Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
BMC Vet Res ; 20(1): 371, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155372

ABSTRACT

BACKGROUND: Colibacillosis in broiler chickens is associated with economic loss and localized or systemic infection. Usually, the last resort is antibacterial therapy. Insight into the disease pathogenesis, host responses and plausible immunomodulatory effects of the antibacterials is important in choosing antibacterial agent and optimization of the treatment. Selected responses of broiler chickens experimentally infected with Escherichia coli (E. coli) and also those treated with florfenicol are evaluated in this study. Chickens (n = 70, 5 weeks old) were randomly assigned to four groups. The control groups included normal control (NC) and intratracheal infection control (ITC) (received sterile bacterial medium). The experimental groups consisted of intratracheal infection (IT) that received bacterial suspension and intratracheal infection with florfenicol administration (ITF) group. RESULTS: Florfenicol reversed the decreased albumin/globulin ratio to the level of control groups (p > 0.05). Serum interleukin 10 (IL-10) and interferon-gamma (IFN-γ) concentrations decreased in IT birds as compared to NC group. Florfenicol decreased the serum interleukin 6 (IL-6) concentration as compared to IT group. Milder signs of inflammation, septicemia, and left shift were observed in the leukogram of the ITF group. Florfenicol decreased the severity of histopathological lesions in lungs and liver. Depletion of lymphoid tissue was detected in spleen, thymus and bursa of IT group but was absent in ITF birds. The number of colony forming units of E. coli in liver samples of ITF group was only slightly lower than IT birds. CONCLUSIONS: Experimental E. coli infection of chickens by intratracheal route is associated with remarkable inflammatory responses as shown by changes in biochemical and hematological parameters. Histopathological lesions in lymphoid organs (especially in the spleen) were also prominent. Florfenicol has positive immunomodulatory effects and improves many of the lesions before the full manifestation of its antibacterial effects. These effects of florfenicol should be considered in pharmacotherapy decision-making process.


Subject(s)
Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Poultry Diseases , Thiamphenicol , Animals , Thiamphenicol/analogs & derivatives , Thiamphenicol/therapeutic use , Thiamphenicol/pharmacology , Thiamphenicol/administration & dosage , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Poultry Diseases/drug therapy , Poultry Diseases/microbiology , Poultry Diseases/immunology , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli/drug effects
2.
Environ Toxicol Pharmacol ; 110: 104533, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39127436

ABSTRACT

The frequent occurrence of antibiotics in the aquatic environment has engendered negative impacts on non-target organisms. The effects of the veterinary antibiotic florfenicol (FLO) during the embryo-larval development of the sea urchin, Paracentrotus lividus was assessed using four increasing concentrations (1, 2, 5 and 10 mg/L). Furthermore, FLO toxicity to adults was investigated through the analysis of oxidative damage, histopathological alterations, lipid metabolism and acetylcholinesterase activity following an exposure period of 96 h. FLO induced embryotoxicity with estimated EC50 values of 5.75, 7.56 and 3.29 mg/L after 12 h, 24 h and 48 h, respectively. It generated oxidative stress assessed as lipid peroxidation in gonads despite the increased antioxidant activity of catalase (CAT). Neurotoxicity was also evident since the AChE activity significantly decreased. Moreover, FLO affected the lipid metabolism by increasing saturated fatty acid (SFA) and monounsaturated fatty acid proportions (MUFA), except in the group exposed to 5 mg/L. The increase in polyunsaturated fatty acid (PUFA) levels and docosahexaenoic acid (DHA, C22:6n-3) proportions were noted with all FLO concentrations. Eicosapentaenoic acid (EPA, C20:5n-3) decreased, while arachidonic acid (ARA, C20:4n-6) increased in sea urchins exposed to 5 and 10 mg/L FLO. Histopathological alterations of gonadal tissues represent an additional confirmation about the toxicity of this antibiotic that might decrease the reproductive performance of this species. Nevertheless, even if reproduction of sea urchins would be partially successful, the embryotoxicity would compromise the normal development of the embryos with consequences on the population.

3.
J Hazard Mater ; 478: 135470, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128152

ABSTRACT

The effects of co-exposure to antibiotics and microplastics in agricultural systems are still unclear. This study investigated the effects of florfenicol (FF) and polystyrene microplastics (PS-MPs) on photosynthetic carbon assimilation in rice seedlings. Both FF and PS-MPs inhibited photosynthesis, while PS-MPs can alleviate the toxicity of FF. Chlorophyll synthesis genes (HEMA, HEMG, CHLD, CHLG, CHLM, and CAO) were down-regulated, whereas electron transport chain genes (PGR5, PGRL1A, PGRL1B, petH, and ndhH) were up-regulated. FF inhibited linear electron transfer (LET) and activated cyclic electron transfer (CET), which was consistent with the results of the chlorophyll fluorescence parameters. The photosynthetic carbon assimilation pathway was altered, the C3 pathway enzyme Ribulose1,5-bisphosphatecarboxylase/oxygenase (RuBisCO) was affected, C4 enzyme ((phosphoenolpyruvate carboxykinase (PEPCK), pyruvate orthophosphate dikinase (PPDK), malate dehydrogenase (MDH), and phosphoenolpyruvate carboxylase (PEPC))) and related genes were significantly up-regulated, suggesting that the C3 pathway is converted to C4 pathway for self-protection. The key enzymes involved in photorespiration, glycolate oxidase (GO) and catalase (CAT), responded positively, photosynthetic phosphorylation was inhibited, and ATP content and H+-ATPase activity were suppressed, nutrient content (K, P, N, Ca, Mg, Fe, Cu, Zn, Mn, and Ni) significantly affected. Transcriptomic analysis showed that FF and PS-MPs severely affected the photosynthetic capacity of rice seedlings, including photosystem I, photosystem II, non-photochemical quenching coefficients, and photosynthetic electron transport.

4.
Talanta ; 280: 126759, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180878

ABSTRACT

Enrofloxacin (ENRO) and florfenicol (FF) are animal-specific drugs, but they present great harm to human health. Therefore, it is essential to rapidly and accurately detect ENRO and FF in animal-derived foods simultaneously. Herein, dual-template molecular imprinted polymers (MIPs) with specific recognition of ENRO and FF were prepared, meanwhile, the molar ratios of templates to monomer and cross-linker were optimized and then applied as a bionic antibody to experiment. Based on the principle that the fluorescence of QDs could be efficiently quenched by the enzymatic fabrication of Prussian blue nanoparticles (PBNPs), a novel and sensitive fluorescence quenching biomimetic enzyme-linked immunosorbent assay (BELISA) was established for simultaneous detection of ENRO and FF by the conversion of the absorption signal into fluorescent signals. Under optimal conditions, the detection limit (IC15) was 4.64 ng L-1 for ENRO and 1.33 ng L-1 for FF. Besides, matrix interference of chicken, eggs, milk and shrimp samples, was investigated in our study, and the result indicates that all of the sample matrices had a profound impact on the fluorescence of QDs, especially for milk samples (with Im of 94.10 %). After performing the matrix-elimination experiments, chicken, eggs, milk and shrimp samples spiked with ENRO and FF were extracted and detected by this proposed method, with recoveries ranging from 82.70 to 113.48 %. The results correlated well with those obtained using HPLC. In conclusion, the developed method could be an alternative and sensitive method for the simultaneous detection of ENRO and FF in animal-derived foods.

5.
J Hazard Mater ; 478: 135496, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39181000

ABSTRACT

Aiming at the coexistence of antibiotics and Cu(II) in livestock wastewater, a novelty strategy for the simultaneous removal of antibiotics and Cu ions by in-situ utilization of Cu(II) (i.e., CP/Cu(II) and CP/Cu(II)/ascorbic acid (AA) systems) was proposed. The removal rate of florfenicol (FF) in the CP/Cu(II)/AA system was 6.9 times higher than that of the CP/Cu(II) system. CP/Cu(II)/AA system was also effective in removing antibiotics from real livestock tailwater. Simultaneously, the removal of Cu ions in CP/Cu(II) and CP/Cu(II)/AA systems could reach 54.5 % and 15.7 %, respectively. The added AA could significantly enhance the antibiotics degradation but inhibit the Cu ions removal. HO•, O2•-, Cu(III), and •C-R were detected in the CP/Cu(II)/AA system, in which HO• was confirmed as the predominant contributor for FF degradation, and Cu(III) and •C-R also participated in FF elimination. The role of AA could accelerate HO• production and Cu(I)/Cu(II)/Cu(III) cycle, and form •C-R. The degradation products and pathways of FF in the CP/Cu(II)/AA system were proposed and the toxicity of the degradation products was evaluated by the toxicity analysis software (T.E.S.T). The results of this work suggest that without introducing complex catalysts, the feasibility of in-situ utilization of Cu(II) inherently or artificially introduced in livestock wastewater activating CP for antibiotic degradation and Cu ions removal was verified.

6.
Antibiotics (Basel) ; 13(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39200007

ABSTRACT

Linezolid is a critically important antimicrobial used in human medicine. While linezolid is not licensed for food-producing animals, the veterinary use of other antimicrobials, such as phenicols (e.g., florfenicol), could cross/co-select for linezolid-resistant (LR) bacteria. Such LR strains pose a great concern for public health due to their potential transfer between animals and humans. This study explored possible associations between epidemiological risk factors, including phenicol use, and the occurrence of LR bacteria, such as enterococci and staphylococci, in poultry, pigs, and veal calves in Belgium. Florfenicol use significantly increased the likelihood of harboring LR bacteria in veal calves, sows, and fattening pigs, particularly for the digestive tract (odds ratio (OR): [3.19-5.29]) and the respiratory tract (OR: [6.11-9.09]). LR strains from feces from fattening pigs were significantly associated with production type (OR: [3.31-44.14]) and the presence of other animal species (OR: 0.41). The occurrence of LR strains in the respiratory tract from sows was also significantly associated with using antimicrobials other than florfenicol (OR: 10.07) and purchasing animals (OR: 7.28). Our study highlights the potential risks of using certain veterinary antimicrobials, such as florfenicol, in food-producing animals and emphasizes the need for responsible antimicrobial use to safeguard both animal and public health.

7.
Article in English | MEDLINE | ID: mdl-39197412

ABSTRACT

This study concerns the synthesis of the florfenicol (FF) metabolites florfenicol amine (FFA), florfenicol alcohol (FFOH), and monochloroflorfenicol (FFCl), for their subsequent use as reference standards in On-line solid-phase extraction-ultra high-performance liquid chromatography-tandem mass spectrometry (SPE-UHPLC-MS/MS) analysis. The metabolites were characterized using 1H and 13C NMR, as well as HRMS, and their purities were confirmed by quantitative NMR to ensure analytical reliability. Validation of the developed analytical method showed that it presented acceptable performance, with linearity >0.99 for all the target analytes, accuracies within ±10 % of nominal concentrations, and intra- and inter-day precisions within 15 %. Application of this method to fillets from fish that had been treated with florfenicol (dose of 10 mg/kg bw daily) demonstrated its effectiveness in consistently detecting FF and its metabolites throughout the treatment. The results emphasized the utility of the method for enhancing pharmacokinetic and residue depletion research. The ability to precisely monitor the drug and its metabolites in treated fish provides important insights into florfenicol metabolism, laying the groundwork for further comprehensive profiling studies of metabolites in fish tissue.

8.
Electrophoresis ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034741

ABSTRACT

Detection of florfenicol (FF) residues in animal-derived foods, as one of the most widely used antibiotics, is critically important to food safety. The fluorescent molecularly imprinted polymer (MIP) was synthesized by surface-initiated atom transfer radical polymerization technique with poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, 4-vinylpyridine, ethylene glycol dimethacrylate, and FF as the matrix, functional monomer, crosslinker, and template molecule, respectively. Meanwhile, N-S co-doped carbon dot (CD) was synthesized with triammonium citrate and thiourea as precursors under microwave irradiation at 400 W for 2.5 min and then integrated into FF-MIP to obtain CD@FF-MIP. For comparison, non-imprinted polymer (NIP) without FF was also prepared. The adsorption capacity of CD@FF-MIP to FF reached 53.1 mg g-1, which was higher than that of FF-MIP (34.7 mg g-1), whereas the adsorption capacity of NIP was only 17.3 mg g-1. The adsorption equilibrium of three materials was reached within 50 min. Particularly, CD@FF-MIP exhibited an excellent fluorescence quenching response to FF in the concentration range of 3-50 µmol L-1. As a result, CD@FF-MIP was successfully utilized to extract FF in milk samples, which were analyzed by high-performance liquid chromatography. The standard recoveries were 95.8%-98.2%, and the relative standard deviation was 1.6%-4.2%. The method showed the advantages of simple operation, high sensitivity, excellent selectivity, and low cost, and also demonstrated a great application prospect in food detection.

9.
R Soc Open Sci ; 11(7): 231642, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39076368

ABSTRACT

Two rapid, simple, sensitive and selective derivative spectrofluorimetric methods (first and second derivative synchronous spectrofluorimetric (FDSFS and SDSFS) procedures) have been developed for the analysis of florfenicol in the presence of its various degradation products. FDSFS was applied to assay the drug in the presence of its alkaline, oxidative and photolytic degradation products while SDSFS was used to quantify it in the presence of its acidic degradation product. These methods permitted quantification of florfenicol at corresponding λ Em of 288, 287, 279 and 284 nm without interferences from any of its degradation products. Full validation procedures were applied to the suggested method according to International Conference of Harmonization guidelines. Moreover, different degradation kinetic parameters were calculated such as half-life (t 1/2), degradation rate constant (K) and activation energy (E a). Using the analytical eco-scale, green analytical procedure index and analytical greenness metric approach AGREE as greenness assessment tools, the proposed method was found to be environmentally friendly.

10.
Food Chem X ; 23: 101598, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39071929

ABSTRACT

Using a hydrothermal technique, a highly sensitive metal-organic Cu-MOFs sensor has been created to detect florfenicol (FFC) fluorescent in chicken meat. The sensor has demonstrated the ability to respond to the presence of FFC in an aqueous solution with accuracy and selectivity, as evidenced by an increase in fluorescence intensity. The interactions and adsorption mechanism based on hydrogen bonding, π- π, and n-π interactions demonstrate the high sensitivity and specificity of Cu-MOFs towards. FFC was detected quantitatively with a recovery of 96.48-98.79% in chicken meat samples. Within a broad linear range of 1-50 µM, the Cu-MOFs nanosensor exhibits a fast response time of 1 min, a low limit of detection (LOD) of 2.93 µM, and a limit of quantification (LOQ) of 8.80 µM. The potential applicability of the Cu-MOFs nanosensor for the detection of FFC in food matrices is confirmed by the results obtained with high-performance liquid chromatography (HPLC). Chemical compounds: Copper (II) nitrate (PubChem CID: 18616); Terephthalic acid (PubChem CID: 7489); Polyvinyl pyrrolidone (PubChem CID: 486422059); N, N-dimethylformamide (PubChem CID: 6228); Ethyl alcohol (PubChem CID: 702); Hydrochloric acid (PubChem CID: 313); Sodium hydroxide (PubChem CID: 14798); Acetic acid (PubChem CID: 176); Trichloroacetic acid (PubChem CID: 6421); Florfenicol (PubChem CID: 114811).

11.
Int J Pharm ; 662: 124499, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39033938

ABSTRACT

To reduce the bitterness of florfenicol, avoid its degradation by gastric acid, and enhance its antibacterial activity against Escherichia coli by targeting and slowly releasing drugs at the site of intestinal infection, with pectin as an anion carrier and chitosan oligosaccharides (COS) as a cationic carrier, florfenicol-loaded COS@pectin core nanogels were self-assembled by electrostatic interaction and then encapsulated in sodium carboxymethylcellulose (CMCNa) shell nanogels through the complexation of CMCNa and Ca2+ to prepare florfenicol core-shell composite nanogels in this study. The florfenicol core-shell composite nanogels were investigated for their formula choice, physicochemical characterization, pH-responsive performances, antibacterial activity, therapeutic efficacy, and in vitro and in vivo biosafety studies. The results indicated that the optimized formula was 0.6 g florfenicol, 0.79 g CMCNa, 0.30 g CaCl2, 0.05 g COS, and 0.10 g pectin, respectively. In addition, the mean particle diameter, polydispersity index, zeta potential, loading capacity, and encapsulation efficiency were 124.0 ± 7.2 nm, -22.9 ± 2.5 mV, 0.42 ± 0.03, 43.4 % ± 3.1 %, and 80.5 % ± 3.4 %, respectively. The appearance, lyophilized mass, resolvability, scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and fourier transform infrared (FTIR) showed that the florfenicol core-shell composite nanogels were successfully prepared. Florfenicol core-shell composite nanogels had satisfactory stability, rheology, and pH-responsiveness, which were conducive to avoid degradation by gastric acid and achieve targeted and slow release at intestinal infection sites. More importantly, florfenicol core-shell composite nanogels had excellent antibacterial activity against Escherichia coli, a satisfactory therapeutic effect, and good palatability. In vitro and in vivo biosafety studies suggested the great promise of florfenicol core-shell composite nanogels. Therefore, the prepared florfenicol core-shell composite nanogels may be helpful for the treatment of bacterial enteritis as a biocompatible oral administration.


Subject(s)
Anti-Bacterial Agents , Chitosan , Escherichia coli , Pectins , Thiamphenicol , Thiamphenicol/analogs & derivatives , Thiamphenicol/administration & dosage , Thiamphenicol/chemistry , Thiamphenicol/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/administration & dosage , Animals , Escherichia coli/drug effects , Pectins/chemistry , Administration, Oral , Drug Carriers/chemistry , Drug Liberation , Nanogels/chemistry , Carboxymethylcellulose Sodium/chemistry , Male , Hydrogen-Ion Concentration , Mice , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Particle Size , Polyethylene Glycols/chemistry , Polyethylene Glycols/administration & dosage , Nanoparticles/chemistry
12.
Vet Microbiol ; 296: 110186, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068769

ABSTRACT

Actinobacillus pleuropneumoniae is responsible for porcine pleuropneumonia, a highly contagious lung infection. The control of this respiratory disease remains heavily reliant on antibiotics, with phenicols being one of the primary classes of antibiotics used in pig farming. In the present study, we describe three isolates (B2278, B2176 and B2177) of A. pleuropneumoniae resistant to florfenicol attributed to the presence of the floR gene, which were obtained from two pig farms in Italy. Florfenicol susceptibility tests indicated that B2176 exhibited an intermediate susceptibility profile, while B2177 and B2278 were resistant. All three isolates belonged to serovar 6 and tested positive for the presence of the floR gene. Whole genome sequencing analysis revealed that isolates B2176, B2177 and B2278 harbored genes encoding the toxins ApxII and ApxIII, characteristic of strains with moderate virulence. Moreover, phylogenetic analysis demonstrated that these isolates were closely related, with single nucleotide polymorphisms (SNPs) ranging from 8 to 19. The floR gene was located on a novel 5588 bp plasmid, designated as pAp-floR. BLASTN analysis showed that the pAp-floR plasmid had high nucleotide identity (99 %) and coverage (60 %) with the pMVSCS1 plasmid (5621 bp) from Mannheimia varigena MVSCS1 of porcine origin. Additionally, at least under laboratory conditions, pAp-floR was stably maintained even in the absence of direct selective pressure, suggesting that it does not impose a fitness cost. Our study underscores the necessity of monitoring the spread of florfenicol-resistant A. pleuropneumoniae isolates in the coming years.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Anti-Bacterial Agents , Drug Resistance, Bacterial , Swine Diseases , Thiamphenicol , Animals , Actinobacillus pleuropneumoniae/drug effects , Actinobacillus pleuropneumoniae/genetics , Actinobacillus pleuropneumoniae/isolation & purification , Actinobacillus pleuropneumoniae/classification , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacology , Swine , Italy/epidemiology , Swine Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Actinobacillus Infections/microbiology , Actinobacillus Infections/veterinary , Drug Resistance, Bacterial/genetics , Phylogeny , Microbial Sensitivity Tests , Whole Genome Sequencing , Farms , Pleuropneumonia/microbiology , Pleuropneumonia/veterinary , Plasmids/genetics , Bacterial Proteins/genetics , Polymorphism, Single Nucleotide , Virulence/genetics
13.
Food Chem ; 457: 139648, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38908249

ABSTRACT

Florfenicol (F), an antimicrobial agent exclusive to veterinary use within the chloramphenicol class, is extensively applied as a broad-spectrum remedy for animal diseases. Despite its efficacy, concerns arise over potential deleterious residues in animal-derived edibles, posing threats to human health. This study pioneers an innovative approach, introducing a quantum dot fluorescence-based immunoassay (FLISA) for the meticulous detection of F residues in animal-derived foods and feeds. This method demonstrates heightened sensitivity, with a detection limit of 0.3 ng/mL and a quantitative detection range of 0.6-30.4 ng/mL. Method validation, applied to diverse food sources, yields recoveries from 90.4 % to 109.7 %, featuring RSDs within 1.3 % to 8.7 %, the results showed high consistency with the national standard HPLC-MS/MS detection method. These findings underscore the method's accuracy and precision, positioning it as a promising tool for swift and reliable F residue detection, with substantial implications for fortifying food safety monitoring.


Subject(s)
Anti-Bacterial Agents , Food Contamination , Quantum Dots , Thiamphenicol , Quantum Dots/chemistry , Thiamphenicol/analysis , Thiamphenicol/analogs & derivatives , Food Contamination/analysis , Animals , Anti-Bacterial Agents/analysis , Immunoassay/methods , Sulfides/analysis , Sulfides/chemistry , Zinc Compounds/chemistry , Drug Residues/analysis , Antibodies/chemistry , Animal Feed/analysis , Limit of Detection , Cadmium Compounds/chemistry , Fluorescence , Chickens
14.
J Proteome Res ; 23(7): 2397-2407, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38904328

ABSTRACT

Protein succinylation modification is a common post-translational modification (PTM) that plays an important role in bacterial metabolic regulation. In this study, quantitative analysis was conducted on the succinylated proteome of wild-type and florfenicol-resistant Vibrio alginolyticus to investigate the mechanism of succinylation regulating antibiotic resistance. Bioinformatic analysis showed that the differentially succinylated proteins were mainly enriched in energy metabolism, and it was found that the succinylation level of phosphoenolpyruvate carboxyl kinase (PEPCK) was highly expressed in the florfenicol-resistant strain. Site-directed mutagenesis was used to mutate the lysine (K) at the succinylation site of PEPCK to glutamic acid (E) and arginine (R), respectively, to investigate the function of lysine succinylation of PEPCK in the florfenicol resistance of V. alginolyticus. The detection of site-directed mutagenesis strain viability under florfenicol revealed that the survival rate of the E mutant was significantly higher than that of the R mutant and wild type, indicating that succinylation modification of PEPCK protein may affect the resistance of V. alginolyticus to florfenicol. This study indicates the important role of PEPCK during V. alginolyticus antibiotic-resistance evolution and provides a theoretical basis for the prevention and control of vibriosis and the development of new antibiotics.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Lysine , Protein Processing, Post-Translational , Thiamphenicol , Vibrio alginolyticus , Thiamphenicol/pharmacology , Thiamphenicol/analogs & derivatives , Thiamphenicol/metabolism , Vibrio alginolyticus/genetics , Vibrio alginolyticus/drug effects , Vibrio alginolyticus/metabolism , Drug Resistance, Bacterial/genetics , Lysine/metabolism , Anti-Bacterial Agents/pharmacology , Mutagenesis, Site-Directed , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Succinic Acid/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/genetics
15.
Am J Vet Res ; 85(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38744313

ABSTRACT

OBJECTIVE: To determine antibiotic levels in plasma and interstitial fluid (ISF) after SC placement of compounded florfenicol (FF) calcium sulfate beads (CSBs) in New Zealand White rabbits (Oryctolagus cuniculus). ANIMALS: 6 juvenile female rabbits (n = 5 treatment and 1 control). METHODS: An ultrafiltration probe and CSBs were placed SC in 6 rabbits (n = 5 for FF CSBs and 1 for control CSBs). Plasma (3, 6, 12, 24, and 48 hours and 7, 14, and 21 days) and ISF (daily for 21 days) samples were collected, and FF was measured by HPLC for pharmacokinetic analysis. Hematology, biochemistry, and histopathology were assessed. RESULTS: Means ± SD for the area under the curve, maximum concentration, time of maximum concentration, terminal half-life, and mean residence time to the last data point for plasma and ISF were 16.63 ± 8.16 and 17,902 ± 7,564 h·µg/mL, 0.79 ± 0.38 and 245 ± 223 µg/mL, 2.90 ± 0.3 and 59 ± 40 hours, 30.81 ± 16.9 and 27.3 ± 9.39 hours, 23.4 ± 10 and 73.7 ± 13 hours, respectively. Plasma FF was < 2 µg/mL at all time points. The ISF FF remained > 8 µg/mL for 109.98 to 231.58 hours. One rabbit death occurred during treatment, but the cause of death was undetermined. Local tissue inflammation was present, but no clinically significant systemic adverse effects were found on hematology, biochemistry, or histopathology in the remaining rabbits. CLINICAL RELEVANCE: Florfenicol CSBs maintained antibiotic concentrations in ISF at levels likely to be effective against bacteria sensitive to > 8 µg/mL for 5 to 10 days while maintaining low (< 2 µg/mL) plasma levels. Florfenicol CSBs may be effective for local antibiotic treatment in rabbit abscesses.


Subject(s)
Anti-Bacterial Agents , Calcium Sulfate , Thiamphenicol , Animals , Rabbits , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacokinetics , Thiamphenicol/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Female , Calcium Sulfate/chemistry , Extracellular Fluid/chemistry , Half-Life , Drug Implants , Area Under Curve
16.
Int J Biol Macromol ; 270(Pt 1): 132381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754664

ABSTRACT

Florfenicol (FF), with its broad-spectrum antibacterial activity, is frequently abused in the livestock and poultry industries and has aroused the growing public concern. Owing to structural similarities and varying maximum residue limits between florfenicol and other chloramphenicol (CAP)-type antibiotics, including thiamphenicol (TAP) and chloramphenicol (CAP), there is an urgent need for a rapid and effective immunoassay method to distinguish them, in order to minimize the risk of false positives. Fortunately, a highly specific monoclonal antibody (mAb), named as SF11, has been developed using hybridoma technology. Molecular simulations have revealed that the mAb SF11's specificity in recognizing florfenicol stems from the π-π stacking interaction between florfenicol and the mAb SF11 binding pocket. Using this highly specific mAb, a sensitive time-resolved fluorescence immunochromatographic assay (TRFICA) strip for rapid florfenicol detection has been developed. Under optimal conditions, this TRFICA demonstrated good analytical performance for the detection of florfenicol in milk and eggs samples, with the half-maximal inhibition concentration (IC50) values of 1.89 and 2.86 ng mL-1, the limit of detection (LOD) of 0.23 and 0.48 ng mL-1, the cut-off values of 62.50 and 31.25 ng mL-1, and the testing time of approximately thirteen minutes. Spiked recoveries in the milk and eggs samples ranged from 104.7 % to 112.3 % and 95.3 % to 116.4 %, respectively, with no obvious cross-reactions with the other analogues observed. The TRFICA results correlated well with those of high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) for real samples, indicating that the developed TRFICA method was sensitive, accurate and adapted for the rapid determination of florfenicol in milk and egg samples.


Subject(s)
Antibodies, Monoclonal , Eggs , Milk , Thiamphenicol , Thiamphenicol/analogs & derivatives , Thiamphenicol/analysis , Milk/chemistry , Animals , Eggs/analysis , Antibodies, Monoclonal/chemistry , Drug Residues/analysis , Immunoassay/methods , Chromatography, Affinity/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Food Contamination/analysis
17.
Environ Toxicol Pharmacol ; 108: 104471, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763438

ABSTRACT

In the study on Oreochromis niloticus, singular oral gavage of florfenicol (FFC) at 15 mg/kg biomass/day was conducted, mimicking approved aquaculture dosing. Samples of plasma, bile, muscle, intestine, skin, liver, kidney, gill, and brain tissues were collected at 0, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, and 128 hours (h) after oral gavage. LC-MS/MS analysis revealed FFC concentrations peaked at 12.15 µg/mL in plasma and 77.92 µg/mL in bile, both at 24 hours. Elimination half-lives were 28.17 h (plasma) and 26.88 h (bile). The residues of FFC ranked muscle>intestine>skin>liver>kidney>gill. In contrast, the residues of florfenicol amine (FFA) ranked kidney>skin>liver>muscle>gill>intestine>brain, particularly notable in tropical summer conditions. The minimum inhibitory concentration of FFC was elucidated against several bacterial pathogens revealing its superior efficacy. Results highlight bile's crucial role in FFC elimination. Further investigation, especially during winter when fish susceptibility to infections rises, is warranted.


Subject(s)
Anti-Bacterial Agents , Cichlids , Drug Residues , Thiamphenicol , Animals , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacokinetics , Thiamphenicol/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Cichlids/metabolism , Bile/chemistry , Bile/metabolism , Administration, Oral , Kidney/metabolism , Microbial Sensitivity Tests , Tissue Distribution , Liver/metabolism , Tandem Mass Spectrometry , Half-Life
18.
Sci Total Environ ; 938: 173417, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38797401

ABSTRACT

Florfenicol, a widely used veterinary antibiotic, has now been frequently detected in various water environments and human urines, with high concentrations. Accordingly, the ecological risks and health hazards of florfenicol are attracting increasing attention. In recent years, antibiotic exposure has been implicated in the disruption of animal glucose metabolism. However, the specific effects of florfenicol on the glucose metabolism system and the underlying mechanisms are largely unknown. Herein, zebrafish as an animal model were exposed to environmentally relevant concentrations of florfenicol for 28 days. Using biochemical and molecular analyses, we found that exposure to florfenicol disturbed glucose homeostasis, as evidenced by the abnormal levels of blood glucose and hepatic/muscular glycogen, and the altered expression of genes involved in glycogenolysis, gluconeogenesis, glycogenesis, and glycolysis. Considering the efficient antibacterial activity of florfenicol and the crucial role of intestinal flora in host glucose metabolism, we then analyzed changes in the gut microbiome and its key metabolite short-chain fatty acids (SCFAs). Results indicated that exposure to florfenicol caused gut microbiota dysbiosis, inhibited the production of intestinal SCFAs, and ultimately affected the downstream signaling pathways of SCFA involved in glucose metabolism. Moreover, non-targeted metabolomics revealed that arachidonic acid and linoleic acid metabolic pathways may be associated with insulin sensitivity changes in florfenicol-exposed livers. Overall, this study highlighted a crucial aspect of the environmental risks of florfenicol to both non-target organisms and humans, and presented novel insights into the mechanistic elucidation of metabolic toxicity of antibiotics.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Liver , Metabolome , Thiamphenicol , Water Pollutants, Chemical , Zebrafish , Animals , Thiamphenicol/analogs & derivatives , Thiamphenicol/toxicity , Gastrointestinal Microbiome/drug effects , Liver/metabolism , Liver/drug effects , Anti-Bacterial Agents/toxicity , Metabolome/drug effects , Water Pollutants, Chemical/toxicity , Glucose/metabolism
19.
Sci Total Environ ; 939: 173645, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38821272

ABSTRACT

Florfenicol resistance genes (FRGs) are widely present in livestock farms. The aim of this study was to evaluate the removal efficiencies of FRGs as well as the relationships between FRGs, mobile genetic elements (MGEs) and bacterial communities during the natural drying (ND) and anaerobic digestion (AD) processes of manure treatment in swine farms by combining bacterial isolation, quantitative PCR and metagenomic approaches. Solid manure showed a higher abundance of FRGs than fresh manure and was the main contamination source of fexA and fexB in ND farms, whilst biogas slurry displayed a lower abundance of FRGs than the wastewater in AD farms. Moreover, fresh manure and wastewater showed a high abundance of optrA, and wastewater was the main contamination source of cfr in both ND and AD farms. Both optrA/fexA-positive enterococci and cfr/fexA-positive staphylococci were mainly isolated along the farms' treatment processes. The cfr-positive staphylococci were highly prevalent in wastewater (57.14 % - 100 %) and may be associated with nasal-derived cfr-positive porcine staphylococci. An increased abundance of Enterococcus, Jeotgalibaca and Vagococcus in the bacterial community structures may account for the high optrA abundance in wastewater and Jeotgalibaca may be another potential host of optrA. Furthermore, the abundance of FRG-related MGEs increased by 22.63 % after the ND process and decreased by 66.96 % in AD farms. A significant correlation was observed between cfr and ISEnfa4, whereas no significance was found between optrA and IS1216E, although IS1216E is the predominant insertion sequence involved in the transfer of optrA. In conclusion, manure and wastewater represented independent pollution sources of FRGs in swine farms. Associated MGEs might play a key role in the transfer and persistence of FRGs. The AD process was more efficient in the removal of FRGs than the ND method, nevertheless a longer storage of slurry may be required for a complete removal.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Manure , Thiamphenicol , Animals , Thiamphenicol/analogs & derivatives , Swine , Drug Resistance, Bacterial/genetics , Wastewater/microbiology , Waste Disposal, Fluid/methods , Animal Husbandry , Genes, Bacterial , Bacteria/genetics
20.
Front Microbiol ; 15: 1368813, 2024.
Article in English | MEDLINE | ID: mdl-38765680

ABSTRACT

Florfenicol (Ff) is an antimicrobial agent belonging to the class amphenicol used for the treatment of bacterial infections in livestock, poultry, and aquaculture (animal farming). It inhibits protein synthesis. Ff is an analog of chloramphenicol, an amphenicol compound on the WHO essential medicine list that is used for the treatment of human infections. Due to the extensive usage of Ff in animal farming, zoonotic pathogens have developed resistance to this antimicrobial agent. There are numerous reports of resistance genes from organisms infecting or colonizing animals found in human pathogens, suggesting a possible exchange of genetic materials. One of these genes is floR, a gene that encodes for an efflux pump that removes Ff from bacterial cells, conferring resistance against amphenicol, and is often associated with mobile genetic elements and other resistant determinants. In this study, we analyzed bacterial isolates recovered in rural Thailand from patients and environmental samples collected for disease monitoring. Whole genome sequencing was carried out for all the samples collected. Speciation and genome annotation was performed revealing the presence of the floR gene in the bacterial genome. The minimum inhibitory concentration (MIC) was determined for Ff and chloramphenicol. Chromosomal and phylogenetic analyses were performed to investigate the acquisition pattern of the floR gene. The presence of a conserved floR gene in unrelated Acinetobacter spp. isolated from human bacterial infections and environmental samples was observed, suggesting multiple and independent inter-species genetic exchange of drug-resistant determinants. The floR was found to be in the variable region containing various mobile genetic elements and other antibiotic resistance determinants; however, no evidence of HGT could be found. The floR gene identified in this study is chromosomal for all isolates. The study highlights a plausible impact of antimicrobials used in veterinary settings on human health. Ff shares cross-resistance with chloramphenicol, which is still in use in several countries. Furthermore, by selecting for floR-resistance genes, we may be selecting for and facilitating the zoonotic and reverse zoonotic exchange of other flanking resistance markers between human and animal pathogens or commensals with detrimental public health consequences.

SELECTION OF CITATIONS
SEARCH DETAIL