Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1266947, 2023.
Article in English | MEDLINE | ID: mdl-38152403

ABSTRACT

Recent research has revealed the significant impact of novel feed ingredients on fish gut microbiota, affecting both the immune status and digestive performance. As a result, analyzing the microbiota modulatory capabilities may be a useful method for assessing the potential functionality of novel ingredients. Therefore, this study aimed to evaluate the effects of dietary polychaete meal (PM) from Alitta virens on the autochthonous and allochthonous gut microbiota of European seabass (Dicentrarchus labrax). Two diets were compared: a control diet with 25% fishmeal (FM) and a diet replacing 40% of fishmeal with PM, in a 13-week feeding trial with juvenile fish (initial weight of 14.5 ± 1.0 g). The feed, digesta, and mucosa-associated microbial communities in fish intestines were analyzed using high-throughput sequencing of the 16S rRNA gene on the Illumina MiSeq platform. The results of feed microbiota analyses showed that the PM10 feed exhibited a higher microbial diversity than the FM diet. However, these feed-associated microbiota differences were not mirrored in the composition of digesta and mucosal communities. Regardless of the diet, the digesta samples consistently exhibited higher species richness and diversity than the mucosa samples. Overall, digesta samples were characterized by a higher abundance of Firmicutes in PM-fed fish. In contrast, at the gut mucosa level, the relative abundances of Mycobacterium, Taeseokella and Clostridium genera were lower in the group fed the PM10 diet. Significant differences in metabolic pathways were also observed between the FM and PM10 groups in both mucosa and digesta samples. In particular, the mucosal pathways of caffeine metabolism, phenylalanine metabolism, and sulfur relay system were significantly altered by PM inclusion. The same trend was observed in the digesta valine, leucine, and isoleucine degradation and secretion pathways. These findings highlight the potential of PM as an alternative functional ingredient in aquafeeds with microbiota modulatory properties that should be further explored in the future.


Subject(s)
Bass , Gastrointestinal Microbiome , Animals , Diet , Gastrointestinal Microbiome/genetics , Mucous Membrane , RNA, Ribosomal, 16S/genetics
2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36751104

ABSTRACT

Red clover produces isoflavones, including biochanin A, which have been shown to have microbiological effects on the rumen while also promoting growth in beef cattle. The objective was to determine if supplementation of biochanin A via red clover hay would produce similar effects on the rumen microbiota and improve growth performance of lambs. Twenty-four individually-housed Polypay ram lambs (initial age: 114 ± 1 d; initial weight: 38.1 ± 0.59 kg) were randomly assigned to one of three experimental diets (85:15 concentrate:roughage ratio; N = 8 rams/treatment): CON-control diet in which the roughage component (15.0%, w/w, of the total diet) consisted of orchardgrass hay; 7.5-RC-red clover hay substituted for half (7.5%, w/w, of the total diet) of the roughage component; and 15-RC-the entire roughage component (15.0%, w/w, of the total diet) consisted of red clover hay. Feed intake and weight gain were measured at 14-d intervals for the duration of the 56-d trial, and rumen microbiological measures were assessed on days 0, 28, and 56. Red clover supplementation impacted growth performance of ram lambs. Average daily gains (ADG) were greater in ram lambs supplemented with red clover hay (7.5-RC and 15-RC) than for those fed the CON diet (P < 0.05). Conversely, dry matter intake (DMI) was lower in 7.5-RC and 15-RC than for CON lambs (P = 0.03). Differences in ADG and DMI resulted in greater feed efficiency in ram lambs supplemented with red clover hay (both 7.5-RC and 15-RC) compared to CON (P < 0.01). Rumen microbiota were also altered by red clover supplementation. The total viable number of hyper-ammonia-producing bacteria in 7.5-RC and 15-RC decreased over the course of the experiment and were lower than CON by day 28 (P ≤ 0.04). Amylolytic bacteria were also lower in 15-RC than in CON (P = 0.03), with a trend for lower amylolytic bacteria in 7.5-RC (P = 0.08). In contrast, there was tendency for greater cellulolytic bacteria in red clover supplemented lambs than in CON (P = 0.06). Red clover supplementation also increased fiber utilization, with greater ex vivo dry matter digestibility of hay for both 7.5-RC and 15-RC compared to CON by day 28 (P < 0.03). Results of this study indicate that low levels of red clover hay can elicit production benefits in high-concentrate lamb finishing systems through alteration of the rumen microbiota.


Red clover is rich in the bioactive isoflavone, biochanin A. The goal was to evaluate the impacts of biochanin A supplementation via red clover hay on growth performance of ram lambs as well as the rumen microbiota and fermentation. Low levels of red clover hay inclusion (7.5% and 15.0%, w/w, of the total diet) in high-concentrate finishing diets improved feed efficiency of ram lambs, promoting weight gain while decreasing feed intake. Red clover hay supplementation suppressed ruminal protein-wasting, peptide- and amino-acid degrading and starch-utilizing bacteria compared to control diets without isoflavones. Red clover hay also promoted fiber degrading bacteria and fiber utilization. Lamb growth and microbiological effects of red clover were consistent regardless of supplementation level in the diet. Results of this study indicate that low levels of red clover hay can produce production benefits in lamb finishing systems and demonstrated the efficacy of red clover as a functional feed, or feed with biological activities, in the context of its traditional use as a forage feedstuff.


Subject(s)
Rumen , Trifolium , Cattle , Sheep , Animals , Male , Rumen/metabolism , Animal Feed/analysis , Fermentation , Diet/veterinary , Dietary Supplements , Sheep, Domestic , Dietary Fiber/metabolism , Digestion
3.
Fish Shellfish Immunol ; 134: 108573, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36720374

ABSTRACT

Functional diets are often given to fish during key stages to improve health through the interaction of the feed components with the host intestine. The additional factors added in these diets are known to modulate the immune response and as such may also offer protection against pathogenic challenges. The present study was undertaken to evaluate whether ß-glucan supplementation for 6 weeks can alter the magnitude of immune response to immunological challenges and subsequently offer an improved innate immune response to bacterial challenge in rainbow trout. Two experimental diets were used to study these effects: a basic commercial diet supplemented with ß-glucan and a commercially available functional diet (Protec™) that has ß-glucan as a functional component in addition to other components were compared to a basic commercial control diet. No significant differences were observed in biometric data. Histological analysis revealed a significantly greater number of goblet cells in the fish fed Protec™ and ß-glucan diets compared to those fed a control diet. Cell marker gene expression of distal intestine leucocytes indicated higher expression of T- and B-cells marker genes to both the ß-glucan containing diets in comparison to control. The Protec™ diet demonstrated modulation of innate immune markers after 6 weeks of feeding with key antimicrobial genes (SAA, HAMP, IL-1ß and TNFα) showing significant increases compared to the other diets. After stimulation with both PAMPs and an immune challenge with A. salmonicida fish fed the ß-glucan diet and the Protec™ exhibited modulation of the innate immune response. An immune challenge with A. salmonicida was carried out to identify if dietary composition led to differences in the innate immune response of rainbow trout. Modulation of the magnitude of response in some immune genes (SAA, IL-1ß and HAMP) was observed in both the distal intestine and head kidney in the Protec™ and ß-glucan fed fish compared to those fed the control diet.


Subject(s)
Oncorhynchus mykiss , beta-Glucans , Animals , Dietary Supplements/analysis , Diet , Immunity, Innate , Intestines , Animal Feed/analysis
4.
Animals (Basel) ; 12(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36496943

ABSTRACT

T. macdonaldi is a carnivorous species endemic to the Gulf of California. Indiscriminate exploitation has put totoaba at risk, inducing the development of aquaculture procedures to grow it without affecting the wild population. However, aquafeeds increasing cost and low yields obtained with commercial feeds have motivated researchers to look for more nutritious and cheaper alternatives. Soybean (SB) is the most popular alternative to fishmeal (FM); however, antinutritional factors limit its use in carnivorous species. In this study, we analyzed B. subtilis 9b probiotic capacity to improve growth performance and health status of T. macdonaldi fed with formulations containing 30% and 60% substitution of fish meal with soy protein concentrate (SPC). In addition, we investigated its effect on internal organs condition, their capacity to modulate the intestinal microbiota, and to boost the immunological response of T. macdonaldi against V. harveyi infections. In this sense, we found that T. macdonaldi fed with SPC30Pro diet supplemented with B. subtilis 9b strain and 30% SPC produced better results than SPC30C control diet without B. subtilis and DCML commercial diet. Additionally, animals fed with SPC60Pro diet supplemented with B. subtilis 9b strain and 60% SPC doubled their weight and produced 20% more survival than SPC60C control diet without B. subtilis. Thus, B. subtilis 9b improved T. macdonaldi growth performance, health status, modulated intestinal microbiota, and increased animal's resistance to V. harveyi infections, placing this bacterium as an excellent candidate to produce functional feeds with high levels of SPC.

5.
Mar Drugs ; 20(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35877700

ABSTRACT

This study aimed to evaluate the effects of short-term supplementation, with 2% Chlorella vulgaris (C. vulgaris) biomass and two 0.1% C. vulgaris extracts, on the health status (experiment one) and on the inflammatory response (experiment two) of gilthead seabream (Sparus aurata). The trial comprised four isoproteic (50% crude protein) and isolipidic (17% crude fat) diets. A fishmeal-based (FM), practical diet was used as a control (CTR), whereas three experimental diets based on CTR were further supplemented with a 2% inclusion of C. vulgaris biomass (Diet D1); 0.1% inclusion of C. vulgaris peptide-enriched extract (Diet D2) and finally a 0.1% inclusion of C. vulgaris insoluble fraction (Diet D3). Diets were randomly assigned to quadruplicate groups of 97 fish/tank (IBW: 33.4 ± 4.1 g), fed to satiation three times a day in a recirculation seawater system. In experiment one, seabream juveniles were fed for 2 weeks and sampled for tissues at 1 week and at the end of the feeding period. Afterwards, randomly selected fish from each group were subjected to an inflammatory insult (experiment two) by intraperitoneal injection of inactivated gram-negative bacteria, following 24 and 48 h fish were sampled for tissues. Blood was withdrawn for haematological procedures, whereas plasma and gut tissue were sampled for immune and oxidative stress parameters. The anterior gut was also collected for gene expression measurements. After 1 and 2 weeks of feeding, fish fed D2 showed higher circulating neutrophils than seabream fed CTR. In contrast, dietary treatments induced mild effects on the innate immune and antioxidant functions of gilthead seabream juveniles fed for 2 weeks. In the inflammatory response following the inflammatory insult, mild effects could be attributed to C. vulgaris supplementation either in biomass form or extract. However, the C. vulgaris soluble peptide-enriched extract seems to confer a protective, anti-stress effect in the gut at the molecular level, which should be further explored in future studies.


Subject(s)
Chlorella vulgaris , Sea Bream , Animal Feed/analysis , Animals , Diet/veterinary , Health Status , Plant Extracts/metabolism , Sea Bream/metabolism
6.
Anim Microbiome ; 4(1): 20, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35272695

ABSTRACT

BACKGROUND: Mucosal surfaces of fish provide cardinal defense against environmental pathogens and toxins, yet these external mucosae are also responsible for maintaining and regulating beneficial microbiota. To better our understanding of interactions between host, diet, and microbiota in finfish and how those interactions may vary across mucosal tissue, we used an integrative approach to characterize and compare immune biomarkers and microbiota across three mucosal tissues (skin, gill, and gut) in Atlantic salmon receiving a control diet or diets supplemented with mannan-oligosaccharides, coconut oil, or both. Dietary impacts on mucosal immunity were further evaluated by experimental ectoparasitic sea lice (Lepeophtheirus salmonis) challenge. RESULTS: Fish grew to a final size of 646.5 g ± 35.8 during the 12-week trial, with no dietary effects on growth or sea lice resistance. Bacterial richness differed among the three tissues with the highest richness detected in the gill, followed by skin, then gut, although dietary effects on richness were only detected within skin and gill. Shannon diversity was reduced in the gut compared to skin and gill but was not influenced by diet. Microbiota communities clustered separately by tissue, with dietary impacts on phylogenetic composition only detected in the skin, although skin and gill communities showed greater overlap compared to the gut according to overall composition, differential abundance, and covariance networks. Inferred metagenomic functions revealed preliminary evidence for tissue-specific host-microbiota coadaptation, as putative microbiota functions showed ties to the physiology of each tissue. Immune gene expression profiles displayed tissue-specific signatures, yet dietary effects were also detected within each tissue and peripheral blood leukocytes. Procrustes analysis comparing sample-matched multivariate variation in microbiota composition to that of immune expression profiles indicated a highly significant correlation between datasets. CONCLUSIONS: Diets supplemented with functional ingredients, namely mannan-oligosaccharide, coconut oil, or a both, resulted in no difference in Atlantic salmon growth or resistance to sea lice infection. However, at the molecular level, functional ingredients caused physiologically relevant changes to mucosal microbiota and host immune expression. Putative tissue-specific metagenomic functions and the high correlation between expression profiles and microbiota composition suggest host and microbiota are interdependent and coadapted in a tissue-specific manner.

7.
World J Microbiol Biotechnol ; 37(2): 28, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33439401

ABSTRACT

Aquaculture is one of the fastest-growing economic activities worldwide; shrimp production by aquaculture is around 70% or more of the total consumed. The development of this activity is inducing great benefits in the production of food and jobs; however, shrimp aquaculture is also generating; (1) ecological imbalance by pelagic species overexploitation to produce fish ingredients, (2) bays contamination by inappropriate waste management and (3) pathogens proliferation by antibiotics abuse. In this sense, a significant number of regulations and legal restrictions have been imposed; thus, aquaculture is no longer considered a profitable activity. Therefore, significant and innovative technologies need to be applied to ensure the sustainability and profitability of this activity. In this sense, probiotic bacteria are being used in aquaculture to improve feed intake, modulate gut microbiota and control pathogen proliferation. This work summarizes the results from researchers who worked extensively to show how probiotic bacteria can improve shrimp aquaculture development.


Subject(s)
Animal Diseases/prevention & control , Bacillus/physiology , Eating , Gastrointestinal Microbiome/physiology , Penaeidae/microbiology , Animal Feed , Animals , Aquaculture/methods , Bacteria , Bacterial Infections/prevention & control , Bacterial Infections/veterinary , Penaeidae/growth & development , Probiotics/administration & dosage , Seafood , Vegetables
8.
Front Immunol ; 11: 1544, 2020.
Article in English | MEDLINE | ID: mdl-32849522

ABSTRACT

Several amino acids (AA) are known to regulate key metabolic pathways that are crucial for immune responses. In particular, arginine (ARG) appears to have important roles regarding immune modulation since it is required for macrophage responses and lymphocyte development. Moreover, citrulline (CIT) is a precursor of arginine, and it was reported as an alternative to ARG for improving macrophage function in mammals. The present study aimed to explore the effects of dietary ARG and CIT supplementation on the gilthead seabream (Sparus aurata) immune status. Triplicate groups of fish (23.1 ± 0.4 g) were either fed a control diet (CTRL) with a balanced AA profile, or the CTRL diet supplemented with graded levels of ARG or CIT (i.e., 0.5 and 1% of feed; ARG1, CIT1, ARG2, and CIT2, respectively). After 2 and 4 weeks of feeding, fish were euthanized and blood was collected for blood smears, plasma for humoral immune parameters and shotgun proteomics, and head-kidney tissue for the measurement of health-related transcripts. A total of 94 proteins were identified in the plasma of all treatments. Among them, components of the complement system, apolipoproteins, as well as some glycoproteins were found to be highly abundant. After performing a PLS of the expressed proteins, differences between the two sampling points were observed. In this regard, component 1 (61%) was correlated with the effect of sampling time, whereas component 2 (18%) seemed associated to individual variability within diet. Gilthead seabream fed ARG2 and CIT2 at 4 weeks were more distant than fish fed all dietary treatments at 2 weeks and fish fed the CTRL diet at 4 weeks. Therefore, data suggest that the modulatory effects of AA supplementation at the proteome level were more effective after 4 weeks of feeding and at the higher inclusion level (i.e., 1% of feed). The bactericidal activity increased in fish fed the highest supplementation level of both AAs after 4 weeks. Peripheral monocyte numbers correlated positively with nitric oxide, which showed an increasing trend in a dose-dependent manner. The colony-stimulating factor 1 receptor tended to be up-regulated at the final sampling point regardless of dietary treatments. Data from this study point to an immunostimulatory effect of dietary ARG or CIT supplementation after 4 weeks of feeding in the gilthead seabream, particularly when supplemented at a 1% inclusion level.


Subject(s)
Arginine/metabolism , Citrulline/metabolism , Dietary Supplements , Sea Bream/immunology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Biomarkers/blood , Gene Expression Profiling , Immunity, Innate , Leukocytes/metabolism , Proteome , Proteomics/methods , Sea Bream/blood , Sea Bream/genetics , Sea Bream/metabolism
9.
Fish Shellfish Immunol ; 100: 219-229, 2020 May.
Article in English | MEDLINE | ID: mdl-32160965

ABSTRACT

The use of terrestrial raw materials to replace fish meal (FM) and fish oil (FO) in marine fish diets may affect fish growth performance and health. In the last years functional additives have been profiled as good candidates to reduce the effects on health and disease resistance derived from this replacement, via reinforcement of the fish immune system. In the present study, three isoenergetic and isonitrogenous diets with low FM and FO (10% and 6% respectively) were tested based on supplementation either with 0.5% galactomannanoligosaccharides (GMOS diet) or 0.02% of a mixture of essential oils (PHYTO diet), a non-supplemented diet was defined as a control diet. Fish were fed the experimental diets in triplicate for 9 weeks and then they were subjected to a stress by confinement as a single challenge (C treatment) or combined with an experimental intestinal infection with Vibrio anguillarum (CI treatment). Along the challenge test, selected stress and immunological parameters were evaluated at 2, 24 and 168h after C or CI challenges. As stress indicators, circulating plasma cortisol and glucose concentrations were analyzed as well as the relative gene expression of cyp11b hydroxylase, hypoxia inducible factor, steroidogenic acute regulatory protein, heat shock protein 70 and heat shock protein 90 (cyp11b, hif-1α, StAR, hsp70 and hsp90). As immune markers, serum and skin mucus lysozyme, bactericidal and peroxidase activities were measured, as well as gene expression of Caspase-3 (casp-3) and interleukin 1ß (il-1ß). The use of functional additives induced a significant (p < 0.05) reduction of circulating plasma cortisol concentration when confinement was the unique challenge test applied. Supplementation of PHYTO induced a down-regulation of cyp11b, hif-1α, casp-3 and il-1ß gene expression 2h after stress test, whereas StAR expression was significantly (p < 0.05) up-regulated. However, when combination of confinement stress and infection was applied (CI treatment), the use of PHYTO significantly (p < 0.05) down-regulated StAR and casp-3 gene expression 2h after challenge test, denoting that PHYTO diet reinforced fish capacity of stress response via protection of head kidney leucocytes from stress-related apoptotic processes, with lower caspase-3 gene expression and a higher il-1ß gene expression when an infection occurs. Additionally, dietary supplementation with GMOS and PHYTO compounds increased fish serum lysozyme after infection. Both functional additives entailed a better capability of the animals to cope with infection in European sea bass when fed low FM and FO diets.


Subject(s)
Animal Feed/analysis , Bass/immunology , Dietary Supplements/analysis , Fish Oils/administration & dosage , Prebiotics/administration & dosage , Stress, Physiological , Animals , Aquaculture , Bass/genetics , Caspase 3/genetics , Caspase 3/immunology , Disease Resistance , Hydrocortisone/blood , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Oils, Volatile/administration & dosage , Oligosaccharides/administration & dosage
10.
Fish Shellfish Immunol ; 94: 769-779, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31580935

ABSTRACT

Although viruses represent a major threat for cultured fish worldwide, the commercialization of vaccines capable of providing effective and long-lasting protection is still lacking for most of these viral diseases. In this situation, the use of supplemented diets could be a suitable strategy to increase the immune status of the fish and reduce the impact of viral pathogens. Among possible immunostimulants that could be included in these functional feeds, some studies have previously shown that certain ß-glucans can significantly increase certain immune parameters of fish and reduce the impact of viral diseases. However, the mechanisms through which ß-glucans exert their activity have not been fully elucidated yet. In the current study, we have studied the immune response of different tissues to viral haemorrhagic septicaemia virus (VHSV) in rainbow trout fed with a non-supplemented control diet as well as in fish fed a commercial functional aquafeed (Protec™, Skretting) containing ß-glucans, vitamin C, vitamin E and zinc. For this, after 30 days of feeding the fish with one of the two diets, they were subsequently infected with VHSV by bath or mock-infected. After 2 or 6 days post-infection, fish were sacrificed and the levels of transcription of different immune genes such as IgM, IgT, IgD, Mx, interferon γ (IFN γ) and perforin studied in different tissues (kidney, gut and gills). Additionally, the levels of natural IgMs in serum were also determined. Our results demonstrate that fish fed the functional diet were capable of mounting an increased IgM, IgT, IgD and Mx transcriptional response to the virus. Additionally, these fish also showed increased levels of natural IgMs in serum. These results reveal a previously undescribed effect of functional diets on fish Ig production and point to Protec™ as an adequate diet to be incorporated in holistic programs aimed at mitigating the effect of viral diseases.


Subject(s)
Fish Proteins/genetics , Gene Expression/immunology , Hemorrhagic Septicemia, Viral/immunology , Novirhabdovirus/physiology , Oncorhynchus mykiss/immunology , Transcription, Genetic/immunology , Animal Feed/analysis , Animals , Ascorbic Acid/administration & dosage , Ascorbic Acid/metabolism , Diet/veterinary , Dietary Supplements/analysis , Fish Proteins/metabolism , Glucans/administration & dosage , Glucans/metabolism , Hemorrhagic Septicemia, Viral/genetics , Vitamin E/administration & dosage , Vitamin E/metabolism , Vitamins/administration & dosage , Vitamins/metabolism , Zinc/administration & dosage , Zinc/metabolism
11.
Article in English | MEDLINE | ID: mdl-31103614

ABSTRACT

Husbandry conditions often expose fish to several stressors, compromising organism's global homeostasis, which has consequences on aquaculture production. In order to depict intestinal homeostatic responses to deleterious conditions and the potential beneficial effects of functional diets in aquaculture fish, the effects of chronic suboptimal density condition on the neuro-immune endocrine system of rainbow trout was investigated through a transcriptomic survey. After 30 days under high stocking density, 67% of genes involved in homeostasis were found down-regulated whereas when fed with a diet supplemented with the probiotic Saccharomyces cerevisiae, <1% of these genes were found down-regulated. Genes involved in apoptotic mechanisms were found to be particularly responsive to both density and diets. At high density, several genes involved in the intrinsic and extrinsic apoptotic pathway (Fadd, Fas, Bcl-2 and Bax) as well as caspases (Casp8 and Casp3) were found down-regulated (Fold change <-7). However, fish fed with a diet supplemented with the probiotic yeast had an opposite response, indicating mitigation of stress effects. Overall, these results indicate the activation of homeostatic machinery and particularly genes involved in the apoptotic pathway as a result of probiotic feeding, counteracting apoptotic molecular repression derived from chronic stress.


Subject(s)
Animal Feed , Apoptosis , Diet , Fish Proteins/genetics , Homeostasis , Oncorhynchus mykiss/genetics , Transcriptome , Animals , Aquaculture , Down-Regulation , Intestinal Mucosa/metabolism , Prebiotics , Probiotics
12.
Dev Comp Immunol ; 75: 86-98, 2017 10.
Article in English | MEDLINE | ID: mdl-28254621

ABSTRACT

The interplay between nutrition and immune system is well recognised, however the true integration of research between nutrition, animal energy status and immune function is still far from clear. In fish nutrition, especially for species maintained in aquaculture, formulated feeds are significantly different from the natural diet with recent changes in nutrient sources, especially with protein and oil sources now being predominated by terrestrial derived ingredients. Additionally, many feeds are now incorporated to health management and termed functional feeds, which are believed to improve fish health, reduce disease outbreaks and/or improve post-infection recovery. Using new omics technologies, including transcriptomics (microarray and RNA-seq) and proteomics, the impacts of nutrition on the immune system is becoming clearer. By using molecular pathway enrichment analysis, modules of genes can indicate how both local (intestinal) and systemic immune function are being altered. Although great progress has been made to define the changes in host immune function, understanding the interplay between fish nutrition, intestinal microbiome and immune system is only just beginning to emerge.


Subject(s)
Fishes/genetics , Fishes/immunology , Genomics , Immunity/genetics , Nutritional Physiological Phenomena/genetics , Animals , Aquaculture , Gastrointestinal Microbiome , Gene Regulatory Networks/genetics , High-Throughput Nucleotide Sequencing , Microarray Analysis , Signal Transduction , Transcriptome
13.
Br J Nutr ; 117(3): 351-363, 2017 02.
Article in English | MEDLINE | ID: mdl-28245885

ABSTRACT

An olive oil bioactive extract (OBE) rich in bioactive compounds like polyphenols, triterpenic acids, long-chain fatty alcohols, unsaturated hydrocarbons, tocopherols and sterols was tested (0, 0·08, 0·17, 0·42 and 0·73 % OBE) in diets fed to sea bream (Sparus aurata) (initial weight: 5·4 (sd 1·2) g) during a 90-d trial (four replicates). Fish fed diets containing 0·17 and 0·42 % OBE were 5 % heavier (61·1 (sd 1·6) and 60·3 (sd 1·1) g, respectively) than those of the control group (57·0 (sd 0·7) g), although feed conversion ratio and specific feed intake did not vary. There were no differences in lipid peroxidation (LPO) levels, catalase, glutathione reductase and glutathione S-transferase activities in the intestine and liver, although there was a tendency of lower intestinal and hepatic LPO levels in fish fed OBE diets. No differences in villus size were found among treatments, whereas goblet cell density in the control group was on average14·3 % lower than in fish fed OBE diets. The transcriptomic profiling of intestinal markers, covering different biological functions like (i) cell differentiation and proliferation, (ii) intestinal permeability, (iii) enterocyte mass and epithelial damage, (iv) IL and cytokines, (v) pathogen recognition receptors and (vi) mitochondria function, indicated that among the eighty-eight evaluated genes, twenty-nine were differentially expressed (0·17 % OBE diet), suggesting that the additive has the potential of improving the condition and defensive role of the intestine by enhancing the maturation of enterocytes, reducing oxidative stress, improving the integrity of the intestinal epithelium and enhancing the intestinal innate immune function, as gene expression data indicated.


Subject(s)
Body Weight/drug effects , Intestinal Mucosa/drug effects , Intestines/drug effects , Olive Oil/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Sea Bream , Animal Feed , Animals , Antioxidants/pharmacology , Diet , Enterocytes/drug effects , Immunity/drug effects , Intestines/cytology , Intestines/physiology , Lipid Peroxidation/drug effects , Liver/drug effects , Olea/chemistry , Olive Oil/chemistry , Polyphenols/pharmacology , Sea Bream/physiology , Transcriptome
14.
Parasit Vectors ; 9(1): 639, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27955686

ABSTRACT

BACKGROUND: Reduction of Lepeophtheirus salmonis infection in Atlantic salmon achieved by glucosinolates (GLs) from Brassica plants was recently reported. However, wider application of functional feeds based on GLs requires better knowledge of their positive and adverse effects. METHODS: Liver, distal kidney and muscle transcriptomes of salmon exposed to the extreme dose of GLs were profiled by microarray, while qPCR analysis followed up selected hepatic and renal responses under the extreme and moderate GLs dose during the L. salmonis challenge. Transcriptional analysis were complemented with measurements of organ indices, liver steatosis and plasma profiling, including indicators of cytolysis and bilirubin. Finally, the third trial was performed to quantify the effect of lower GLs doses on growth. RESULTS: The extreme GLs dose caused a decrease in hepatic fat deposition and growth, in line with microarray findings, which suggested tissue remodeling and reduction of cellular proliferation in the skeletal muscle and liver. Lower GLs inclusion levels in a follow-up trial did not show negative effects on growth. Microarray analysis of the distal kidney pointed to activation of anti-fibrotic responses under the overexposure. However, analyses of ALT, CK and AST enzymes in plasma provided no evidence of increased cytolysis and organ damage. Prevalent activation of phase-2 detoxification genes that occurred in all three tissues could be considered part of beneficial effects caused by the extreme dose of GLs. In addition, transcriptomic evidence suggested GLs-mediated iron and heme withdrawal response, including increased heme degradation in muscle (upregulation of heme oxygenase-1), decrease of its synthesis in liver (downregulation of porphobilinogen deaminase) and increased iron sequestration from blood (hepatic induction of hepcidin-1 and renal induction of intracellular storage protein ferritin). This response could be advantageous for salmon upon encountering lice, which depend on the host for the provision of iron carrying heme. Most of the hepatic genes studied by qPCR showed similar expression levels in fish exposed to GLs, lice and their combination, while renal induction of leptin suggested heightened stress by the combination of extreme dose of GLs and lice. High expression of interferon γ (cytokine considered organ-protective in mammalian kidney) was detected at the moderate GLs level. This fish also showed highest plasma bilirubin levels (degradation product of heme), and had lowest number of attached lice, further supporting hypothesis that making heme unavailable to lice could be part of an effective anti-parasitic strategy. CONCLUSIONS: Modulation of detoxification and iron metabolism in Atlantic salmon tissues could be beneficial prior and during lice infestations. Investigation of anti-lice functional feeds based on low and moderate GLs inclusion levels thus deserves further attention.


Subject(s)
Antiparasitic Agents/administration & dosage , Fish Diseases/drug therapy , Glucosinolates/administration & dosage , Kidney/drug effects , Liver/drug effects , Muscles/drug effects , Nutrigenomics , Animals , Antiparasitic Agents/adverse effects , Copepoda/growth & development , Ectoparasitic Infestations/drug therapy , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , Fish Diseases/parasitology , Gene Expression Profiling , Glucosinolates/adverse effects , Kidney/pathology , Liver/pathology , Microarray Analysis , Muscles/pathology , Real-Time Polymerase Chain Reaction , Salmo salar
15.
Mar Drugs ; 9(6): 1119-1132, 2011.
Article in English | MEDLINE | ID: mdl-21747750

ABSTRACT

Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)-carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures.


Subject(s)
Animal Feed , Bacillus subtilis , Carbohydrates/administration & dosage , Fishes/growth & development , Glycine max , Penaeidae/growth & development , Probiotics , Animals , Aquaculture , Fishes/immunology , Penaeidae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL