Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
J Anim Ecol ; 93(7): 784-795, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38860632

ABSTRACT

Ongoing technological advances have led to a rapid increase in the number, type and scope of animal-tracking studies. In response, many software tools have been developed to analyse animal movement data. These tools generally focus on movement modelling, but the steps required to clean raw data files from different tracking devices have been largely ignored. Such pre-processing steps are often time-consuming and involve a steep learning curve but are crucial for the creation of high-quality, standardised and shareable data. Moreover, decisions made at this early stage can substantially influence subsequent analyses, and in the current age of reproducibility crisis, the transparency of this process is vital. Here we present an open-access, reproducible toolkit written in the programming language R for processing raw data files into a single cleaned data set for analyses and upload to online tracking databases (found here: https://github.com/ExMove/ExMove). The toolkit comprises well-documented and flexible code to facilitate data processing and user understanding, both of which can increase user confidence and improve the uptake of sharing open and reproducible code. Additionally, we provide an overview website (found here: https://exmove.github.io/) and a Shiny app to help users visualise tracking data and assist with parameter determination during data cleaning. The toolkit is generalisable to different data formats and device types, uses modern 'tidy coding' practices, and relies on a few well-maintained packages. Among these, we perform spatial manipulations using the package sf. Overall, by collating all required steps from data collection to archiving on open access databases into a single, robust pipeline, our toolkit provides a valuable resource for anyone conducting animal movement analyses and represents an important step towards increased standardisation and reproducibility in animal movement ecology.


Subject(s)
Software , Animals , Movement
2.
J Anim Ecol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837453

ABSTRACT

In seasonal environments, the fitness of animals depends upon the successful integration of life-history stages throughout their annual cycle. Failing to do so can lead to negative carry-over effects where individuals are transitioning into the next season in different states, consequently affecting their future performance. However, carry-over effects can be masked by individual quality when individuals vary in their efficiency at acquiring resources year after year (i.e. 'quality'), leading to cross-seasonal consistency in individual performance. Here we investigated the relative importance of carry-over effects and individual quality in determining cross-seasonal interactions and consequences for breeding success over the full annual cycle of a migratory seabird (black-legged kittiwake Rissa tridactyla). We monitored the reproduction and annual movement of kittiwakes over 13 years using geolocators to estimate their breeding success, distribution and winter energy expenditure. We combined this with an experimental approach (clutch removal experiment, 2 years) to manipulate the reproductive effort irrespective of individual quality. Piecewise path analyses showed that successful breeders reproduced earlier and were more likely to breed successfully again the following year. This positive interaction among consecutive breeding stages disappeared after controlling for individual quality, suggesting that quality was dominant in determining seasonal interactions. Moreover, controlling experimentally for individual quality revealed underlying carry-over effects that were otherwise masked by quality, with breeding costs paid in higher energy expenditure and delayed onset of reproduction. We highlight the need to combine an experimental approach along with long-term data while assessing apparent carry-over effects in wild animals, and their potential impact on fitness and population demography.

3.
Ecol Evol ; 13(3): e9846, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36937057

ABSTRACT

Investigating ecology of marine animals imposes a continuous challenge due to their temporal and/or spatial unavailability. Light-based geolocators (GLS) are animal-borne devices that provide relatively cheap and efficient method to track seabird movement and are commonly used to study migration. Here, we explore the potential of GLS data to establish individual behavior during the breeding period in a rock crevice-nesting seabird, the Little Auk, Alle alle. By deploying GLS on 12 breeding pairs, we developed a methodological workflow to extract birds' behavior from GLS data (nest attendance, colony attendance, and foraging activity), and validated its accuracy using behavior extracted from a well-established method based on video recordings. We also compared breeding outcome, as well as behavioral patterns of logged individuals with a control group treated similarly in all aspects except for the deployment of a logger, to assess short-term logger effects on fitness and behavior. We found a high accuracy of GLS-established behavioral patterns, especially during the incubation and early chick rearing period (when birds spend relatively long time in the nest). We observed no apparent effect of logger deployment on breeding outcome of logged pairs, but recorded some behavioral changes in logged individuals (longer incubation bouts and shorter foraging trips). Our study provides a useful framework for establishing behavioral patterns (nest attendance and foraging) of a crevice-nesting seabird from GLS data (light and conductivity), especially during incubation and early chick rearing period. Given that GLS deployment does not seem to affect the breeding outcome of logged individuals but does affect fine-scale behavior, our framework is likely to be applicable to a variety of crevice/burrow nesting seabirds, even though precautions should be taken to reduce deployment effect. Finally, because each species may have its own behavioral and ecological specificity, we recommend performing a pilot study before implementing the method in a new study system.

4.
Ecol Evol ; 12(12): e9579, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36523532

ABSTRACT

Animal-borne telemetry devices provide essential insights into the life-history strategies of far-ranging species and allow us to understand how they interact with their environment. Many species in the seabird family Alcidae undergo a synchronous molt of all primary flight feathers during the non-breeding season, making them flightless and more susceptible to environmental stressors, including severe storms and prey shortages. However, the timing and location of molt remain largely unknown, with most information coming from studies on birds killed by storms or shot by hunters for food. Using light-level geolocators with saltwater immersion loggers, we develop a method for determining flightless periods in the context of the annual cycle. Four Atlantic puffins (Fratercula arctica) were equipped with geolocator/immersion loggers on each leg to attempt to overcome issues of leg tucking in plumage while sitting on the water, which confounds the interpretation of logger data. Light-level and saltwater immersion time-series data were combined to correct for this issue. This approach was adapted and applied to 40 puffins equipped with the standard practice deployments of geolocators on one leg only. Flightless periods consistent with molt were identified in the dual-equipped birds, whereas molt identification in single-equipped birds was less effective and definitive and should be treated with caution. Within the dual-equipped sample, we present evidence for two flightless molt periods per non-breeding season in two puffins that undertook more extensive migrations (>2000 km) and were flightless for up to 77 days in a single non-breeding season. A biannual flight feather molt is highly unusual among non-passerine birds and may be unique to birds that undergo catastrophic molt, i.e., become flightless when molting. Although our conclusions are based on a small sample, we have established a freely available methodological framework for future investigation of the molt patterns of this and other seabird species.

5.
Mov Ecol ; 10(1): 29, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768856

ABSTRACT

BACKGROUND: As a widely distributed and aerial migratory bird, the Common Swift (Apus apus) flies over a wide geographic range in Eurasia and Africa during migration. Although some studies have revealed the migration routes and phenology of European populations, A. a. apus (from hereon the nominate apus), the route used by its East Asian counterpart A. a. pekinensis (from hereon pekinensis) remained a mystery. METHODS: Using light level geolocators, we studied the migration of adult pekinensis breeding in Beijing from 2014 to 2018, and analysed full annual tracks obtained from 25 individuals. In addition, we used the mean monthly precipitation to assess the seasonal variations in humidity for the distribution ranges of the nominate apus and pekinensis. This environmental variable is considered to be critically relevant to their migratory phenology and food resource abundance. RESULTS: Our results show that the swifts perform a round-trip journey of ca 30,000 km each year, representing a detour of 26% in autumn and 15% in spring compared to the shortest route between the breeding site in Beijing and wintering areas in semi-arid south-western Africa. Compared to the nominate apus, pekinensis experiences drier conditions for longer periods of time. Remarkably, individuals from our study population tracked arid habitat along the entire migration corridor leading from a breeding site in Beijing to at least central Africa. In Africa, they explored more arid habitats during non-breeding than the nominate apus. CONCLUSIONS: The migration route followed by pekinensis breeding in Beijing might suggest an adaptation to semi-arid habitat and dry climatic zones during non-breeding periods, and provides a piece of correlative evidence indicating the historical range expansion of the subspecies. This study highlights that the Common Swift may prove invaluable as a model species for studies of migration route formation and population divergence.

6.
J Anim Ecol ; 91(7): 1345-1360, 2022 07.
Article in English | MEDLINE | ID: mdl-35362103

ABSTRACT

Light-level geolocators have revolutionised the study of animal behaviour. However, lacking spatial precision, their usage has been primary targeted towards the analysis of large-scale movements. Recent technological developments have allowed the integration of magnetometers and accelerometers into geolocator tags in addition to barometers and thermometers, offering new behavioural insights. Here, we introduce an R toolbox for identifying behavioural patterns from multisensor geolocator tags, with functions specifically designed for data visualisation, calibration, classification and error estimation. More specifically, the package allows for the flexible analysis of any combination of sensor data using k-means clustering, expectation maximisation binary clustering, hidden Markov models and changepoint analyses. Furthermore, the package integrates tailored algorithms for identifying periods of prolonged high activity (most commonly used for identifying migratory flapping flight), and pressure changes (most commonly used for identifying dive or flight events). Finally, we highlight some of the limitations, implications and opportunities of using these methods.


Les géolocalisateurs lumineux ont révolutionné l'étude du comportement animal. Toutefois, en raison de leur manque de précision spatiale, leur utilisation a été principalement dirigée vers l'analyse de mouvements à grandes échelles. Les développements technologiques récents ont permis l'intégration de magnétomètres et d'accéléromètres dans les balises de géolocalisation, en plus de baromètres et de thermomètres, permettant de nouvelles analyses du comportement animalier. Nous présentons ici notre R package pour l'identification de modèles comportementaux à partir de balises géolocalisatrices multisensoriels. Le package intègre des fonctions conçues spécifiquement pour la visualisation de données, la calibration des balises, la classification du comportement et l'estimation des erreurs d'analyses. Plus précisément, le package permet l'analyse flexible de n'importe quelle combinaison de capteurs de données en utilisant le k-means clustering, le expectation maximisation binary clustering, les hidden Markov models et les analyses changepoint. En outre, le package intègre des algorithmes adaptés pour identifier les périodes de haute activité prolongée (le plus souvent utilisé pour identifier le vol migratoire d'oiseaux), et les changements de pression (le plus souvent utilisé pour identifier des periodes où l'animal est en plongée ou au vol). Enfin, nous soulignons les limites, les implications et les opportunités d'utilisation de ces méthodes.


Subject(s)
Behavior, Animal , Passeriformes , Acceleration , Animals , Magnetic Phenomena , Temperature
7.
Mov Ecol ; 10(1): 13, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35287747

ABSTRACT

BACKGROUND: In migratory species, the extent of within- and between-individual variation in migratory strategies can influence potential rates and directions of responses to environmental changes. Quantifying this variation requires tracking of many individuals on repeated migratory journeys. At temperate and higher latitudes, low levels of within-individual variation in migratory behaviours are common and may reflect repeated use of predictable resources in these seasonally-structured environments. However, variation in migratory behaviours in the tropics, where seasonal predictability of food resources can be weaker, remains largely unknown. METHODS: Round Island petrels (Pterodroma sp.) are tropical, pelagic seabirds that breed all year round and perform long-distance migrations. Using multi-year geolocator tracking data from 62 individuals between 2009 and 2018, we quantify levels of within- and between-individual variation in non-breeding distributions and timings. RESULTS: We found striking levels of between-individual variation in at-sea movements and timings, with non-breeding migrations to different areas occurring across much of the Indian Ocean and throughout the whole year. Despite this, repeat-tracking of individual petrels revealed remarkably high levels of spatial and temporal consistency in within-individual migratory behaviour, particularly for petrels that departed at similar times in different years and for those departing in the austral summer. However, while the same areas were used by individuals in different years, they were not necessarily used at the same times during the non-breeding period. CONCLUSIONS: Even in tropical systems with huge ranges of migratory routes and timings, our results suggest benefits of consistency in individual migratory behaviours. Identifying the factors that drive and maintain between-individual variation in migratory behaviour, and the consequences for breeding success and survival, will be key to understanding the consequences of environmental change across migratory ranges.

8.
Evolution ; 76(4): 722-736, 2022 04.
Article in English | MEDLINE | ID: mdl-35166383

ABSTRACT

Migratory divides are contact zones between breeding populations with divergent migratory strategies during the nonbreeding season. These locations provide an opportunity to evaluate the role of seasonal migration in the maintenance of reproductive isolation, particularly the relationship between population structure and features associated with distinct migratory strategies. We combine light-level geolocators, genomic sequencing, and stable isotopes to investigate the timing of migration and migratory routes of individuals breeding on either side of a migratory divide coinciding with genomic differentiation across a hybrid zone between barn swallow (Hirundo rustica) subspecies in China. Individuals west of the hybrid zone, with H. r. rustica ancestry, had comparatively enriched stable-carbon and hydrogen isotope values and overwintered in eastern Africa, whereas birds east of the hybrid zone, with H. r. gutturalis ancestry, had depleted isotope values and migrated to southern India. The two subspecies took divergent migratory routes around the high-altitude Karakoram Range and arrived on the breeding grounds over 3 weeks apart. These results indicate that assortative mating by timing of arrival and/or selection against hybrids with intermediate migratory traits may maintain reproductive isolation between the subspecies, and that inhospitable geographic features may have contributed to the diversification of Asian avifauna by influencing migratory patterns.


Subject(s)
Animal Migration , Swallows , Animals , Genomics , Humans , Phenotype , Reproductive Isolation , Seasons
9.
Mar Environ Res ; 171: 105457, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34482114

ABSTRACT

The southern North Sea holds the world's highest concentration of offshore wind farms (OWFs). Northern gannets (Morus bassanus), a species considered at high risk from OWF impacts, show a strong seasonal peak there in November, but it is unclear which populations and age classes are most at risk of collision with wind turbines. We tagged adult and juvenile gannets at the world's largest colony (Bass Rock) and reviewed two sources of survey data for different age classes to study their movements through southern North Sea waters. Tracked birds showed peak numbers in the southern North Sea in mid-October, with much smaller numbers there during November. Adults were distributed throughout the area, including waters close to OWFs, whereas juveniles were confined to the coast. Survey data indicated high proportions of immature gannets in southern North Sea waters, suggesting higher collision risk than for adults. Gannets present in November may be predominantly from colonies further north than Bass Rock.


Subject(s)
Energy-Generating Resources , Wind , Animals , Birds , North Sea
10.
Ecol Evol ; 11(11): 6066-6079, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34141203

ABSTRACT

Long-distance dispersal (LDD) outside a species' breeding range contributes to genetic divergence. Previous phylogeographic studies of migratory bird species have not discriminated LDD from vicariant speciation in their diversification process. We conducted an integrative phylogeographic approach to test the LDD hypothesis, which predicts that a Japanese migratory bird subspecies diverged from a population in the coastal region of the East China Sea (CRECS) via LDD over the East China Sea (ECS). Haplotype networks of both mitochondrial and nuclear genes of its three subspecies were reconstructed to examine whether the Japanese subspecies of the Brown Shrike (Lanius cristatus superciliosus) diverged from an ancestral CRECS population. A species distribution model (SDM) for the Japanese subspecies was constructed using bioclimatic variables under the maximum entropy algorithm. It was projected backwards to the climate of the last glacial maximum (LGM) to infer the candidate source area of colonization. A migratory route of L. c. superciliosus, which possibly reflects a candidate past colonization route, was tracked by light-level geolocators. Molecular phylogenetic networks suggest that the Japanese subspecies diverged from a population in the CRECS and maintained anciently diverged haplotypes. The SDM inferred that the emerged continental shelf of the ECS and the present CRECS were suitable breeding areas for the Japanese subspecies during the LGM. A major migratory route for L. c. superciliosus was inferred between the CRECS and the Japanese archipelago across the ECS. Our integrative approach supported the LDD hypothesis for divergence of the Japanese subspecies of the Brown Shrike. Shrinkage of the ECS may have been responsible for successful population establishment, due to a sufficient number of migrants overshooting to the Japanese archipelago from the CRECS. Our framework provides a new phylogeographic scenario for this region. Discriminating LDD and vicariance models helps improve our understanding of the phylogeographic histories of migratory species.

11.
Ecol Evol ; 10(23): 12675-12678, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304484

ABSTRACT

The arctic skua (Stercorarius parasiticus) is one of the most long-lived bird species. In 2010, we captured in Finland an adult, female arctic skua which had been ringed as a nestling in 1987. We tagged it also with a color ring. The bird has last been seen in July 2020 at the age of 33 years, making it most likely the oldest known arctic skua of the world. In 2010-2011 the bird carried a light-level measuring geolocator, the data of which revealed that the bird had spent the nonbreeding season in the Canary Current area on the west coast of Africa. Breeding populations of arctic skuas have declined recently especially in British Isles, thus it is useful to get longevity data of this species with a high breeding site fidelity.

12.
Ecol Appl ; 30(3): e02068, 2020 04.
Article in English | MEDLINE | ID: mdl-31872516

ABSTRACT

Reduced prey abundance and severe weather can lead to a greater risk of mortality for seabirds during the non-breeding winter months. Resource patterns in some regions are shifting and becoming more variable in relation to past conditions, potentially further impacting survival and carryover to the breeding season. As animal tracking technologies and methods to analyze movement data have advanced, it has become increasingly feasible to draw fine-scale inference about how environmental variation affects foraging behavior and habitat use of seabirds during this critical period. Here, we used archival light-sensing tags to evaluate how interannual variation in oceanography affected the winter distribution of Cassin's Auklets from Southeast Farallon Island, California. Thirty-five out of 93 geolocators deployed from 2015 to 2017 were recovered and successfully recorded light-level data, from which geographic positions were estimated. Step-selection functions were applied to identify environmental covariates that best explained winter movement decisions and habitat use, revealing Cassin's Auklets dispersed farther from the colony during a winter with warm SST anomalies, but remained more centralized near the breeding colony during two average winters. Movement patterns were driven by avoidance of areas with higher sea surface temperatures and possible limits of dispersal from the breeding colony, and selection for areas with well-defined mesoscale fronts and cooler surface waters. Through multiple years of tagging and the application of step-selection functions, a robust and widely applied approach for analyzing animal movement in terrestrial species, we show how interannual differences in the movement patterns of a small seabird are driven by oceanographic variability across years. Understanding the winter habitat use of seabirds can help inform changes in population structure and measures of reproductive success, aiding managers in determining potential causes of breeding failures.


Subject(s)
Charadriiformes , Animals , Breeding , Ecosystem , Oceanography , Seasons
13.
Naturwissenschaften ; 106(7-8): 45, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31270619

ABSTRACT

Protandry, the earlier arrival of males at the breeding grounds relative to females, is common in migratory birds. However, due to difficulties in following individual birds on migration, we still lack knowledge about the spatiotemporal origin of protandry during the annual cycle, impeding our understanding of the proximate drivers of this phenomenon. Here, we use full annual cycle tracking data of red-backed shrikes Lanius collurio to investigate the occurrence of sex-related differences in migratory pattern, which could be viewed as precursors (proximate causes) to protandry. We find protandry with males arriving an estimated 8.3 days (SE = 4.1) earlier at the breeding area than females. Furthermore, we find that, averaged across all departure and arrival events throughout the annual cycle, males migrate an estimated 5.3 days earlier than females during spring compared to 0.01 days in autumn. Event-wise estimates suggest that a divergence between male and female migratory schedules is initiated at departure from the main non-breeding area, thousands of kilometres from-, and several months prior to arrival at the breeding area. Duration of migration, flight speed during migration and spatial locations of stationary sites were similar between sexes. Our results reveal that protandry might arise from sex-differential migratory schedules emerging at the departure from the main non-breeding area in southern Africa and retained throughout spring migration, supporting the view that sex-differential selection pressure operates during spring migration rather than autumn migration.


Subject(s)
Animal Migration/physiology , Passeriformes/physiology , Sex Determination Processes/physiology , Animals , Female , Male , Sex Factors
14.
Ecol Evol ; 9(10): 5752-5765, 2019 May.
Article in English | MEDLINE | ID: mdl-31160996

ABSTRACT

Identifying the processes that determine avian migratory strategies in different environmental contexts is imperative to understanding the constraints to survival and reproduction faced by migratory birds across the planet.We compared the spring migration strategies of Fork-tailed Flycatchers (Tyrannus s. savana) that breed at south-temperate latitudes (i.e., austral migrants) vs. tropical latitudes (i.e., intratropical migrants) in South America. We hypothesized that austral migrant flycatchers are more time-selected than intratropical migrants during spring migration. As such, we predicted that austral migrants, which migrate further than intratropical migrants, will migrate at a faster rate and that the rate of migration for austral migrants will be positively correlated with the onset of spring migration.We attached light-level geolocators to Fork-tailed Flycatchers at two tropical breeding sites in Brazil and at two south-temperate breeding sites in Argentina and tracked their movements until the following breeding season.Of 286 geolocators that were deployed, 37 were recovered ~1 year later, of which 28 provided useable data. Rate of spring migration did not differ significantly between the two groups, and only at one site was there a significantly positive relationship between date of initiation of spring migration and arrival date.This represents the first comparison of individual migratory strategies among conspecific passerines breeding at tropical vs. temperate latitudes and suggests that austral migrant Fork-tailed Flycatchers in South America are not more time-selected on spring migration than intratropical migrant conspecifics. Low sample sizes could have diminished our power to detect differences (e.g., between sexes), such that further research into the mechanisms underpinning migratory strategies in this poorly understood system is necessary.

15.
Proc Biol Sci ; 286(1897): 20182821, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30963841

ABSTRACT

In many taxa, the most common form of sex-biased migration timing is protandry-the earlier arrival of males at breeding areas. Here we test this concept across the annual cycle of long-distance migratory birds. Using more than 350 migration tracks of small-bodied trans-Saharan migrants, we quantify differences in male and female migration schedules and test for proximate determinants of sex-specific timing. In autumn, males started migration about 2 days earlier, but this difference did not carry over to arrival at the non-breeding sites. In spring, males on average departed from the African non-breeding sites about 3 days earlier and reached breeding sites ca 4 days ahead of females. A cross-species comparison revealed large variation in the level of protandry and protogyny across the annual cycle. While we found tight links between individual timing of departure and arrival within each migration season, only for males the timing of spring migration was linked to the timing of previous autumn migration. In conclusion, our results demonstrate that protandry is not exclusively a reproductive strategy but rather occurs year-round and the two main proximate determinants for the magnitude of sex-biased arrival times in autumn and spring are sex-specific differences in departure timing and migration duration.


Subject(s)
Animal Migration , Birds/physiology , Africa, Northern , Animals , Europe , Female , Male , Reproduction , Seasons , Sex Factors , Songbirds/physiology
17.
Trends Ecol Evol ; 34(5): 459-473, 2019 05.
Article in English | MEDLINE | ID: mdl-30879872

ABSTRACT

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.


Subject(s)
Conservation of Natural Resources , Fisheries , Animals , Ecosystem
18.
Ecol Evol ; 9(1): 680-692, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30680148

ABSTRACT

Effective management and conservation of migratory bird populations require knowledge and incorporation of their movement patterns and space use throughout the annual cycle. To investigate the little-known migratory patterns of two grassland bird species, we deployed 180 light-level geolocators on Grasshopper Sparrows (Ammodramus savannarum) and 29 Argos-GPS tags on Eastern Meadowlarks (Sturnella magna) at Konza Prairie, Kansas, USA, and six US Department of Defense (DoD) installations distributed across the species' breeding ranges. We analyzed location data from 34 light-level geolocators and five Argos-GPS tags attached for 1 year to Grasshopper Sparrows and Eastern Meadowlarks, respectively. Grasshopper Sparrows were present on the breeding grounds from mid-April through early October, substantially longer than previously estimated, and migrated on average ~2,500 km over ~30 days. Grasshopper Sparrows exhibited strong migratory connectivity only at a continental scale. The North American Great Lakes region likely serves as a migratory divide for Midwest and East Coast Grasshopper Sparrows; Midwest populations (Kansas, Wisconsin, and North Dakota; n = 13) largely wintered in Texas or Mexico, whereas East Coast populations (Maryland and Massachusetts, n = 20) wintered in the northern Caribbean or Florida. Our data from Eastern Meadowlarks provided evidence for a diversity of stationary and short- and long-distance migration strategies. By providing the most extensive examination of the nonbreeding movement ecology for these two North American grassland bird species to date, we refine information gaps and provide key insight for their management and conservation.

19.
Ecol Evol ; 8(14): 6899-6908, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30073054

ABSTRACT

Under time-selected migration, birds should choose a strategy for outcompeting rivals over securing access to prime resources at the final destination. Thus, migration can be viewed as a race among individuals where winners are arriving first when conditions are suitable. The sprint migration hypothesis predicts that individuals shift from maximum sustained speed to a final burst of sprint to shorten the transition from migration to breeding (Alerstam, 2006). In this study, we test the hypothesis of a final sprint migration in a long-distance Afro-Palearctic migrant, the collared flycatcher Ficedula albicollis, during autumn and spring, and compare migration strategies between the seasons. In both seasons, collared flycatchers evidently exhibited sprint migration by increasing their overall speed over the last leg of migration after the Sahara crossing. This phenomenon was more pronounced in spring, contributing to overall faster spring migration and possibly highlighting higher importance for early arrival at the breeding grounds. In both seasons and particularly in spring, late departing individuals flew at a faster rate, partially being able to catch up with their early departing conspecifics. Differential fueling strategies may play an important role in determining migration speed, especially during the early stages of the migration, and might explain the observed differences in migration speeds between late and early departing individuals. Our findings suggest competition for early arrival at the breeding and at the nonbreeding destinations alike. Sprint migration might be an appropriate strategy to gain advantage over conspecifics and settle in prime territories as well as to cope with the increasingly earlier springs at high latitudes.

20.
Naturwissenschaften ; 105(7-8): 42, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29931450

ABSTRACT

The annual cycle of migrating birds is shaped by their seasonal movements between breeding and non-breeding sites. Studying how migratory populations are linked throughout the annual cycle-migratory connectivity, is crucial to understanding the population dynamics of migrating bird species. This requires the consideration not only of spatial scales as has been the main focus to date but also of temporal scales: only when both aspects are taken into account, the degree of migratory connectivity can be properly defined. We investigated the migration behaviour of hoopoes (Upupa epops) from four breeding populations across Europe and characterised migration routes to and from the breeding grounds, location of non-breeding sites and the timing of key migration events. Migration behaviour was found to vary both within and amongst populations, and even though the spatial migratory connectivity amongst the populations was weak, temporal connectivity was strong with differences in timing amongst populations, but consistent timing within populations. The combination of diverse migration routes within populations and co-occurrence on the non-breeding grounds between populations might promote exchange between breeding populations. As a result, it might make hoopoes and other migrating bird species with similar strategies more resilient to future habitat or climatic changes and stabilise population trends.


Subject(s)
Animal Migration/physiology , Birds/physiology , Animals , Europe , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL