Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters











Publication year range
1.
Chemistry ; : e202401669, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970448

ABSTRACT

A green and efficient protocol for the direct monofluorination of unactivated alkylarenes under visible-light irradiation has been developed, without any extraneous transition-metal catalysts or photosensitizers. This method is compatible with a broad spectrum of functional groups, including carboxylic and alcoholic scaffolds, under mild reaction conditions. Gram-scale synthesis of a fluorine-containing pharmaceutical analogue was successfully executed, underscoring the strategy's reliability and practicality. Furthermore, mechanistic studies suggest that a single-electron transfer mechanism might be responsible for the generation of the benzylic radicals in initiation step.

2.
Phytopathology ; 114(6): 1244-1252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38916562

ABSTRACT

Three novel trifluoromethylated compounds were designed and synthesized by reacting trifluoroacetimidoyl chloride derivatives with acetamidine hydrochloride or thiourea in the presence of potassium carbonate or sodium hydrogen carbonate as a base. In vitro and in vivo assays demonstrated the efficacy of the tested compounds in controlling root-knot nematode disease on pistachio rootstocks caused by Meloidogyne incognita. Bis-trifluoromethylated derivatives, namely N,N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (compound A1), showed high efficacy as novel and promising nematicides, achieving up to 78.28% control at a concentration of 0.042 mg/liter. This effect is attributed to four methyl and two trifluoromethyl groups. In the pre-inoculation application of compound A1, all three concentrations (0.033, 0.037, and 0.042 mg/liter, and Velum) exhibited a higher level of control, with 83.79, 87.46, and 80.73% control, respectively. In the microplot trials, compound A1 effectively reduced population levels of M. incognita and enhanced plant growth at a concentration of 0.037 mg/liter. This suggests that compound A1 has the potential to inhibit hedgehog protein and could be utilized to prevent the progression of root-knot disease. Furthermore, the molecular docking results revealed that compounds A1 and A3 interact with specific amino acid residues (Gln60, Asp530, Glu70, Arg520, and Thr510) located in the active site of hedgehog protein. Based on the experimental findings of this study, compound A1 shows promise as a lead compound for future investigations.


Subject(s)
Antinematodal Agents , Molecular Docking Simulation , Pistacia , Plant Diseases , Plant Roots , Tylenchoidea , Animals , Tylenchoidea/drug effects , Antinematodal Agents/pharmacology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Roots/parasitology , Pistacia/chemistry
3.
Angew Chem Int Ed Engl ; 63(30): e202401181, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38725281

ABSTRACT

Developing novel catalysts with potent activity is of great importance in organocatalysis. In this study, we designed and prepared a new class of benzotetramisole Lewis base catalysts (AxBTM) that have both central and axial chirality. This unique feature of these catalysts results in a three-dimensional microenvironment with multi-layers of chirality. The performance of the developed catalysts was tested in a series of cycloaddition reactions. These included the AxBTM-catalyzed (2+2) cycloaddition between α-fluoro-α-aryl anhydride with imines or oxindoles, and the sequential gold/AxBTM-catalyzed (4+2) cycloaddition of enynamides with pentafluorophenyl esters. The interplay between axial and central chirality had a collaborative effect in regulating the stereochemistry in these cycloadditions, leading to high levels of stereoselectivity that would otherwise be challenging to achieve using conventional BTM catalysts. However, the (2+2) and (4+2) cycloadditions have different predilections for axial and central chirality combinations.

4.
Chemosphere ; 358: 142186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701860

ABSTRACT

Fluorinated compounds (FCs) such as sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3) have garnered attention due to their environmental impact. This study investigates the mineralization and removal of two potent FCs: SF6 and NF3. The results confirm that utilizing various oxalate salts leads to the formation of corresponding metallic fluorides: lithium fluoride (LiF), sodium fluoride (NaF), and potassium fluoride (KF), validating the occurrence of mineralization reactions. Among the oxalate salts, sodium oxalate demonstrates the highest mineralization efficiency in both SF6 and NF3 removal. Real-time Fourier transform infrared spectroscopy (FT-IR) gas-phase analysis confirms rapid and complete gas removal within a short reaction time using the selected oxalate salts. Meticulous mass balance calculations revealed that oxalates (LiF, NaF, and KF) yielded sulfur (S) at rates of 92.09%, 91.85%, and 84.98% following SF6 mineralization. Additionally, the conversion rates of oxalates to the corresponding metallic fluorides (LiF, NaF, and KF) after SF6 mineralization were 98.18%, 95.82%, and 95.21%, respectively. Similarly, after NF3 mineralization, these conversion rates stood at 92.18%, 90.67%, and 90.02%, respectively. The removal efficiencies for SF6 (1000 ppm) were 4.98, 12.01, and 7.23 L/g, while those for NF3 (1000 ppm) were 14.1, 12.6, and 11.7 L/g, respectively. Notably, sodium oxalate exhibits superior effectiveness, achieving 100% SF6 conversion within 30 min and 100% NF3 conversion within 50 min. This work underscores the potential of oxalate mineralization as a promising strategy for efficient and rapid removal of potent fluorinated compounds, paving the way for environmentally benign FC remediation techniques with broader implications for sustainable gas treatment technologies.


Subject(s)
Fluorides , Greenhouse Gases , Oxalates , Sulfur Hexafluoride , Oxalates/chemistry , Sulfur Hexafluoride/chemistry , Fluorides/chemistry , Greenhouse Gases/analysis , Spectroscopy, Fourier Transform Infrared , Environmental Restoration and Remediation/methods
5.
Molecules ; 29(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543045

ABSTRACT

Due to the specific properties provided by fluorine atoms to biomolecules, amino acids with fluorinated side chains are of great interest for medicinal chemistry and chemical biology. Among them, α-fluoroalkyl-α-amino acids constitute a unique class of compounds. In this review, we outline the strategies adopted for their syntheses in enantiopure or enantioenriched forms and their incorporation into peptides. We then describe the consequences of the introduction of fluorine atoms in these compounds for the modulation of their hydrophobicity and the control of their conformation. Emerging applications are presented in the areas of enzyme inhibition, medicinal chemistry, hydrolytic stability of peptides, antimicrobial peptides, PET, and 19F NMR probes.


Subject(s)
Amino Acids , Fluorine , Fluorine/chemistry , Amino Acids/chemistry , Peptides/chemistry , Molecular Conformation
6.
Chemistry ; 30(21): e202400108, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38318729

ABSTRACT

Organic molecules containing fluorine and sulfur atoms represent a large percentage of approved pharmaceuticals. Those with combination of both S and F atoms in their structure such as Xtandi, approved in 2012 for prostate cancer, indicates the importance of synthetic methods that accommodates both atoms in an organic moiety. In this study, a novel aspect of sulfoxonium ylide reactivity was explored, unveiling a streamlined and mild synthesis method for gem-difluorinated keto-sulfoxides. Our protocol offers a direct and practical approach to prepare these compounds in 14-80 % chemical yields, that were represented by 21 examples. NMR studies and Hammett correlations gave strong evidence about the mechanism of this transformation.

7.
Sci Total Environ ; 916: 170142, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38242458

ABSTRACT

A group of fluorinated organic molecules known as per- and poly-fluoroalkyl substances (PFAS) have been commonly produced and circulated in the environment. PFAS, owing to multiple strong CF bonds, exhibit exceptional stability and possess a high level of resistance against biological or chemical degradation. Recently, PFAS have been identified to cause numerous hazardous effects on the biotic ecosystem. As a result, extensive efforts have been made in recent years to develop effective methods to remove PFAS. Adsorption, filtration, heat treatment, chemical oxidation/reduction, and soil washing are a few of the physicochemical techniques that have shown their ability to remove PFAS from contaminated matrixes. However these methods also carry significant drawbacks, including the fact that they are expensive, energy-intensive, unsuitable for in-situ treatment, and requirement to be carried under dormant conditions. The metabolic products released upon PFAS degradation are largely unknown, despite the fact that thermal disintegration methods are widely used. In contrast to physical and chemical methods, biological degradation of PFAS has been regarded as efficient method. However, PFAS are difficult to instantly and completely metabolize through biological methods due to the limitations of biocatalytic mechanisms. Nevertheless, cost, easy-to-operate and environmentally safe are some of the advantages over its counterpart. The present review comprehensively discusses the occurrence of PFAS, the state-of-the science of remediation technologies and approaches applied, and the remediation challenges. The article also focuses on the future research directions toward the development of effective methods for PFAS-contaminated site in-situ treatment.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Ecosystem , Adsorption , Biocatalysis , Filtration
8.
Chemistry ; 30(4): e202302328, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37974320

ABSTRACT

Perfluorination brings about distinctive properties arising from the unusual nature of the F element, which have been extensively developed in materials science and chemistry. Herein we report that the construction of F-rich inner space within a hollowed Mo132 O372 cage ([Mo132 O372 (OCOR)30 (H2 O)72 ]42- ) leads to the emergence of unique guest binding activities in encapsulation. Prominently, the trifluoroacetate-modified cage (R=CF3 , 2) having as many as 90 F groups inside favors trapping cyclopentadiene (Cp), which is hardly trapped by the non-fluorinated counterpart (R=CH3 , 1). Systematic studies using related hydrocarbons show that the amount of the encapsulated guest is correlated with the unsaturation degree of the guests, implying the involvement of the attractive interaction of the CF3 -modified interior wall with the guest π-electron clouds. Control experiments using the semi-fluorinated analogues (R=CF2 H, CFH2 ) reveal that the perfluorination is a critical factor to facilitate the Cp encapsulation by 2, indicating that collective effects of polar C-F bonds spreading over the interior surface, rather than the polarity of the individual C-F bonds, are responsible. We also provide a successful example of the physical molecular confinement within the cage through the "ship-in-a-bottle" Diels-Alder reaction between trapped diene and dienophile.

9.
Anal Sci ; 40(1): 219-223, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37838626

ABSTRACT

NMR screening methods based on 19F spin-spin relaxation time (19F-T2) were applied to fluorinated compounds bound to human serum albumin. Diflunisal and fleroxacin (the fluorinated compounds) contain two and three fluorine atoms per molecule, respectively, and are suitable as the model system for 19F NMR analysis. It was shown that 19F-T2 was more sensitive in monitoring the binding affinity to the target protein than 19F spin-lattice relaxation time (19F-T1). The comparisons of 19F signal intensities acquired at different echo times using 19F-T2 pulse sequence were also shown to be an effective means of assessing complex formation for fluorinated compounds.


Subject(s)
Fluorine , Proteins , Humans , Magnetic Resonance Spectroscopy/methods , Fluorine/chemistry , Serum Albumin, Human , Fleroxacin
10.
Chemistry ; 30(10): e202302936, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38012074

ABSTRACT

Protein engineering of cytochrome P450s has enabled these biocatalysts to promote a variety of abiotic reactions beyond nature's repertoire. Integrating such non-natural transformations with microbial biosynthetic pathways could allow sustainable enzymatic production of modified natural product derivatives. In particular, trifluoromethylation is a highly desirable modification in pharmaceutical research due to the positive effects of the trifluoromethyl group on drug potency, bioavailability, and metabolic stability. This study demonstrates the biosynthesis of non-natural trifluoromethyl-substituted cyclopropane derivatives of natural monoterpene scaffolds using an engineered cytochrome P450 variant, P411-PFA. P411-PFA successfully catalyzed the transfer of a trifluoromethyl carbene from 2-diazo-1,1,1-trifluoroethane to the terminal alkenes of several monoterpenes, including L-carveol, carvone, perilla alcohol, and perillartine, to generate the corresponding trifluoromethylated cyclopropane products. Furthermore, integration of this abiotic cyclopropanation reaction with a reconstructed metabolic pathway for L-carveol production in Escherichia coli enabled one-step biosynthesis of a trifluoromethylated L-carveol derivative from limonene precursor. Overall, amalgamating synthetic enzymatic chemistry with established metabolic pathways represents a promising approach to sustainably produce bioactive natural product analogs.


Subject(s)
Biological Products , Cyclohexane Monoterpenes , Cytochrome P-450 Enzyme System , Cytochrome P-450 Enzyme System/metabolism , Monoterpenes/metabolism , Escherichia coli/metabolism , Cyclopropanes/chemistry , Biological Products/metabolism
11.
Molecules ; 28(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38138492

ABSTRACT

This work presents the synthesis and self-organization of the calamitic fluorinated mesogen, 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-4-iodobutoxy)ethanesulfonic acid, a potential model for perfluorosulfonic acid membranes (PFSA). The compound is derived in three steps from 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-2-iodoethoxy)ethanesulfonyl fluoride, achieving a 78% overall yield. The resulting compound exhibits intricate thermal behavior. At 150 °C, a crystal-to-crystal transition is observed due to the partial disordering of calamitic molecules, which is followed by isotropization at 218 °C. Upon cooling, sample ordering occurs through the formation of large smectic liquid crystalline phase domains. This thermotropic state transforms into a layered crystal phase at lower temperatures, characterized by alternating hydrophilic and hydrophobic layers. Using X-ray diffraction, crystalline unit cell models at both room temperature and 170 °C were proposed. Computer simulations of the molecule across varying temperatures support the idea that thermal transitions correlate with a loss of molecular orientation. Importantly, the study underscores the pivotal role of precursor self-organization in aligning channels during membrane fabrication, ensuring controlled and oriented positioning.

12.
Eur J Med Chem ; 260: 115758, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37657268

ABSTRACT

Fluorine-containing small molecules have occupied a special position in drug discovery research. The successful clinical use of fluorinated corticosteroids in the 1950s and fluoroquinolones in the 1980s led to an ever-increasing number of approved fluorinated compounds over the last 50 years. They have shown various biological properties such as antitumor, antimicrobial, and anti-inflammatory activities. Fluoro-pharmaceuticals have been considered a strong and practical tool in the rational drug design approach due to their benefits from potency and ADME (absorption, distribution, metabolism, and excretion) points of view. Herein, approved fluorinated drugs from 2015 to 2022 were reviewed.


Subject(s)
Drug Design , Fluorine , Drug Discovery , Fluoroquinolones
13.
Environ Sci Pollut Res Int ; 30(50): 108393-108410, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37775629

ABSTRACT

The C-F bonds, due to their many unique features, have been incorporated into numerous compounds in countless products and applications. These fluorinated compounds eventually are disposed of and released into the environment through different pathways. In this review, we analyzed the occurrence of these fluorinated compounds in seven types of products (i.e., refrigerants/propellants, aqueous film-forming foam, cosmetics, food packaging, agrochemicals, pharmaceuticals, coating materials) and discussed their fate in the environment. This is followed by describing the quantity of fluorinated compounds from each source based on available data. Total on- and off-site disposal or other releases of 536 fluorinated compounds in 2021 were analyzed using the data sourced from the U.S. EPA Toxics Release Inventory (TRI). Among the chemicals examined, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) were the primary contributors in terms of total mass. Upon examining the seven sources of fluorinated compounds, it became evident that additional contributors are also responsible for the presence of organofluorine compounds in the environment. Although various toxic degradation products of fluorinated compounds could form in the environment, trifluoroacetic acid (TFA) was specifically highlighted in this review given the fact that it is a common dead-end degradation product of > 1 million chemicals. This paper ended with a discussion of several questions raised from this study. The path forward was elaborated as well for the purpose of protecting the environment and human health.


Subject(s)
Chlorofluorocarbons , Chlorofluorocarbons/chemistry
14.
Life (Basel) ; 13(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37511891

ABSTRACT

A series of Schiff base ligands obtained by the condensation of trans-cyclohexane-1,2-diamine and fluorinated benzaldehydes were prepared, followed by their reduction with NaBH4. The reduced ligands were employed in the synthesis of zinc complexes of the general formula [ZnCl2(L)]. The structures of both the original and the reduced Schiff bases, as well as of the zinc complexes, were characterized by single-crystal X-ray analysis, along with NMR and IR spectroscopy. The antimicrobial activities of the reduced Schiff bases and their zinc complexes were evaluated in vitro against E. coli, S. aureus, and C. albicans. The compounds containing the 4-(trifluoromethylphenyl) moiety showed marked antibacterial activity. Interestingly, the antimicrobial effect of the zinc complex with this moiety was significantly higher than that of the corresponding free reduced ligand, comparable with ciprofloxacin used as standard. Thus, a synergic effect upon the complexation with zinc can be inferred.

15.
Sci Total Environ ; 859(Pt 1): 159923, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36356761

ABSTRACT

Global DNA methylation levels in peripheral blood leukocytes can be a biomarker for cancer risk; however, levels can be changed by various factors such as environmental pollutants. We investigated the association between serum concentrations of perfluoroalkyl substances (PFASs) and global DNA methylation levels of leukocytes in a cross-sectional study using the control group of a Japanese breast cancer case-control study [397 women with a mean age of 54.1 (SD 10.1) years]. Importantly, our analysis distinguished branched PFAS isomers as different from linear isomers. The serum concentrations of 20 PFASs were measured by in-port arylation gas-chromatography negative chemical ionization mass spectrometry. Global DNA methylation levels in peripheral blood leukocytes were measured using a luminometric methylation assay. Associations between log10-transformed serum PFAS concentrations and global DNA methylation levels were evaluated by regression coefficients in multivariable robust linear regression analyses. Serum concentrations of 13 PFASs were significantly associated with increased global DNA methylation levels in leukocytes. Global DNA methylation was significantly increased by 1.45 %-3.96 % per log10-unit increase of serum PFAS concentration. Our results indicate that exposure to PFASs may increase global DNA methylation levels in peripheral blood leukocytes of Japanese women.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Humans , Female , Middle Aged , Cross-Sectional Studies , DNA Methylation , Case-Control Studies , East Asian People , Gas Chromatography-Mass Spectrometry
16.
Sci Total Environ ; 859(Pt 2): 160267, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36402331

ABSTRACT

This study investigated the properties of bioaccumulation, tissue-specific accumulation, and depuration of liquid crystal monomers (LCMs) in adult zebrafish (Danio rerio) exposed to a mixture of 39 LCMs for 19 days followed by depuration for 12 days. Tissue-specific accumulation of LCMs was examined at the time point of day 19, and we observed that the distribution of LCMs varied among different tissues with the following order of Σ39LCM concentrations, the intestine > brain > gill > liver > muscle. We also observed that the bioaccumulation potential of LCMs varied among LCM groups with different functional groups, and LCMs with the cyan group were prone to accumulate in zebrafish. Among the 39 target LCMs, nine exhibited bioconcentration factors (BCFs) >1000, indicating their great bioaccumulation potential in aquatic environments. The experimental BCFs of 22 LCMs in the present study were lower than the theoretical values predicted by the Estimation Programs Interface (EPI) Suite software developed by U.S. Environmental Protection Agency (USEPA), suggesting that their bioaccumulation potential might be overestimated by theoretical estimation techniques. Another interesting finding was the significant positive correlation relationship in both sexes of zebrafish (p < 0.01, r2 = 0.66 for male; p < 0.01, r2 = 0.41 for female) between logBCFww and logKow values of LCMs. Overall, this study provides fundamental information regarding the bioaccumulation potentials of LCMs, which could be helpful for further investigating the health risks of LCMs in aquatic environments.


Subject(s)
Liquid Crystals , Water Pollutants, Chemical , Animals , Female , Male , Zebrafish , Water Pollutants, Chemical/metabolism , Bioaccumulation , Gills/metabolism
17.
Biochimie ; 202: 123-135, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963462

ABSTRACT

Amyloidosis, commonly known as amyloid-associated diseases, is characterized by improperly folded proteins accumulating in tissues and eventually causing organ damage, which is linked to several disorders ranging from neurodegenerative to peripheral diseases. It has an enormous societal and financial impact on the global health sector. Due to the complexity of protein misfolding and intertwined aggregation, there are no effective disease-modifying medications at present, and the condition is likely mis/non-diagnosed half of the time. Nonetheless, over the last two decades, substantial research into aggregation processes has revealed the possibilities of new intervention approaches. On the other hand, fluorine has been a rising star in therapeutic development for numerous neurodegenerative illnesses and other peripheral diseases. In this study, we revised and emphasized the possible significance of fluorine-modified therapeutic molecules and fluorine-modified nanoparticles (NPs) in the modulation of amyloidogenic proteins, including insulin, amyloid beta peptide (Aß), prion protein (PrP), transthyretin (TTR) and Huntingtin (htt).


Subject(s)
Amyloidosis , Fluorine , Humans , Fluorine/therapeutic use , Amyloid beta-Peptides , Amyloidosis/drug therapy , Amyloidogenic Proteins , Insulin
18.
Eur J Med Chem ; 236: 114329, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35397400

ABSTRACT

The incorporation of the fluorine motif is a strategy widely applied in drug design for modulating the activity, physicochemical parameters, and metabolic stability of chemical compounds. In this study, we attempted to reduce the affinity for ether-à-go-go-related gene (hERG) channel by introducing fluorine atoms in a group of 1H-pyrrolo[3,2-c]quinolines that are capable of inhibiting monoamine oxidase type B (MAO-B). A series of structural modifications guided by in vitro evaluation of MAO-B inhibition and antitargeting for hERG channels were performed, which led to the identification of 1-(3-chlorobenzyl)-4-(4,4-difluoropiperidin-1-yl)-1H-pyrrolo[3,2-c]quinoline (26). Compound 26 acted as a reversible MAO-B inhibitor exhibiting selectivity over 45 targets, enzymes, transporters, and ion channels, and showed potent glioprotective properties in cultured astrocytes. In addition, the compound demonstrated good metabolic stability in rat liver microsomes assay, a favorable safety profile, and brain permeability. It also displayed procognitive effects in the novel object recognition test in rats and antidepressant-like activity in forced swim test in mice. The findings of the study suggest that reversible MAO-B inhibitors can have potential therapeutic applications in Alzheimer's disease.


Subject(s)
Monoamine Oxidase Inhibitors , Quinolines , Animals , Brain/metabolism , Fluorine/pharmacology , Mice , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Quinolines/metabolism , Rats
19.
Anal Sci ; 38(5): 825-829, 2022 May.
Article in English | MEDLINE | ID: mdl-35318618

ABSTRACT

The 1H{19F} saturation transfer difference (STD) experiment presented here incorporates the WATERGATE W5 sequence to observe protein-ligand interactions in a human serum albumin (HSA)-fleroxacin complex. In conventional STD experiments, 1H of proteins are first saturated, and the ligands bound to these proteins are then observed. The method proposed here reverses this process: fluorine atoms in fleroxacin are selectively saturated, and saturation transfer then occurs to protons of fleroxacin as well as to those of HSA. The combined use of the present 1H{19F} STD and conventional STD methods is expected to provide better insight in the analysis of the role of fluorine atoms in a fluorinated compound.


Subject(s)
Fleroxacin , Protons , Binding Sites , Fluorine/chemistry , Humans , Ligands , Magnetic Resonance Spectroscopy/methods , Protein Binding , Proteins/chemistry , Serum Albumin, Human/chemistry
20.
Appl Microbiol Biotechnol ; 105(21-22): 8033-8058, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34625820

ABSTRACT

Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.


Subject(s)
Fluorine , Halogenation , Aldehyde-Lyases , Catalysis , Transaminases
SELECTION OF CITATIONS
SEARCH DETAIL