Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Mol Biosci ; 10: 1006733, 2023.
Article in English | MEDLINE | ID: mdl-36743214

ABSTRACT

The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas. The liquid sample and gas Reynolds numbers range from 0.09-5.4 and 0-190, respectively. The external electrode was positioned 400-500 µm downstream of the nozzle tip and an effect of electric potential between the electrode and the sample liquid from 0-7 kV was investigated. The jetting parametric space is examined as a function of operating gas and liquid flow rates, outlet chamber pressure, and an external electric field. The experimentally observed jet diameter, length and velocity ranged from 1-25 µm, 50-500 µm and 0.5-10 m/s, respectively. The jetting shape snapshots were processed automatically using purposely developed computer vision software. The velocity of the jet was calculated from the measured jet diameter and the sample flow rate. It is found that micro-jets accelerate in the direction of the applied electric field in the downstream direction at a constant acceleration as opposed to the standard GDVNs. New jetting modes were observed, where either the focusing gas or the electric forces dominate, encouraging further theoretical and numerical studies towards optimized system design. The study shows the potential to unlock a new generation of low background sample delivery for serial diffraction measurements of weakly scattering objects.

2.
Materials (Basel) ; 13(23)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271928

ABSTRACT

Microfluidic devices for drop and emulsion production are often built using fire-shaped (or fire-polished) glass nozzles. These are usually fabricated manually with inexpensive equipment. The shape limitations and poor reproducibility are pointed as the main drawbacks. Here, we evaluate the capabilities of a new fire-shaping approach which fabricates the nozzle by heating a vertical rotating capillary at the Bottom of a Lateral Flame (BLF). We analyze the effect of the heating conditions, and the capillary size and tolerances. The shape reproducibility is excellent for nozzles of the same size produced with the same conditions. However, the size reproducibility is limited and does not seem to be significantly affected by the heating conditions. Specifically, the minimum neck diameter standard deviation is 3%. Different shapes can be obtained by changing the heating position or the capillary dimensions, though, for a given diameter reduction, there is a minimum nozzle length due to the overturning of the surface. The use of thinner (wall or inner diameter) capillaries allows producing much shorter nozzles but hinders the size reproducibility. Finally, we showed an example of how the performance of a microfluidic device is affected by the nozzle shape: a Gas Dynamic Virtual Nozzle (GDVN) built with a higher convergent rate nozzle works over a wider parametric range without whipping.

3.
Acta Crystallogr D Struct Biol ; 76(Pt 4): 340-349, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32254058

ABSTRACT

Despite the great strides made in the field of single-particle cryogenic electron microscopy (cryo-EM) in microscope design, direct electron detectors and new processing suites, the area of sample preparation is still far from ideal. Traditionally, sample preparation involves blotting, which has been used to achieve high resolution, particularly for well behaved samples such as apoferritin. However, this approach is flawed since the blotting process can have adverse effects on some proteins and protein complexes, and the long blot time increases exposure to the damaging air-water interface. To overcome these problems, new blotless approaches have been designed for the direct deposition of the sample on the grid. Here, different methods of producing droplets for sample deposition are compared. Using gas dynamic virtual nozzles, small and high-velocity droplets were deposited on cryo-EM grids, which spread sufficiently for high-resolution cryo-EM imaging. For those wishing to pursue a similar approach, an overview is given of the current use of spray technology for cryo-EM grid preparation and areas for enhancement are pointed out. It is further shown how the broad aspects of sprayer design and operation conditions can be utilized to improve grid quality reproducibly.


Subject(s)
Cryoelectron Microscopy/methods , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL