Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.104
Filter
2.
Nat Prod Bioprospect ; 14(1): 40, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38955942

ABSTRACT

Plants and microbes are closely associated with each other in their ecological niches. Much has been studied about plant-microbe interactions, but little is known about the effect of phytochemicals on microbes at the molecular level. To access the products of cryptic biosynthetic gene clusters in bacteria, we incorporated an organic extract of hibiscus flowers into the culture media of different Actinobacteria isolated from plant rhizospheres. This approach led to the production of broad-spectrum dithiolopyrrolone (DTP) antibiotics, thiolutin (1) and aureothricin (2), by Streptomyces sp. MBN2-2. The compounds from the hibiscus extract responsible for triggering the production of these two DTPs were found to be hibiscus acid dimethyl ester (3) and hydroxycitric acid 1,3-dimethyl ester (4). It was subsequently found that the addition of either Fe2+ or Fe3+ to culture media induced the production of 1 and 2. The Chrome Azurol S (CAS) assay revealed that 3 and 4 can chelate iron, and therefore, the mechanism leading to the production of thiolutin and aureothricin appears to be related to changes in iron concentration levels. This work supports the idea that phytochemicals can be used to activate the production of cryptic microbial biosynthetic gene clusters and further understand plant-microbe interactions.

3.
Harmful Algae ; 137: 102655, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003021

ABSTRACT

Microseira wollei, a globally distributed freshwater bloom-forming benthic cyanobacterium, is known for its production of cyanotoxins and taste and odor (T&O). While CYN (Cylindrospermopsin)-producing populations of M. wollei are confined to Australia, PST (Paralytic shellfish toxins)-producing populations have been exclusively documented in North America. In this study, four benthic cyanobacterial strains, isolated from West Lake in China, were identified as M. wollei based on morphological and phylogenetic analyses. Detection of sxtA gene and UPLC-MS/MS analysis conclusively confirmed the PST-producing capability of M. wollei CHAB5998. In the phylogenetic tree of 16S rDNA, M. wollei strains formed a monophyletic group with two subclades. Notably, non-PST-producing Chinese strains clustered with Australian strains in Clade II, while all other strains, including PST-producing ones, clustered in Clade I. Additionally, CHAB5998 contains ten PST variants, of which STX, NEO, GTX2, GTX3, GTX5 and C1 were identified for the first time in M. wollei. Sequence analysis of PST biosynthetic gene cluster (sxt) genes indicated potential base variations, gene rearrangements, insertions, and deletions in the strain CHAB5998. Also, sxt gene has a longer evolutionary history in M. wollei than that in cyanobacteria from Nostocales. Multiple recombination breakpoints detected in sxt genes and the inconsistency in the topology of the phylogenetic trees between sxt and 16S rDNA suggested that multiple horizontal gene transfers (HGT) have occurred. Overall, the present study marks the first documented occurrence of PST-producing M. wollei outside of North America and identifies it as the first toxic freshwater benthic cyanobacterium in China. This revelation implies that benthic cyanobacteria may pose a higher environmental risk in China than previously acknowledged.


Subject(s)
Bacterial Toxins , Cyanobacteria , Phylogeny , Cyanobacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/classification , China , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Cyanobacteria Toxins , RNA, Ribosomal, 16S/genetics , Marine Toxins/metabolism
4.
Metab Eng ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019251

ABSTRACT

Colistin, also known as polymyxin E, is a lipopeptide antibiotic used to treat infections caused by multidrug-resistant gram-negative bacteria. It is considered a "last-line antibiotic", but its clinical development is hindered by low titer and impurities resulting from the presence of diverse homologs in microbial fermentation. To ensure consistent pharmaceutical activity and kinetics, it is crucial to have high-purity colistin active pharmaceutical ingredient (API) in the pharmaceutical industry. This study focused on the metabolic engineering of a natural colistin producer strain to produce colistin with a high titer and purity. Guided by genome mining, we identified Paenibacillus polymyxa ATCC 842 as a natural colistin producer capable of generating a high proportion of colistin A. By systematically inactivating seven non-essential biosynthetic gene clusters (BGCs) of peptide metabolites that might compete precursors with colistin or inhibit colistin production, we created an engineered strain, P14, which exhibited an 82% increase in colistin titer and effectively eliminated metabolite impurities such as tridecaptin, paenibacillin, and paenilan. Additionally, we engineered the L-2,4-diaminobutyric acid (L-2,4-DABA) pathway to further enhance colistin production, resulting in the engineered strain P19, which boosted a remarkable colistin titer of 649.3 mg/L - a 269% improvement compared to the original strain. By concurrently feeding L-isoleucine and L-leucine, we successfully produced high-purity colistin A, constituting 88% of the total colistin products. This study highlights the potential of metabolic engineering in improving the titer and purity of lipopeptide antibiotics in the non-model strain, making them more suitable for clinical use. These findings indicate that efficiently producing colistin API in high purity directly from fermentation can now be achieved in a straightforward manner.

5.
Braz J Microbiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985434

ABSTRACT

An Actinomycetia isolate, designated as PBR19, was derived from the rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate, identified as Streptomyces sp., shares a sequence similarity of 93.96% with its nearest type strain, Streptomyces atrovirens. This finding indicates the potential classification of PBR19 as a new taxon within the Actinomycetota phylum. PBR19 displayed notable antibacterial action against some ESKAPE pathogens. The ethyl acetate extract of PBR19 (EtAc-PBR19) showed the lowest minimum inhibitory concentration (MIC) of ≥ 0.195 µg/mL against Acinetobacter baumannii ATCC BAA-1705. A lower MIC indicates higher potency against the tested pathogen. Scanning electron microscope (SEM) findings revealed significant changes in the cytoplasmic membrane structure of the pathogen. This suggests that the antibacterial activity may be linked to the disruption of the microbial membrane. The predominant chemical compound detected in the EtAc-PBR19 was identified as phenol, 3,5-bis(1,1-dimethylethyl), comprising 48.59% of the area percentage. Additionally, PBR19 was found to contain the type II polyketide synthases (PKS type II) gene associated with antibiotic synthesis. The predicted gene product of PKSII was identified as the macrolide antibiotic Megalomicin A. The taxonomic distinctiveness, potent antibacterial effects, and the presence of a gene associated with antibiotic synthesis suggest that PBR19 could be a valuable candidate for further exploration in drug development and synthetic biology. The study contributes to the broader understanding of microbial diversity and the potential for discovering bioactive compounds in less-explored environments.

6.
Microb Pathog ; 193: 106768, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960217

ABSTRACT

Fowl cholera is an infectious disease that affects both poultry and wild birds, characterized by hemorrhagic and septicemic symptoms, caused by Pasteurella multocida (P. multocida), and leading to substantial economic losses in the poultry sector. The development of genetic engineering vaccines against avian P. multocida encountered early-stage challenges due to the limited availability of effective gene editing tools. Presently, NgAgoDM-enhanced homologous recombination stands as a potent technique for achieving efficient gene knockout in avian P. multocida. Hence, this study employed NgAgoDM-enhanced homologous recombination to target and knockout hyaE (239-359aa), hyaD, hexABC, and hexD, denoted as ΔhyaE (239-359aa), ΔhyaD, ΔhexABC, and ΔhexD, respectively. Additionally, we generated a hyaD recovery strain with two point mutations, designated as mhyaD. Thus, this study systematically examined the impact of capsular synthetic gene clusters on the pathogenicity of P. multocida. Moreover, the study demonstrated the critical role of hyaD activity in the virulence of avian P. multocida. This study offers novel insights for enhancing attenuated vaccines further.

7.
J Biotechnol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004405

ABSTRACT

We have created a novel synthetic biology expression system allowing easy refactoring of biosynthetic gene clusters (BGCs) as monocistronic transcriptional units. The system is based on a set of plasmids containing a strong kasOp* promoter, RBS and terminators. It allows the cloning of biosynthetic genes into transcriptional units kasOp*-gene(s)-terminator flanked by several rare restriction cloning sites that can be sequentially combined into the artificial BGC in three compatible Streptomyces integration vectors. They allow a simultaneous integration of these BGCs at three different attB sites in the Streptomyces chromosome. The system was validated with biosynthetic genes from two known BGCs for aromatic polyketides landomycin and mithramycin.

8.
Mar Genomics ; 76: 101124, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009498

ABSTRACT

Microorganisms living with higher organisms are valuable sources of bioactive substances like antibiotics, which could assist them competing for more and better nutrients or space. Here, we focused on a marine animal-associated bacterium, 'Aliisedimentitalea scapharcae' KCTC 42119T, which was isolated from ark shell collected from Gang-Jin bay of South Korea. We evaluated its biosynthetic potentials of medicinal secondary metabolites by de novo genome sequencing. The complete genome of strain KCTC 42119T sequenced is 5,083,900 bp and is comprised of one circular chromosome and four circular plasmids. Functional genome analysis by antiSMASH v7.1.0 showed that there are nine biosynthetic gene clusters encoded on the chromosome. The annotated secondary metabolites include antibiotic corynecin, cytoprotective ectoine and antineoplastic ET-743 (Yondelis), which suggested strain KCTC 42119T possesses potentials to synthesize a series of secondary metabolites of pharmaceutical utility. Genome analysis of 'A. scapharcae' also provides more insights into mining bioactive substances from animal-associated microorganisms.


Subject(s)
Genome, Bacterial , Animals , Republic of Korea , Secondary Metabolism/genetics
9.
Hemoglobin ; : 1-6, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007770

ABSTRACT

α-thalassemia major (α-TM) often causes Hb Bart's (c4) hydrops fetalis and severe obstetric complications in the mother. Step-wise screening for couples at risk of having offspring(s) affected by α-TM is the efficient prevention method but some rare genotypes of thalassemia cannot be detected. A 32-year-old male with low HbA2 (2.4%) and mild anemia was performed real-time PCR-based multicolor melting curve analysis (MMCA) because his wife was -SEA deletion carrier. The result of multiplex ligation-dependent probe amplification (MLPA) suggested the existence of -SEA deletion in the proband. A novel deletion of the α-globin gene cluster was found using self-designed MLPA probes combined with longer PCR, which was further accurately described to be 16.8Kb (hg38, Chr16:1,65,236-1,82,113) deletion by the third-generation sequencing. A fragment ranging from 1,53,226 to 1,54,538(GRch38/hg38) was identified which suggested the existence of the homologous recombination event. The third-generation sequencing is accurate and efficient in obtaining accurate information for complex structural variations.

10.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000567

ABSTRACT

Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00-4.01/4.03-4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses.


Subject(s)
Benzoxazines , Gene Expression Regulation, Plant , Multigene Family , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/metabolism , Benzoxazines/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Phylogeny
11.
BMC Genomics ; 25(1): 603, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886660

ABSTRACT

BACKGROUND: A growing number of studies have demonstrated that the polar regions have the potential to be a significant repository of microbial resources and a potential source of active ingredients. Genome mining strategy plays a key role in the discovery of bioactive secondary metabolites (SMs) from microorganisms. This work highlighted deciphering the biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2 by a combination of whole genome analysis and antiSMASH as well as feature-based molecular networking (MN) in the Global Natural Products Social Molecular Networking (GNPS). RESULTS: In this study, a high-quality whole genome sequence of an Arctic marine strain MNP-2, with a size of 34.9 Mb was successfully obtained. Its total number of genes predicted by BRAKER software was 13,218, and that of non-coding RNAs (rRNA, sRNA, snRNA, and tRNA) predicted by using INFERNAL software was 204. AntiSMASH results indicated that strain MNP-2 harbors 56 biosynthetic gene clusters (BGCs), including 18 NRPS/NRPS-like gene clusters, 10 PKS/PKS-like gene clusters, 8 terpene synthse gene clusters, 5 indole synthase gene clusters, 10 hybrid gene clusters, and 5 fungal-RiPP gene clusters. Metabolic analyses of strain MNP-2 grown on various media using GNPS networking revealed its great potential for the biosynthesis of bioactive SMs containing a variety of heterocyclic and bridge-ring structures. For example, compound G-8 exhibited a potent anti-HIV effect with an IC50 value of 7.2 nM and an EC50 value of 0.9 nM. Compound G-6 had excellent in vitro cytotoxicities against the K562, MCF-7, Hela, DU145, U1975, SGC-7901, A549, MOLT-4, and HL60 cell lines, with IC50 values ranging from 0.10 to 3.3 µM, and showed significant anti-viral (H1N1 and H3N2) activities with IC50 values of 15.9 and 30.0 µM, respectively. CONCLUSIONS: These findings definitely improve our knowledge about the molecular biology of genus A. sydowii and would effectively unveil the biosynthetic potential of strain MNP-2 using genomics and metabolomics techniques.


Subject(s)
Aspergillus , Multigene Family , Aspergillus/genetics , Aspergillus/metabolism , Arctic Regions , Humans , Biological Products/metabolism , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Cell Line, Tumor , Biosynthetic Pathways/genetics , Secondary Metabolism/genetics , Genome, Fungal
12.
Front Microbiol ; 15: 1407289, 2024.
Article in English | MEDLINE | ID: mdl-38887720

ABSTRACT

Endophytic Streptomyces sp. are recognized as a potential resource for valuable natural products but are less explored. This study focused on exploring endophytic Streptomyces species residing within tomato plants (Solanum lycopersicum) harboring genes for the production of a novel class of antibiotics. Our research involved the isolation and characterization of Streptomyces sp. VITGV156, a newly identified endophytic Streptomyces species that produces antimicrobial products. VITGV156 harbors a genome of 8.18 mb and codes 6,512 proteins, of which 4,993 are of known function (76.67%) and 1,519 are of unknown function (23.32%). By employing genomic analysis, we elucidate the genome landscape of this microbial strain and shed light on various BGCs responsible for producing polyketide antimicrobial compounds, with particular emphasis on the antibiotic kendomycin. We extended our study by evaluating the antibacterial properties of kendomycin. Overall, this study provides valuable insights into the genome of endophytic Streptomyces species, particularly Streptomyces sp. VITGV156, which are prolific producers of antimicrobial agents. These findings hold promise for further research and exploitation of pharmaceutical compounds, offering opportunities for the development of novel antimicrobial drugs.

13.
Genomics ; 116(4): 110880, 2024 07.
Article in English | MEDLINE | ID: mdl-38857812

ABSTRACT

The implementation of several global microbiome studies has yielded extensive insights into the biosynthetic potential of natural microbial communities. However, studies on the distribution of several classes of ribosomally synthesized and post-translationally modified peptides (RiPPs), non-ribosomal peptides (NRPs) and polyketides (PKs) in different large microbial ecosystems have been very limited. Here, we collected a large set of metagenome-assembled bacterial genomes from marine, freshwater and terrestrial ecosystems to investigate the biosynthetic potential of these bacteria. We demonstrate the utility of public dataset collections for revealing the different secondary metabolite biosynthetic potentials among these different living environments. We show that there is a higher occurrence of RiPPs in terrestrial systems, while in marine systems, we found relatively more terpene-, NRP-, and PK encoding gene clusters. Among the many new biosynthetic gene clusters (BGCs) identified, we analyzed various Nif-11-like and nitrile hydratase leader peptide (NHLP) containing gene clusters that would merit further study, including promising products, such as mersacidin-, LAP- and proteusin analogs. This research highlights the significance of public datasets in elucidating the biosynthetic potential of microbes in different living environments and underscores the wide bioengineering opportunities within the RiPP family.


Subject(s)
Bacteria , Biological Products , Multigene Family , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Biological Products/metabolism , Peptides/metabolism , Peptides/genetics , Protein Processing, Post-Translational , Metagenome , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ecosystem , Genome, Bacterial , Microbiota , Polyketides/metabolism
14.
Microbiome Res Rep ; 3(2): 24, 2024.
Article in English | MEDLINE | ID: mdl-38846023

ABSTRACT

Background: The role of the urobiome in health and disease remains an understudied area compared to the rest of the human microbiome. Enhanced culturing techniques and next-generation sequencing technologies have identified the urobiome as an untapped source of potentially novel antimicrobials. The aim of this study was to screen the urobiome for genes encoding bacteriocin production. Methods: The genomes of 181 bacterial urobiome isolates were screened in silico for the presence of bacteriocin gene clusters using the bacteriocin mining tool BAGEL4 and secondary metabolite screening tool antiSMASH7. Results: From these isolates, an initial 263 areas of interest were identified, manually annotated, and evaluated for potential bacteriocin gene clusters. This resulted in 32 isolates containing 80 potential bacteriocin gene clusters, of which 72% were identified as class II, 13.75% as class III, 8.75% as class I, and 5% as unclassified bacteriocins. Conclusion: Overall, 53 novel variants were discovered, including nisin, gassericin, ubericin, and colicins.

15.
Plant J ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943483

ABSTRACT

The diversity in alternative splicing of long noncoding RNAs (lncRNAs) poses a challenge for functional annotation of lncRNAs. Moreover, little is known on the effects of alternatively spliced lncRNAs on crop yield. In this study, we cloned nine isoforms resulting from the alternative splicing of the lncRNA LAIR in rice. The LAIR isoforms are generated via alternative 5'/3' splice sites and different combinations of specific introns. All LAIR isoforms activate the expression of the neighboring LRK1 gene and enhance yield-related rice traits. In addition, there are slight differences in the binding ability of LAIR isoforms to the epigenetic modification-related proteins OsMOF and OsWDR5, which affect the enrichment of H4K16ac and H3K4me3 at the LRK1 locus, and consequently fine-tune the regulation of LRK1 expression and yield-related traits. These differences in binding may be caused by polymorphic changes to the RNA secondary structure resulting from alternative splicing. It was also observed that the composition of LAIR isoforms was sensitive to abiotic stress. These findings suggest that the alternative splicing of LAIR leads to the formation of a functional transcript population that precisely regulates yield-related gene expression, which may be relevant for phenotypic polymorphism-based crop breeding under changing environmental conditions.

16.
BMC Microbiol ; 24(1): 226, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937695

ABSTRACT

BACKGROUND: Bacterial antimicrobial resistance poses a severe threat to humanity, necessitating the urgent development of new antibiotics. Recent advances in genome sequencing offer new avenues for antibiotic discovery. Paenibacillus genomes encompass a considerable array of antibiotic biosynthetic gene clusters (BGCs), rendering these species as good candidates for genome-driven novel antibiotic exploration. Nevertheless, BGCs within Paenibacillus genomes have not been extensively studied. RESULTS: We conducted an analysis of 554 Paenibacillus genome sequences, sourced from the National Center for Biotechnology Information database, with a focused investigation involving 89 of these genomes via antiSMASH. Our analysis unearthed a total of 848 BGCs, of which 716 (84.4%) were classified as unknown. From the initial pool of 554 Paenibacillus strains, we selected 26 available in culture collections for an in-depth evaluation. Genomic scrutiny of these selected strains unveiled 255 BGCs, encoding non-ribosomal peptide synthetases, polyketide synthases, and bacteriocins, with 221 (86.7%) classified as unknown. Among these strains, 20 exhibited antimicrobial activity against the gram-positive bacterium Micrococcus luteus, yet only six strains displayed activity against the gram-negative bacterium Escherichia coli. We proceeded to focus on Paenibacillus brasilensis, which featured five new BGCs for further investigation. To facilitate detailed characterization, we constructed a mutant in which a single BGC encoding a novel antibiotic was activated while simultaneously inactivating multiple BGCs using a cytosine base editor (CBE). The novel antibiotic was found to be localized to the cell wall and demonstrated activity against both gram-positive bacteria and fungi. The chemical structure of the new antibiotic was elucidated on the basis of ESIMS, 1D and 2D NMR spectroscopic data. The novel compound, with a molecular weight of 926, was named bracidin. CONCLUSIONS: This study outcome highlights the potential of Paenibacillus species as valuable sources for novel antibiotics. In addition, CBE-mediated dereplication of antibiotics proved to be a rapid and efficient method for characterizing novel antibiotics from Paenibacillus species, suggesting that it will greatly accelerate the genome-based development of new antibiotics.


Subject(s)
Anti-Bacterial Agents , Genome, Bacterial , Multigene Family , Paenibacillus , Paenibacillus/genetics , Paenibacillus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Peptide Synthases/genetics , Polyketide Synthases/genetics , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/biosynthesis , Biosynthetic Pathways/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Discovery/methods
17.
Microorganisms ; 12(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930610

ABSTRACT

Streptomyces species are attractive sources of secondary metabolites that serve as major sources of antibiotics and other drugs. In this study, genome mining was used to determine the biosynthetic potential of Streptomyces sp. 21So2-11 isolated from Antarctic soil. 16S rRNA gene sequencing revealed that this strain is most closely related to Streptomyces drozdowiczii NBRC 101007T, with a similarity of 98.02%. Genome comparisons based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) showed that strain 21So2-11 represents a novel species of the genus Streptomyces. In addition to a large number of genes related to environmental adaptation and ecological function, a total of 28 putative biosynthetic gene clusters (BGCs) responsible for the biosynthesis of known and/or novel secondary metabolites, including terpenes, lantipeptides, polyketides, nonribosomal peptides, RiPPs and siderophores, were detected in the genome of strain 21So2-11. In addition, a total of 1456 BGCs were predicted to contribute to the biosynthesis of more than 300 secondary metabolites based on the genomes of 47 Streptomyces strains originating from polar regions. The results indicate the potential of Streptomyces sp. 21So2-11 for bioactive secondary metabolite production and are helpful for understanding bacterial adaptability and ecological function in cold terrestrial environments.

18.
Alzheimers Dement (Amst) ; 16(2): e12600, 2024.
Article in English | MEDLINE | ID: mdl-38912305

ABSTRACT

INTRODUCTION: The variability in apolipoprotein E (APOE) ε4-attributed susceptibility to Alzheimer's disease (AD) across ancestries, sexes, and ages may stem from the modulating effects of other genetic variants. METHODS: We examined associations of compound genotypes (CompGs) comprising the ε4-encoding rs429358, TOMM40 rs2075650, and APOC1 rs12721046 polymorphisms with AD in White (7181/16,356 AD-affected/unaffected), Hispanic/Latino (2305/2921), and Black American (547/1753) participants across sexes and ages. RESULTS: The absence and presence of the rs2075650 and/or rs12721046 minor alleles in the ε4-bearing CompGs define lower- and higher-AD-risk profiles, respectively, in White participants. They differentially impact AD risks in men and women of different ancestries, exhibiting an increasing, decreasing, flat, and nonlinear-with lower risks at ages younger than 65/70 years and older than 85 years compared to the ages in between-patterns across ages. DISCUSSION: The ε4-bearing CompGs have a potential to differentiate biological mechanisms of sex-, age-, and ancestry-specific AD risks and serve as AD biomarkers. Highlights: Younger White women carrying the lower-risk (LR) CompG are at small risk of AD.Black carriers of the LR CompG are at negligible risk of AD at 85 years and older.The higher-risk (HR) CompGs confer high AD risk in Whites and Blacks at 70 to 85 years.AD risk decreases with age for Hispanic/Lation women carrying the HR CompGs.Hispanic/Lation carriers of the LR CompG but not HR CompGs have higher AD risk than Blacks.

19.
Mar Drugs ; 22(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38921573

ABSTRACT

Three new cyclic lipopeptides, olenamidonins A-C (1-3), in addition to two previously reported metabolites (4 and 5), were accumulated in the ΔdtxRso deletion mutant of deepsea-derived Streptomyces olivaceus SCSIO 1071. The structures of these cyclic lipopeptides were determined by a combination of spectroscopic methods and circular dichroism (CD) measurement. The antibacterial assay results showed that compounds 1-5 displayed different degrees of growth inhibition against multidrug-resistant (MDR) bacterial strains Enterococcus faecalis CCARM 5172 and Enterococcus faecium CCARM 5203 with minimum inhibitory concentrations (MICs) of 1.56-6.25 µg/mL.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecalis , Lipopeptides , Microbial Sensitivity Tests , Peptides, Cyclic , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Lipopeptides/pharmacology , Lipopeptides/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Enterococcus faecalis/drug effects , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Enterococcus faecium/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Bacterial Proteins/genetics
20.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38859767

ABSTRACT

How to resolve the metabolic dark matter of microorganisms has long been a challenging problem in discovering active molecules. Diverse omics tools have been developed to guide the discovery and characterization of various microbial metabolites, which make it gradually possible to predict the overall metabolites for individual strains. The combinations of multi-omic analysis tools effectively compensates for the shortcomings of current studies that focus only on single omics or a broad class of metabolites. In this review, we systematically update, categorize and sort out different analysis tools for microbial metabolites prediction in the last five years to appeal for the multi-omic combination on the understanding of the metabolic nature of microbes. First, we provide the general survey on different updated prediction databases, webservers, or software that based on genomics, transcriptomics, proteomics, and metabolomics, respectively. Then, we discuss the essentiality on the integration of multi-omics data to predict metabolites of different microbial strains and communities, as well as stressing the combination of other techniques, such as systems biology methods and data-driven algorithms. Finally, we identify key challenges and trends in developing multi-omic analysis tools for more comprehensive prediction on diverse microbial metabolites that contribute to human health and disease treatment.


Subject(s)
Metabolomics , Software , Metabolomics/methods , Genomics/methods , Proteomics/methods , Humans , Computational Biology/methods , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Metabolome , Algorithms , Multiomics
SELECTION OF CITATIONS
SEARCH DETAIL
...