576 ± 86 L/kg in the brain and eyes of medaka, respectively. The BCFs of trans-PFECHS were higher than those of cis-PFECHS. PFECHS exposure significantly altered γ-aminobutyric acid (GABA) levels in the medaka brain and disrupted the GABAergic system, as revealed by proteomics, implying that PFECHS can disturb neural signal transduction like PFOS. PFECHS exposure resulted in significant alterations in multiple proteins associated with eye function in medaka. Abnormal locomotion was observed in PFECHS-exposed medaka larvae, which was rescued by adding exogenous GABA, suggesting the involvement of disrupted GABA signaling pathways in PFECHS neurotoxicity.

10.
J Hazard Mater ; 476: 135187, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39003804

ABSTRACT

Fish represent a significant source of nutrients but also cause negative health effects due to their bioaccumulation capacity for pollutants. The aim of this study was to examine the transfer of metals from the water of several rivers (Somes, Tisa, Sasar, Lapus, Lapusel) to fish (Caras sp) tissue (subcutaneous fat, muscles, liver, intestines, kidneys, gills, brain, and eyes) and to identify and assess the carcinogenic and non-carcinogenic health risks of Arsenic (As), Cadmium (Cd), Nickel (Ni), Manganese (Mn), Cooper (Cu), Lead (Pb), Chromium (Cr) and Zinc (Zn) through the ingestion of fish (muscles and subcutaneous fat tissues). The obtained results indicated that a diet consisting of fish is particularly vulnerable, particularly in children compared to adults. The risk assessment results were below the threshold limit, although the fish samples contained heavy metals, with values exceeding the permitted limits of Fe (4.41-1604 mg/kg), Cr (727-4155 µg/kg), Zn (4.72-147 mg/kg), and Ni (333-2194 µg/kg). The studied surface waters are characterized by low and high degrees of pollution with heavy metals, as indicated by the heavy metal pollution index scores (HPI: 12.4-86.4) and the heavy metal evaluation index scores (HEI: 1.06-17.6). The considerable pollution levels are attributed to the high Mn content (0.61-49.7 µg/kg), which exceeded the limit up to fifty times. A consistent set of physico-chemical analysis (pH, electrical conductivity, total hardness, turbidity, chloride, sulphate, nitrate, nitrite, ammonium, Ca, Mg, Na, K) was analysed in water samples as well. Considering the water quality index scores (WQI: 16.0-25.2), the surface waters exhibited good quality. Microbiological results indicated the presence of Listeria monocytogenes and atypical colonies of coagulase-positive staphylococcus in fish. In contrast, the surface waters from which fish samples were collected were positive for Escherichia coli, and coliform bacteria intestinal Enterococci. Based on the study's results, it is recommended to exercise caution in the case of children related to the consumption of fish and using the waters for drinking purposes. This study provides important data of considerable novelty to the riparian population, researchers, and even policy makers on the quality status and potential levels of contamination of river waters, fish and the bioaccumulation of heavy metals in fish that may cause adverse effects on human health if consumed, and similarly the heavy metal pollution degree of waters and the non-carcinogenic risk of heavy metals through ingestion and skin absorption of water in children and adults (the study area is a significant source of fisheries).

11.
Mar Pollut Bull ; 206: 116691, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39004057

ABSTRACT

This study examines microplastic (MP, 1-5 mm) densities in convergence zones in a coastal sea, the Seto Inland Sea, comparing them to those of non-convergence zones and other areas. Notably, Seto convergence zones exhibit MP densities 40 to 300 times higher than non-convergence zones, with an extraordinary density of 3.7 ± 6.3 pieces m-3, similar to densities found in Tokyo Bay as known a MP hotspot. The predominant polymer found was expanded polystyrene, varying seasonally and peaking in summer. Juvenile fish associated with driftweed in these convergence zones face a risk of long-term MP exposure, potentially up to four months. This large number of MPs found in coastal convergence zones is similar to accumulation zones formed in the gyres of open oceans, with strong implications for detrimental effects on coastal marine life. However, these MPs are autochthonous, and may be manageable through local marine plastic waste management.

12.
Sci Total Environ ; : 174752, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004360

ABSTRACT

Global warming has significantly altered fish distribution patterns in the ocean, shifting towards higher latitudes and deeper waters. This is particularly relevant in high-latitude marine ecosystems, where climate-driven environmental changes are occurring at higher rates than the global average. Species Distribution Models (SDMs) are increasingly being used for predicting distributional shifts in habitat suitability for marine species as a response to climate change. Here, we used SDMs to project habitat suitability changes for a range of high-latitude, pelagic and benthopelagic commercial fish species and crustaceans (10 species); from 1850 to two future climate change scenarios (SSP1-2.6: low climate forcing; and SSP5-8.5: high climate forcing). The study includes 11 Large Marine Ecosystems (LME) spanning South America, Southern Africa, Australia, and New Zealand. We identified declining and southward-shifting patterns in suitable habitat areas for most species, particularly under the SSP5-8.5 scenario and for some species such as Argentine hake (Merluccius hubbsi) in South America, or snoek (Thyrsites atun) off Southern Africa. Geographical constraints will likely result in species from Southern Africa, Australia, and New Zealand facing the most pronounced habitat losses due to rising sea surface temperatures (SST). In contrast, South American species might encounter greater opportunities for migrating southward. Additionally, the SSP5-8.5 scenario predicts that South America will be more environmentally stable compared to other regions. Overall, our findings suggest that the Patagonian shelf could serve as a climate refuge, due to higher environmental stability highlighting the importance of proactive management strategies in this area for species conservation. This study significantly contributes to fisheries and conservation management, providing valuable insights for future protection efforts in the Southern Hemisphere.

13.
Environ Res ; : 119612, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004394

ABSTRACT

Fish consumption can increase purine load in human body, and the enrichment of mercury in fish may affect the glomerular filtration function, both resulting in increased serum uric acid (SUA) levels. The data of blood mercury (BHg), fish consumption frequency and SUA levels of 7,653 participants aged 18 years or older was from China National Human Biomonitoring (2017-2018). The relationships between fish consumption frequency, ln-transformed BHg and SUA levels were explored through weighted multiple linear regressions. The mediating effect of BHg levels between fish consumption frequency and SUA levels was evaluated by mediation analysis. We found that both the fish consumption frequency and BHg were positively associated with SUA levels in both sexes. Compared to participants who had never consumed fish, participants who consumed fish once a week or more had higher SUA levels [ß (95% confidence interval, CI): 20.39 (2.16, 38.62) in males; ß (95% CI): 10.06 (0.76, 19.37) in females] and ln-transformed BHg [ß (95% CI): 0.97 (0.61, 1.34) in males; ß (95% CI): 0.84 (0.63, 1.05) in females]. Each 1-unit increase in ln-transformed BHg, the SUA levels rose by 4.78 (95% CI: 0.01, 9.54) µmol/L for males and 3.81 (95% CI: 1.60, 6.03) µmol/L for females. The relation between fish consumption with SUA levels was mediated by ln-transformed BHg with the percent mediated of 34.66% in males and 26.58% in females. It revealed that BHg played mediating roles in the elevation of SUA levels caused by fish consumption. This study's findings could promote the government to intervene in mercury pollution in fish, so as to ensure the safety of fish consumption.

14.
Oecologia ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004619

ABSTRACT

Throughout the world, anthropogenic pressure on natural ecosystems is intensifying, notably through urbanisation, economic development, and tourism. Coral reefs have become exposed to stressors related to tourism. To reveal the impact of human activities on fish communities, we used COVID-19-related social restrictions in 2021. In French Polynesia, from February to December 2021, there was a series of restrictions on local activities and international tourism. We assessed the response of fish populations in terms of changes in the species richness and density of fish in the lagoon of Bora-Bora (French Polynesia). We selected sites with varying human pressures-some dedicated to tourism activities, others affected by boat traffic, and control sites with little human presence. Underwater visual surveys demonstrated that fish density and richness differed spatially and temporally. They were lowest on sites affected by boat traffic regardless of pandemic-related restrictions, and when activities were authorised; they were highest during lockdowns. Adult fish density increased threefold on sites usually affected by boat traffic during lockdowns and increased 2.7-fold on eco-tourism sites during international travel bans. Human activities are major drivers of fish density and species richness spatially across the lagoon of Bora-Bora but also temporally across pandemic-related restrictions, with dynamic responses to different restrictions. These results highlight the opportunity provided by pauses in human activities to assess their impact on the environment and confirm the need for sustainable lagoon management in Bora-Bora and similar coral reef settings affected by tourism and boat traffic.

15.
Philos Trans R Soc Lond B Biol Sci ; 379(1908): 20230178, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39005032

ABSTRACT

Environmental DNA metabarcoding (eDNA metaB) is fundamental for monitoring marine biodiversity and its spread in coastal ecosystems. We applied eDNA metaB to seawater samples to investigate the spatiotemporal variability of plankton and small pelagic fish, comparing sites with different environmental conditions across a coast-to-offshore gradient at river mouths along the Campania coast (Italy) over 2 years (2020-2021). We found a marked seasonality in the planktonic community at the regional scale, likely owing to the hydrodynamic connection among sampling sites, which was derived from numerical simulations. Nonetheless, spatial variability among plankton communities was detected during summer. Overall, slight changes in plankton and fish composition resulted in the potential reorganization of the pelagic food web at the local scale. This work supports the utility of eDNA metaB in combination with hydrodynamic modelling to study marine biodiversity in the water column of coastal systems. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , DNA, Environmental , Fishes , Food Chain , Plankton , Animals , Fishes/genetics , Fishes/physiology , Italy , DNA, Environmental/analysis , Plankton/genetics , Plankton/physiology , Seawater , Spatio-Temporal Analysis , Seasons
16.
J Fish Biol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007200

ABSTRACT

The Doradidae fishes constitute one of the most diverse groups of Neotropical freshwater environments. Acanthodoradinae is the oldest lineage and the sister group to all other thorny catfishes, and it includes only the genus Acanthodoras. The diversity of Acanthodoras remains underestimated, and the use of complementary approaches, including genetic studies, is an important step to better characterize this diversity and the relationships among the species within the genus. Therefore, we conducted a comprehensive analysis using conventional cytogenetic techniques and physical mapping of three multigene families (18S and 5S ribosomal DNA [rDNA], U2 small nuclear DNA [snDNA]) and four microsatellite motifs, namely (AC)n, (AT)n, (GA)n, and (GATA)n, in two sympatric species from the Negro River: Acanthodoras cataphractus and Acanthodoras cf. polygrammus. We found significant differences in constitutive heterochromatin (CH) content, distribution of the microsatellite (AT)n, and the number of 5S rDNA and U2 snDNA sites. These differences may result from chromosome rearrangements and repetitive DNA dispersal mechanisms. Furthermore, the characterization of the diploid number (2n) of these Acanthodoras species enables us to propose 2n = 58 chromosomes as the plesiomorphic 2n state in Doradidae based on ancestral state reconstruction. Acanthodoradinae is the oldest lineage of the thorny catfishes, and knowledge about its cytogenetic patterns is crucial for disentangling the karyotype evolution of the whole group. Thus, this study contributes to the understanding of the mechanisms behind chromosome diversification of Doradidae and highlights the importance of Acanthodoradinae in the evolutionary history of thorny catfishes.

17.
Bioresour Technol ; : 131107, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009051

ABSTRACT

In the recirculating aquaculture systems (RAS), waste management of nutrient-rich byproducts accounts for 30-50% of the whole production costs. Integrating microalgae into RAS offers complementary solutions for transforming waste streams into valuable co-products. This review aims to provide an overview of recent advances in microalgae application to enhance RAS performance and derive value from all waste streams by using RAS effluents as microalgal nutrient sources. Aquaculture solid waste can be converted by hydrothermal liquefaction (HTL), then the resultant aqueous phase of HTL can be used for microalgae cultivation. In addition, microalgae generate the required oxygen while sequestering carbon dioxide. The review suggests a novel integrated system focusing on oxygenation and carbon dioxide capture along with recent technological developments concerning efficient microalgae cultivation and nutrient recovery techniques. In such system, microalgae-based biorefineries provide environmentally-conscious and economically-viable pathways for enhanced RAS performance and conversion of effluents into high-value products.

18.
Sci Total Environ ; : 174780, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009167

ABSTRACT

The fish processing industry generates a significant amount of waste, and the recycling of this waste is an issue of global concern. We sought to utilize the heads of cutlassfish (Trichiurus lepturus), which are typically discarded during processing, to produce peptone, which is an important source of amino acids for microbial growth and recombinant protein production. Cutlassfish head muscle (CHM) were isolated, and the optimal protease and reaction conditions for peptone production were determined. The resulting peptone contained 12.22 % total nitrogen and 3.19 % amino nitrogen, with an average molecular weight of 609 Da (Da), indicating efficient hydrolysis of CHM. Growth assays using Escherichia coli have shown that cutlassfish head peptone (CP) supports similar or superior growth compared to other commercial peptones. In addition, when recombinant chitosanase from Bacillus subtilis and human superoxide dismutase were produced in E. coli, CP gave the highest expression levels among six commercial peptones tested. In addition, the expression levels of chitosanase and superoxide dismutase were 20 % and 32 % higher, respectively, in CP medium compared to the commonly used Luria-Bertani (LB) medium. This study demonstrates the potential of using cuttlassfish waste in the production of microbial media, thereby adding significant value to fish waste. The results contribute to sustainable waste management practices and open avenues for innovative uses of fish processing by-products in biotechnological applications.

19.
J Food Prot ; : 100328, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009284

ABSTRACT

Histamine is one of the biogenic amines produced naturally in the human body, but also in foods, especially those rich in protein. Exogenous and endogenous histamine is subject to degradation in vivo, but in the case of sensitive groups, including children, these degradation processes may be less intense, resulting adverse health effects from histamine excess. The aim of the study was to determine the histamine content in jarred baby foods containing fish, taking into account the selected product characteristics and storage conditions. The study included 140 meals with added fish, intended for infants and young children, from 5 leading manufacturers available in Poland. The infant meals were analyzed on the day of opening, after 24 h and 48 h of storage in the refrigerator and at room temperature. Histamine concentration was determined by ELISA. The THQ was calculated from the EDI values for histamine. Histamine was present in all analyzed baby foods. On the day of opening, the products had a lower content of this monoamine (Me=2.59 mg/kg), which increased systematically during storage. Samples taken at 2° C after 48 hours showed an average histamine content of 4.4 mg/kg, while products stored at 22° C at the same time showed a 1.8-fold higher concentration of this monoamine (Me=7.9 mg/kg). Dishes containing tuna and sea fish had higher histamine levels on average than those containing pollock. The storage conditions of the children's food had a significant effect on histamine concentration. The level of histamine in baby foods was related to the amount and type of fish in certain products. The results indicate the need for increased awareness of the risks associated with histamine, especially in a group of people with increased sensitivity to this amine, which may include infants and young children.

20.
Mol Ecol Resour ; : e13989, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946220

ABSTRACT

Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.

SELECTION OF CITATIONS
SEARCH DETAIL
...