ABSTRACT
Objectives: The aim of our study was to investigate whether TNFAIP3, PTPN22, and TRAF1-5 single nucleotide polymorphisms (SNPs) are associated with susceptibility, severity, or serological markers in primary Sjögren's syndrome (pSS). Patients and methods: The cases and controls study was conducted between December 2021 and June 2022. TNFAIP3 rs10499194C/T, rs6920220G/A, and rs2230926T/G, PTPN22 rs2476601C/T and rs33996649G/A, and TRAF1-C5 rs10818488G/A polymorphisms were genotyped in 154 female pSS patients (mean age: 45.2±6.8 years) and 313 female control subjects (mean age: 50.3±7.5 years) using the TaqMan® SNP genotyping assay. An association analysis between TNFAIP3, PTPN22, and TRAF1-C5 SNPs and susceptibility, clinical characteristics, and serological markers of pSS was performed. Interactions between TNFAIP3, PTPN22, and TRAF1-C5 SNPs were also evaluated in patients and controls. Results: The genotype and allele frequencies showed no association with susceptibility, severity, or serological markers of pSS. Nevertheless, several interactions between TNFAIP3 and TRAF1-C5 or TNFAIP3, PTPN22, and TRAF1-C5 genotypes were associated with susceptibility to pSS (p<0.01). Conclusion: Individual TNFAIP3, PTPN22, and TRAF1-C5 SNPs are not associated with susceptibility, severity, or serological markers of pSS. However, genetic interactions between TRAF1-C5 and TNFAIP3 or TNFAIP3, PTPN22, and TRAF1-C5 SNPs are risk factors for pSS.
ABSTRACT
Neuromyelitis Optica Spectrum Disorder (NMOSD) is a demyelinating autoimmune disease of the central nervous system, more prevalent in individuals of non-European ancestry. Few studies have analyzed genetic risk factors in NMOSD, and HLA class II gene variation has been associated NMOSD risk in various populations including Mexicans. Thymopoietin (TMPO) has not been tested as a candidate gene for NMOSD or other autoimmune disease, however, experimental evidence suggests this gene may be involved in negative selection of autoreactive T cells and autoimmunity. We thus investigated whether the missense TMPO variant rs17028450 (Arg630Cys, frequent in Latin America) is associated with NMOSD, and whether this variant shows an interaction with HLA-class II rs9272219, previously associated with NMOSD risk. A total of 119 Mexican NMOSD patients, 1208 controls and 357 Native Mexican individuals were included. The HLA rs9272219 "T" risk allele frequency ranged from 21 to 68%, while the rs17028450 "T" minor allele frequency was as high as 18% in Native Mexican groups. Both rs9272219 and rs17028450 were significantly associated with NMOSD risk under additive models (OR = 2.48; p = 8 × 10-10 and OR = 1.59; p = 0.0075, respectively), and a significant interaction between both variants was identified with logistic regression models (p = 0.048). Individuals bearing both risk alleles had an estimated 3.9-fold increased risk of NMOSD. To our knowledge, this is the first study reporting an association of TMPO gene variation with an autoimmune disorder and the interaction of specific susceptibility gene variants, that may contribute to the genetic architecture of NMOSD in admixed Latin American populations.
ABSTRACT
BLK and BANK1 in primary Sjögren's syndrome (pSS) have scarcely been evaluated and the results are inconclusive. The aim of our study was to determine whether single nucleotide variants (SNVs) located within BLK or BANK1 are associated with susceptibility, clinical and serological features, and smoking in pSS. BLK rs13277113A/G, BANK1 rs10516487G/A and rs3733197G/A were genotyped in 203 cases and 424 controls using a TaqMan® SNP genotyping assay. The BLK rs13277113A allele showed association with pSS under the allelic (OR 1.35, p = 0.02), and recessive (OR 1.83, p = 0.003) model, while, BANK1 rs3733197G/A showed association under the dominant model (OR 2.90, p = 0.043). Interactions between BANK1 and BLK genotypes also showed association (OR 2.36, p < 0.0001). In addition, BLK rs13277113A/G was associated with protection against arthritis and BANK1 rs10516487G/A with both arthritis and keratoconjunctivitis sicca, meanwhile, BANK1 rs3733197G/A was associated with smoking in patients with pSS. This is the first study to describe an association between BLK and susceptibility to pSS in a Latin-American population. Our data also shows a first evidence of association between interactions of BLK and BANK1 in pSS, and association of BLK and BANK1with arthritis, keratoconjunctivitis sicca and smoking in patients with pSS.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Membrane Proteins/genetics , Sjogren's Syndrome/genetics , src-Family Kinases/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Arthritis, Rheumatoid/genetics , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Membrane Proteins/metabolism , Mexico/epidemiology , Middle Aged , Polymorphism, Single Nucleotide , Sjogren's Syndrome/metabolism , src-Family Kinases/metabolismABSTRACT
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated inflammatory response to pathogens. Bioinformatics and transcriptomics studies contribute to get a better understanding of the pathogenesis of sepsis. These studies revealed differentially expressed genes (DEGs) in sepsis involved in several pathways. Here we investigated the gene expression profiles of blood leukocytes using three microarray datasets of sepsis secondary to pneumonia, focusing on the heme/hemoglobin metabolism pathway. We demonstrate that the heme/hemoglobin metabolism pathway was found to be enriched in these three cohorts with four common genes (ALAS2, AHSP, HBD, and CA1). Several studies show that these four genes are involved in the cytoprotection of non-erythrocyte cells in response to different stress conditions. The upregulation of heme/hemoglobin metabolism in sepsis might be a protective response of white cells to the hostile environment present in septic patients (follow-up samples).
Subject(s)
Heme/metabolism , Hemoglobins/metabolism , Sepsis/genetics , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , Blood Proteins/genetics , Blood Proteins/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling/methods , Gene Ontology , Heme/genetics , Hemoglobin Subunits/genetics , Hemoglobin Subunits/metabolism , Hemoglobins/genetics , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Pneumonia/complications , Pneumonia/genetics , Sepsis/blood , Sepsis/metabolism , Transcriptome/geneticsABSTRACT
OBJECTIVE: The association of variants in CLU, CR1, PICALM, BIN1, ABCA7, and CD33 genes with late-onset Alzheimer's disease (LOAD) was evaluated and confirmed through genome-wide association study. However, it is unknown whether these associations can be replicated in admixed populations. METHODS: The association of 14 single-nucleotide polymorphisms in those genes was evaluated in 280 LOAD cases and 357 controls from the Colombian population. RESULTS: In a multivariate analysis using age, gender, APOE∊4 status, and admixture covariates, significant associations were obtained ( P < .05) for variants in BIN1 (rs744373, odds ratio [OR]: 1.42), CLU (rs11136000, OR: 0.66), PICALM (rs541458, OR: 0.69), ABCA7 (rs3764650, OR: 1.7), and CD33 (rs3865444, OR: 1.12). Likewise, a significant interaction effect was observed between CLU and CR1 variants with APOE. CONCLUSION: This study replicated the associations previously reported in populations of European ancestry and shows that APOE variants have a regulatory role on the effect that variants in other loci have on LOAD, reflecting the importance of gene-gene interactions in the etiology of neurodegenerative diseases.
Subject(s)
Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Genome-Wide Association Study , Age of Onset , Aged , Aged, 80 and over , Alzheimer Disease/epidemiology , Colombia/epidemiology , Female , Humans , Male , Polymorphism, Single NucleotideABSTRACT
The putative eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for cell viability and the only cellular protein known to contain the unusual amino acid residue hypusine. eIF5A has been implicated in translation initiation, cell proliferation, nucleocytoplasmic transport, mRNA decay, and actin polarization, but the precise biological function of this protein is not clear. However, eIF5A was recently shown to be directly involved with the translational machinery. A screen for synthetic lethal mutations was carried out with one of the temperature-sensitive alleles of TIF51A (tif51A-3) to identify factors that functionally interact with eIF5A and revealed the essential gene YPT1. This gene encodes a small GTPase, a member of the rab family involved with secretion, acting in the vesicular trafficking between endoplasmatic reticulum and the Golgi. Thus, the synthetic lethality between TIF51A and YPT1 may reveal the connection between translation and the polarized distribution of membrane components, suggesting that these proteins work together in the cell to guarantee proper protein synthesis and secretion necessary for correct bud formation during G1/S transition. Future studies will investigate the functional interaction between eIF5A and Ypt1 in order to clarify this involvement of eIF5A with vesicular trafficking.