Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.014
Filter
1.
Brief Bioinform ; 25(6)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39376034

ABSTRACT

Single-cell technologies enable researchers to investigate cell functions at an individual cell level and study cellular processes with higher resolution. Several multi-omics single-cell sequencing techniques have been developed to explore various aspects of cellular behavior. Using NEAT-seq as an example, this method simultaneously obtains three kinds of omics data for each cell: gene expression, chromatin accessibility, and protein expression of transcription factors (TFs). Consequently, NEAT-seq offers a more comprehensive understanding of cellular activities in multiple modalities. However, there is a lack of tools available for effectively integrating the three types of omics data. To address this gap, we propose a novel pipeline called MultiSC for the analysis of MULTIomic Single-Cell data. Our pipeline leverages a multimodal constraint autoencoder (single-cell hierarchical constraint autoencoder) to integrate the multi-omics data during the clustering process and a matrix factorization-based model (scMF) to predict target genes regulated by a TF. Moreover, we utilize multivariate linear regression models to predict gene regulatory networks from the multi-omics data. Additional functionalities, including differential expression, mediation analysis, and causal inference, are also incorporated into the MultiSC pipeline. Extensive experiments were conducted to evaluate the performance of MultiSC. The results demonstrate that our pipeline enables researchers to gain a comprehensive view of cell activities and gene regulatory networks by fully leveraging the potential of multiomics single-cell data. By employing MultiSC, researchers can effectively integrate and analyze diverse omics data types, enhancing their understanding of cellular processes.


Subject(s)
Deep Learning , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Regulatory Networks , Computational Biology/methods , Multiomics
2.
Front Genet ; 15: 1481787, 2024.
Article in English | MEDLINE | ID: mdl-39371416

ABSTRACT

Introduction: Gene regulatory networks (GRNs) reveal the intricate interactions between and among genes, and understanding these interactions is essential for revealing the molecular mechanisms of cancer. However, existing algorithms for constructing GRNs may confuse regulatory relationships and complicate the determination of network directionality. Methods: We propose a new method to construct GRNs based on causal strength and ensemble regression (CSER) to overcome these issues. CSER uses conditional mutual inclusive information to quantify the causal associations between genes, eliminating indirect regulation and marginal genes. It considers linear and nonlinear features and uses ensemble regression to infer the direction and interaction (activation or regression) from regulatory to target genes. Results: Compared to traditional algorithms, CSER can construct directed networks and infer the type of regulation, thus demonstrating higher accuracy on simulated datasets. Here, using real gene expression data, we applied CSER to construct a colorectal cancer GRN and successfully identified several key regulatory genes closely related to colorectal cancer (CRC), including ADAMDEC1, CLDN8, and GNA11. Discussion: Importantly, by integrating immune cell and microbial data, we revealed the complex interactions between the CRC gene regulatory network and the tumor microenvironment, providing additional new biomarkers and therapeutic targets for the early diagnosis and prognosis of CRC.

3.
ACS Synth Biol ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375864

ABSTRACT

CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.

4.
Development ; 151(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39253748

ABSTRACT

Caenorhabditis elegans males undergo sex-specific tail tip morphogenesis (TTM) under the control of the DM-domain transcription factor DMD-3. To find genes regulated by DMD-3, we performed RNA-seq of laser-dissected tail tips. We identified 564 genes differentially expressed (DE) in wild-type males versus dmd-3(-) males and hermaphrodites. The transcription profile of dmd-3(-) tail tips is similar to that in hermaphrodites. For validation, we analyzed transcriptional reporters for 49 genes and found male-specific or male-biased expression for 26 genes. Only 11 DE genes overlapped with genes found in a previous RNAi screen for defective TTM. GO enrichment analysis of DE genes finds upregulation of genes within the unfolded protein response pathway and downregulation of genes involved in cuticle maintenance. Of the DE genes, 40 are transcription factors, indicating that the gene network downstream of DMD-3 is complex and potentially modular. We propose modules of genes that act together in TTM and are co-regulated by DMD-3, among them the chondroitin synthesis pathway and the hypertonic stress response.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Morphogenesis , RNA-Seq , Tail , Animals , Caenorhabditis elegans/genetics , Morphogenesis/genetics , Male , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Regulatory Networks , Organ Specificity/genetics
5.
J Dev Biol ; 12(3)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39311120

ABSTRACT

Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are attached to tendons on two ends. Similar to axon growth cones, myotube leading edges navigate toward target cells and form cell-cell connections. The process of myotube guidance connects myotubes with the correct tendons, orients myofiber morphology with the overall body plan, and generates a functional musculoskeletal system. Navigational signaling, addition of mass and volume, and identification of target cells are common events in myotube guidance and axon guidance, but surprisingly, the mechanisms regulating these events are not completely overlapping in myotubes and axons. This review summarizes the strategies that have evolved to direct myotube leading edges to predetermined tendon cells and highlights key differences between myotube guidance and axon guidance. The association of myotube guidance pathways with developmental disorders is also discussed.

6.
Comput Biol Chem ; 113: 108223, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39340962

ABSTRACT

BACKGROUND AND OBJECTIVE: The reconstruction of gene regulatory networks (GRNs) stands as a vital approach in deciphering complex biological processes. The application of nonlinear ordinary differential equations (ODEs) models has demonstrated considerable efficacy in predicting GRNs. Notably, the decay rate and time delay are pivotal in authentic gene regulation, yet their systematic determination in ODEs models remains underexplored. The development of a comprehensive optimization framework for the effective estimation of these key parameters is essential for accurate GRN inference. METHOD: This study introduces GRNMOPT, an innovative methodology for inferring GRNs from time-series and steady-state data. GRNMOPT employs a combined use of decay rate and time delay in constructing ODEs models to authentically represent gene regulatory processes. It incorporates a multi-objective optimization approach, optimizing decay rate and time delay concurrently to derive Pareto optimal sets for these factors, thereby maximizing accuracy metrics such as AUROC (Area Under the Receiver Operating Characteristic curve) and AUPR (Area Under the Precision-Recall curve). Additionally, the use of XGBoost for calculating feature importance aids in identifying potential regulatory gene links. RESULTS: Comprehensive experimental evaluations on two simulated datasets from DREAM4 and three real gene expression datasets (Yeast, In vivo Reverse-engineering and Modeling Assessment [IRMA], and Escherichia coli [E. coli]) reveal that GRNMOPT performs commendably across varying network scales. Furthermore, cross-validation experiments substantiate the robustness of GRNMOPT. CONCLUSION: We propose a novel approach called GRNMOPT to infer GRNs based on a multi-objective optimization framework, which effectively improves inference accuracy and provides a powerful tool for GRNs inference.

7.
Brief Funct Genomics ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324652

ABSTRACT

Gene regulatory networks (GRNs) contribute toward understanding the function of genes and the development of cancer or the impact of key genes on diseases. Hence, this study proposes an ensemble method based on 13 basic classification methods and a flexible neural tree (FNT) to improve GRN identification accuracy. The primary classification methods contain ridge classification, stochastic gradient descent, Gaussian process classification, Bernoulli Naive Bayes, adaptive boosting, gradient boosting decision tree, hist gradient boosting classification, eXtreme gradient boosting (XGBoost), multilayer perceptron, light gradient boosting machine, random forest, support vector machine, and k-nearest neighbor algorithm, which are regarded as the input variable set of FNT model. Additionally, a hybrid evolutionary algorithm based on a gene programming variant and particle swarm optimization is developed to search for the optimal FNT model. Experiments on three simulation datasets and three real single-cell RNA-seq datasets demonstrate that the proposed ensemble feature outperforms 13 supervised algorithms, seven unsupervised algorithms (ARACNE, CLR, GENIE3, MRNET, PCACMI, GENECI, and EPCACMI) and four single cell-specific methods (SCODE, BiRGRN, LEAP, and BiGBoost) based on the area under the receiver operating characteristic curve, area under the precision-recall curve, and F1 metrics.

8.
BMC Bioinformatics ; 25(1): 305, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294560

ABSTRACT

BACKGROUND: Many approaches have been developed to overcome technical noise in single cell RNA-sequencing (scRNAseq). As researchers dig deeper into data-looking for rare cell types, subtleties of cell states, and details of gene regulatory networks-there is a growing need for algorithms with controllable accuracy and fewer ad hoc parameters and thresholds. Impeding this goal is the fact that an appropriate null distribution for scRNAseq cannot simply be extracted from data in which ground truth about biological variation is unknown (i.e., usually). RESULTS: We approach this problem analytically, assuming that scRNAseq data reflect only cell heterogeneity (what we seek to characterize), transcriptional noise (temporal fluctuations randomly distributed across cells), and sampling error (i.e., Poisson noise). We analyze scRNAseq data without normalization-a step that skews distributions, particularly for sparse data-and calculate p values associated with key statistics. We develop an improved method for selecting features for cell clustering and identifying gene-gene correlations, both positive and negative. Using simulated data, we show that this method, which we call BigSur (Basic Informatics and Gene Statistics from Unnormalized Reads), captures even weak yet significant correlation structures in scRNAseq data. Applying BigSur to data from a clonal human melanoma cell line, we identify thousands of correlations that, when clustered without supervision into gene communities, align with known cellular components and biological processes, and highlight potentially novel cell biological relationships. CONCLUSIONS: New insights into functionally relevant gene regulatory networks can be obtained using a statistically grounded approach to the identification of gene-gene correlations.


Subject(s)
Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Sequence Analysis, RNA/methods , Transcriptome/genetics , Algorithms , Gene Expression Profiling/methods , Gene Regulatory Networks/genetics
9.
Heliyon ; 10(17): e36567, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39263089

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a huge mortality rate and imposed significant costs on the health system, causing severe damage to the cells of different organs such as the heart. However, the exact details and mechanisms behind this damage are not clarified. Therefore, we aimed to identify the cell and molecular mechanism behind the heart damage caused by SARS-Cov-2 infection. Methods: RNA-seq data for COVID-19 patients' hearts was analyzed to obtain differentially expressed genes (DEGs) and differentially expressed ferroptosis-related genes (DEFRGs). Then, DEFRGs were used for analyzing GO and KEGG enrichment, and perdition of metabolites and drugs. we also constructed a PPI network and identified hub genes and functional modules for the DEFRGs. Subsequently, the hub genes were validated using two independent RNA-seq datasets. Finally, the miRNA-gene interaction networks were predicted in addition to a miRNA-TF co-regulatory network, and important miRNAs and transcription factors (TFs) were highlighted. Findings: We found ferroptosis transcriptomic alterations within the hearts of COVID-19 patients. The enrichment analyses suggested the involvement of DEFRGs in the citrate cycle pathway, ferroptosis, carbon metabolism, amino acid biosynthesis, and response to oxidative stress. IL6, CDH1, AR, EGR1, SIRT3, GPT2, VDR, PCK2, VDR, and MUC1 were identified as the ferroptosis-related hub genes. The important miRNAs and TFs were miR-124-3P, miR-26b-5p, miR-183-5p, miR-34a-5p and miR-155-5p; EGR1, AR, IL6, HNF4A, SRC, EZH2, PPARA, and VDR. Conclusion: These results provide a useful context and a cellular snapshot of how ferroptosis affects cardiomyocytes (CMs) in COVID-19 patients' hearts. Besides, suppressing ferroptosis seems to be a beneficial therapeutic approach to mitigate heart damage in COVID-19.

10.
bioRxiv ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39257745

ABSTRACT

Understanding cell state transitions and their governing regulatory mechanisms remains one of the fundamental questions in biology. We develop a computational method, state transition inference using cross-cell correlations (STICCC), for predicting reversible and irreversible cell state transitions at single-cell resolution by using gene expression data and a set of gene regulatory interactions. The method is inspired by the fact that the gene expression time delays between regulators and targets can be exploited to infer past and future gene expression states. From applications to both simulated and experimental single-cell gene expression data, we show that STICCC-inferred vector fields capture basins of attraction and irreversible fluxes. By connecting regulatory information with systems' dynamical behaviors, STICCC reveals how network interactions influence reversible and irreversible state transitions. Compared to existing methods that infer pseudotime and RNA velocity, STICCC provides complementary insights into the gene regulation of cell state transitions.

11.
Sci Rep ; 14(1): 21342, 2024 09 12.
Article in English | MEDLINE | ID: mdl-39266676

ABSTRACT

Inferring gene regulatory networks through deep learning and causal inference methods is a crucial task in the field of computational biology and bioinformatics. This study presents a novel approach that uses a Graph Convolutional Network (GCN) guided by causal information to infer Gene Regulatory Networks (GRN). The transfer entropy and reconstruction layer are utilized to achieve causal feature reconstruction, mitigating the information loss problem caused by multiple rounds of neighbor aggregation in GCN, resulting in a causal and integrated representation of node features. Separable features are extracted from gene expression data by the Gaussian-kernel Autoencoder to improve computational efficiency. Experimental results on the DREAM5 and the mDC dataset demonstrate that our method exhibits superior performance compared to existing algorithms, as indicated by the higher values of the AUPRC metrics. Furthermore, the incorporation of causal feature reconstruction enhances the inferred GRN, rendering them more reasonable, accurate, and reliable.


Subject(s)
Algorithms , Computational Biology , Gene Regulatory Networks , Computational Biology/methods , Humans , Deep Learning , Gene Expression Profiling/methods , Neural Networks, Computer
12.
Adv Sci (Weinh) ; : e2404854, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258786

ABSTRACT

Cancer is a systemic heterogeneous disease involving complex molecular networks. Tumor formation involves an epithelial-mesenchymal transition (EMT), which promotes both metastasis and plasticity of cancer cells. Recent experiments have proposed that cancer cells can be transformed into adipocytes via a combination of drugs. However, the underlying mechanisms for how these drugs work, from a molecular network perspective, remain elusive. To reveal the mechanism of cancer-adipose conversion (CAC), this study adopts a systems biology approach by combing mathematical modeling and molecular experiments, based on underlying molecular regulatory networks. Four types of attractors are identified, corresponding to epithelial (E), mesenchymal (M), adipose (A) and partial/intermediate EMT (P) cell states on the CAC landscape. Landscape and transition path results illustrate that intermediate states play critical roles in the cancer to adipose transition. Through a landscape control approach, two new therapeutic strategies for drug combinations are identified, that promote CAC. These predictions are verified by molecular experiments in different cell lines. The combined computational and experimental approach provides a powerful tool to explore molecular mechanisms for cell fate transitions in cancer networks. The results reveal underlying mechanisms of intermediate cell states that govern the CAC, and identified new potential drug combinations to induce cancer adipogenesis.

13.
Dev Biol ; 516: 207-220, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39181419

ABSTRACT

Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.


Subject(s)
PAX3 Transcription Factor , PAX7 Transcription Factor , Urochordata , Animals , Urochordata/embryology , Urochordata/genetics , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , Gene Expression Regulation, Developmental/genetics , Epithelium/metabolism , Ciona intestinalis/genetics , Ciona intestinalis/embryology , Cell Differentiation/genetics , Neural Crest/metabolism , Neural Crest/embryology
14.
New Phytol ; 244(3): 1057-1073, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39140996

ABSTRACT

Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing plants, particular in monocots, where gene regulatory networks governing the maintenance and differentiation of shoot apical and intercalary meristems remain a subject of controversy. We employed both spatial and single-nucleus transcriptome sequencing on 10× platform to precisely dissect the gene functions in various tissues and early developmental stages of bamboo shoots. Our comprehensive analysis reveals distinct cell trajectories during shoot development, uncovering critical genes and pathways involved in procambium differentiation, intercalary meristem formation, and vascular tissue development. Spatial and temporal expression patterns of key regulatory genes, particularly those related to hormone signaling and lipid metabolism, strongly support the hypothesis that intercalary meristem origin from surrounded parenchyma cells. Specific gene expressions in intercalary meristem exhibit regular and dispersed distribution pattern, offering clues for understanding the intricate molecular mechanisms that drive the rapid growth of bamboo shoots. The single-nucleus and spatial transcriptome analysis reveal a comprehensive landscape of gene activity, enhancing the understanding of the molecular architecture of organogenesis and providing valuable resources for future genomic and genetic studies relying on identities of specific cell types.


Subject(s)
Gene Expression Regulation, Plant , Meristem , Plant Shoots , Transcriptome , Plant Shoots/growth & development , Plant Shoots/genetics , Transcriptome/genetics , Meristem/genetics , Meristem/growth & development , Organogenesis, Plant/genetics , Gene Expression Profiling , Spatio-Temporal Analysis , Sasa/genetics , Sasa/growth & development , Genes, Plant , Organogenesis/genetics , Time Factors , Cell Nucleus/metabolism , Cell Nucleus/genetics
15.
Reprod Sci ; 31(10): 3159-3174, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39090334

ABSTRACT

Human reproductive success relies on the proper differentiation of the uterine endometrium to facilitate implantation, formation of the placenta, and pregnancy. This process involves two critical types of decidual uterine cells: endometrial/decidual stromal cells (dS) and uterine/decidual natural killer (dNK) cells. To better understand the transcription factors governing the in vivo functions of these cells, we analyzed single-cell transcriptomics data from first-trimester terminations of pregnancy, and for the first time conducted gene regulatory network analysis of dS and dNK cell subpopulations. Our analysis revealed stromal cell populations that corresponded to previously described in vitro decidualized cells and senescent decidual cells. We discovered new decidualization driving transcription factors of stromal cells for early pregnancy, including DDIT3 and BRF2, which regulate oxidative stress protection. For dNK cells, we identified transcription factors involved in the immunotolerant (dNK1) subpopulation, including IRX3 and RELB, which repress the NFKB pathway. In contrast, for the less immunotolerant (dNK3) population we predicted TBX21 (T-bet) and IRF2-mediated upregulation of the interferon pathway. To determine the clinical relevance of our findings, we tested the overrepresentation of the predicted transcription factors target genes among cell type-specific regulated genes from pregnancy disorders, such as recurrent pregnancy loss and preeclampsia. We observed that the predicted decidualized stromal and dNK1-specific transcription factor target genes were enriched with the genes downregulated in pregnancy disorders, whereas the predicted dNK3-specific targets were enriched with genes upregulated in pregnancy disorders. Our findings emphasize the importance of stress tolerance pathways in stromal cell decidualization and immunotolerance promoting regulators in dNK differentiation.


Subject(s)
Decidua , Gene Regulatory Networks , Killer Cells, Natural , Stromal Cells , Female , Humans , Decidua/metabolism , Decidua/cytology , Killer Cells, Natural/metabolism , Stromal Cells/metabolism , Pregnancy
16.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125691

ABSTRACT

Cell immortalization, a hallmark of cancer development, is a process that cells can undergo on their path to carcinogenesis. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) have been used for decades; however, changes in the global transcriptome during this process have been poorly described. In our research, we characterized the poly-A RNA transcriptome changes after spontaneous immortalization. To this end, differentially expressed genes (DEGs) were screened using DESeq2 and characterized by gene ontology enrichment analysis and protein-protein interaction (PPI) network analysis to identify the potential hub genes. In our study, we identified changes in the expression of genes involved in proliferation regulation, cell adhesion, immune response and transcriptional regulation in immortalized MEFs. In addition, we performed a comparative analysis with previously reported MEF immortalization data, where we propose a predicted gene regulatory network model in immortalized MEFs based on the altered expression of Mapk11, Cdh1, Chl1, Zic1, Hoxd10 and the novel hub genes Il6 and Itgb2.


Subject(s)
Fibroblasts , Gene Expression Profiling , Gene Regulatory Networks , Transcriptome , Animals , Mice , Fibroblasts/metabolism , Protein Interaction Maps/genetics , Embryo, Mammalian/metabolism , Gene Ontology
17.
Front Plant Sci ; 15: 1451403, 2024.
Article in English | MEDLINE | ID: mdl-39166246

ABSTRACT

Low temperature is one of the most important environmental factors that inhibits rice growth and grain yield. Transcription factors (TFs) play crucial roles in chilling acclimation by regulating gene expression. However, transcriptional dynamics and key regulators responding to low temperature remain largely unclear in rice. In this study, a transcriptome-based comparative analysis was performed to explore genome-wide gene expression profiles between a chilling-resistant cultivar DC90 and a chilling-susceptible cultivar 9311 at a series of time points under low temperature treatment and recovery condition. A total of 3,590 differentially expressed genes (DEGs) between two cultivars were determined and divided into 12 co-expression modules. Meanwhile, several biological processes participating in the chilling response such as abscisic acid (ABA) responses, water deprivation, protein metabolic processes, and transcription regulator activities were revealed. Through weighted gene co-expression network analysis (WGCNA), 15 hub TFs involved in chilling conditions were identified. Further, we used the gene regulatory network (GRN) to evaluate the top 50 TFs, which might have potential roles responding to chilling stress. Finally, five TFs, including a C-repeat binding factor (OsCBF3), a zinc finger-homeodomain protein (OsZHD8), a tandem zinc finger protein (OsTZF1), carbon starved anther (CSA), and indeterminate gametophyte1 (OsIG1) were identified as crucial candidates responsible for chilling resistance in rice. This study deepens our understanding in the gene regulation networks of chilling stress in rice and offers potential gene resources for breeding climate-resilient crops.

18.
Math Biosci ; : 109284, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39168402

ABSTRACT

Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. For a widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.

19.
Cell Syst ; 15(8): 709-724.e13, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173585

ABSTRACT

Inference of causal transcriptional regulatory networks (TRNs) from transcriptomic data suffers notoriously from false positives. Approaches to control the false discovery rate (FDR), for example, via permutation, bootstrapping, or multivariate Gaussian distributions, suffer from several complications: difficulty in distinguishing direct from indirect regulation, nonlinear effects, and causal structure inference requiring "causal sufficiency," meaning experiments that are free of any unmeasured, confounding variables. Here, we use a recently developed statistical framework, model-X knockoffs, to control the FDR while accounting for indirect effects, nonlinear dose-response, and user-provided covariates. We adjust the procedure to estimate the FDR correctly even when measured against incomplete gold standards. However, benchmarking against chromatin immunoprecipitation (ChIP) and other gold standards reveals higher observed than reported FDR. This indicates that unmeasured confounding is a major driver of FDR in TRN inference. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Gene Regulatory Networks , Transcriptome , Gene Regulatory Networks/genetics , Transcriptome/genetics , Humans , Chromatin Immunoprecipitation/methods , Gene Expression Profiling/methods
20.
BMC Plant Biol ; 24(1): 801, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39179987

ABSTRACT

BACKGROUND: Jasmonic acid (JA) is a phytohormone involved in regulating responses to biotic and abiotic stress. Although the JA pathway is well characterized in model plants such as Arabidopsis thaliana, less is known about many non-model plants. Phytolacca americana (pokeweed) is native to eastern North Americana and is resilient to environmental stress. The goal of this study was to produce a publicly available pokeweed genome assembly and annotations and use this resource to determine how early response to JA changes gene expression, with particular focus on genes involved in defense. RESULTS: We assembled the pokeweed genome de novo from approximately 30 Gb of PacBio Hifi long reads and achieved an NG50 of ~ 13.2 Mb and a minimum 93.9% complete BUSCO score for gene annotations. With this reference, we investigated the early changes in pokeweed gene expression following JA treatment. Approximately 5,100 genes were differentially expressed during the 0-6 h time course with almost equal number of genes with increased and decreased transcript levels. Cluster and gene ontology analyses indicated the downregulation of genes associated with photosynthesis and upregulation of genes involved in hormone signaling and defense. We identified orthologues of key transcription factors and constructed the first JA gene response network integrated with our transcriptomic data from orthologues of Arabidopsis genes. We discovered that pokeweed did not use leaf senescence as a means of reallocating resources during stress; rather, most secondary metabolite synthesis genes were constitutively expressed, suggesting that pokeweed directs its resources for survival over the long term. In addition, pokeweed synthesizes several RNA N-glycosylases hypothesized to function in defense, each with unique expression profiles in response to JA. CONCLUSIONS: Our investigation of the early response of pokeweed to JA illustrates patterns of gene expression involved in defence and stress tolerance. Pokeweed provides insight into the defense mechanisms of plants beyond those observed in research models and crops, and further study may yield novel approaches to improving the resilience of plants to environmental changes. Our assembled pokeweed genome is the first within the taxonomic family Phytolaccaceae to be publicly available for continued research.


Subject(s)
Cyclopentanes , Gene Expression Regulation, Plant , Genome, Plant , Oxylipins , Plant Growth Regulators , Oxylipins/pharmacology , Oxylipins/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Phytolacca americana/genetics , Phytolacca americana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL