Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(20): 58813-58826, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36997779

ABSTRACT

This study investigates the effect of curing temperature and foam/slag ratio on Na2SiO3- and NaOH-activated slag-based geopolymer foam composites (GFC) having thermal insulation properties. In this regard, samples used in the study were produced by adding foam at three different ratios (12.5, 15, and 17.5% by weight of slag) to the slag-based GFC having solutions with two different activator concentrations (7 M NaOH and 3 M Na2SiO3). Then, these samples were exposed to three different curing temperatures (40, 60, and 22 °C). The compressive strength, dry density, unit weight, water absorption, capillarity, apparent porosity, ultrasonic pulse velocity, and thermal conductivity tests were performed on the GFC samples for 1, 3, 7, and 28 days. Scanning electron microscopy (SEM) analyses were also conducted to characterize the pore structure and crack development of the GFCs. In addition, XRD analyses were performed on selected series to determine the formed reaction products of GFCs. As a result, it was observed that high curing temperature both improved mechanical strength and physical properties in GFC samples. The highest mechanical strength was obtained in the GFC with a 12.5% foam ratio and curing at 60 °C, while the lowest thermal conductivity coefficient was achieved in GFC with a 17.5% foam ratio and cured at 60 °C. In general, with the increase of foam ratio in slag-based GFC samples, unit weight, compressive strength, and ultrasonic pulse velocity results decreased, while capillarity, water absorption, and apparent porosity results increased. According to the results, it was seen that slag-based GFCs could be used in the construction of load-bearing and non-load-bearing walls.


Subject(s)
Fever , Water , Humans , Sodium Hydroxide , Compressive Strength , Heart Rate
2.
Materials (Basel) ; 15(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744142

ABSTRACT

This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29-1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1-32.0 MPa for G-1 and 21.5-36.2 MPa for G-2) compared to G-0 (36.9-43.1 MPa) at 29-1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.

3.
Materials (Basel) ; 15(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35160953

ABSTRACT

In this paper, four near-net shaped foams were produced via direct foaming, starting from a benchmark metakaolin-based geopolymer formulation. Hydrogen peroxide and metallic silicon were used in different amounts as blowing agents to change the porosity from meso- to ultra-macro-porosity. Foams were characterized by bulk densities ranging from 0.34 to 0.66 g cm-3, total porosity from 70% to 84%, accessible porosity from 41% to 52% and specific surface area from 47 to 94 m2 g-1. Gas permeability tests were performed, showing a correlation between the pore features and the processing methods applied. The permeability coefficients k1 (Darcian) and k2 (non-Darcian), calculated applying Forchheimer's equation, were higher by a few orders of magnitude for the foams made using H2O2 than those made with metallic silicon, highlighting the differing flow resistance according to the interconnected porosity. The gas permeability data indicated that the different geopolymer foams, obtained via direct foaming, performed similarly to other porous materials such as granular beds, fibrous filters and gel-cast foams, indicating the possibility of their use in a broad spectrum of applications.

4.
Polymers (Basel) ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35215616

ABSTRACT

The article deals with the investigation of geopolymer foams (GFs) synthesized using by-products coming from the (i) screening-, (iv) pyrolysis-, (iii) dust abatement- and (iv) fusion-processes of the secondary aluminum industry. Based on principles of the circular economy to produce new technological materials, the experimental study involves industrial by-products management through the recovery, chemical neutralization, and incorporation of these relatively hazardous waste into the GFs. The geopolymeric matrix, consisting of metakaolin (MK) and silica sand (SA) with a 1:1 wt.% ratio, and chopped carbon fibers (CFs, 1 wt.% MK), was doped with the addition of different aluminum-rich industrial by-products with a percentage from 1 to 10 wt.% MK. The gas (mainly hydrogen) produced during the chemical neutralization of the by-products represents the foaming agents trapped in the geopolymeric structure. Several experimental tests were carried out to characterize the mechanical (flexural, compressive, and Charpy impact strengths) and thermal properties (thermal conductivity, and diffusivity, and specific heat) of the GFs. Results identify GFs with good mechanical and thermal insulation properties, encouraging future researchers to find the best combination (for types and proportions) of the different by-products of the secondary aluminum industry to produce lightweight geopolymer foams. The reuse of these industrial by-products, which according to European Regulations cannot be disposed of in the landfill, also brings together environmental sustainability and safe management of hazardous material in workplaces addressed to the development of new materials.

5.
Front Chem ; 9: 754355, 2021.
Article in English | MEDLINE | ID: mdl-35004608

ABSTRACT

Metakaolin based geopolymer foams were synthesized at room temperature by direct foaming using hydrogen peroxide (H2O2) as a blowing agent and two types of surfactants such as AER5 and CTAB allowing to tune the connection between two adjacent cells. In the field of decontamination process of liquid wastes, the knowledge of the topology of the generated macroporous network is a primary of interest. Due to the complex structure of porous material, 2D conventional techniques as optical or scanning electron microscopy are often not able to provide all the necessary informations. The 3D networks were therefore characterized by X-ray tomography to determine the morphological structure parameters that is useful to manufacture geopolymer material for filtration applications. The porosity, the pore size distribution and constriction between adjacent cells, as well as the connection rates between pores were analyzed by the iMorph program. The results show that the total porosity increases from 26 to 74% when the initial concentration of H2O2 increases, which is in complete agreement with the tomography results. Materials synthetized from CTAB surfactant are poorly connected whereas those generated from AER5 surfactant have a higher mean cell size (at equivalent initial H2O2 concentration) and are fully connected, which will facilitate the transport of fluid through the material. These features have a strong impact on the value of permeability coefficients of the geopolymer foams. Indeed, permeabilities calculated from a Pore Network Modeling (PNM) approach or Kozeny-Carman equation, are ranged in between 10-14 to 10-10 m2 depending on the cell connectivity, the throat size and the total porosity.

6.
Polymers (Basel) ; 12(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334042

ABSTRACT

This paper presents temperature-dependent properties and fire resistance of geopolymer foams made of ground basalt fibers, aluminum foaming agents, and potassium-activated metakaolin-based geopolymers. Temperature-dependent properties of basalt-reinforced geopolymer foams (BGFs) were investigated by a series of measurements, including apparent density, water absorption, mass loss, drying shrinkage, compressive and flexural strengths, XRD, and SEM. Results showed that the apparent density and drying shrinkage of the BGFs increase with increasing the treated temperature from 400 to 1200 °C. Below 600 °C the mass loss is enhanced while the water absorption is reduced and they both vary slightly between 600 and 1000 °C. Above 1000 °C the mass loss is decreased rapidly, whereas the water absorption is increased. The compressive and flexural strengths of the BGFs with high fiber content are improved significantly at temperatures over 600 °C and achieved the maximum at 1200 °C. The BGF with high fiber loading at 1200 °C exhibited a substantial increase in compressive strength by 108% and flexural strength by 116% compared to that at room temperature. The enhancement in the BGF strengths at high temperatures is attributed to the development of crystalline phases and structural densification. Therefore, the BGFs with high fiber loading have extraordinary mechanical stability at high temperatures. The fire resistance of wood and steel plates has been considerably improved after coating a BGF layer on their surface. The coated BGF remained its structural integrity without any considerable macroscopic damage after fire resistance test. The longest fire-resistant times for the wood and steel plates were 99 and 134 min, respectively. In general, the BGFs with excellent fire resistance have great potential for fire protection applications.

7.
Materials (Basel) ; 13(14)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709130

ABSTRACT

The development of sustainable, environmentally friendly insulation materials with a reduced carbon footprint is attracting increased interest. One alternative to conventional insulation materials are foamed geopolymers. Similar to foamed concrete, the mechanical properties of geopolymer foams can also be improved by using fibers for reinforcement. This paper presents an overview of the latest research findings in the field of fiber-reinforced geopolymer foam concrete with special focus on natural fibers reinforcement. Furthermore, some basic and background information of natural fibers and geopolymer foams are reported. In most of the research, foams are produced either through chemical foaming with hydrogen peroxide or aluminum powder, or through mechanical foaming which includes a foaming agent. However, previous reviews have not sufficiently addresses the fabrication of geopolymer foams by syntactic foams. Finally, recent efforts to reduce the fiber degradation in geopolymer concrete are discussed along with challenges for natural fiber reinforced-geopolymer foam concrete.

8.
Materials (Basel) ; 12(24)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835816

ABSTRACT

Geopolymer foam is classified as a lightweight material with high porous in its matrix which has great offer for applications requiring fire-resistant, thermal, and acoustic properties. However, the high sensitivity to humid environments can be a major barrier of geopolymer foam that limits the variety of applications of this material. Based on this drawback, two types of hydrophobic agent (Lukosil M130 and Lukofob ELX) were used as an impregnator to treat the surface of geopolymer foam samples. This paper presented the results of water absorption properties of the untreated and treated geopolymer foam composites. The obtained properties were flexural strength, compressive strength, density, total water absorption, the rate of water absorption, and water absorption coefficient. The results showed that the samples after being impregnated with hydrophobic agents improved significantly their waterproof property especially using Lukosil M130. Moreover, the samples treated with Lukosil M130 had positive impact on their mechanical strength.

9.
Materials (Basel) ; 12(18)2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527464

ABSTRACT

We have calculated that with the world population projected to increase from 7.5 billion in 2017 to 9.8 in 2050, the next generation (within 33 years) will produce 12,000-13,000 Mt of plastic, and that the yearly consumption will reach 37-40 kilos of plastic per person worldwide. One of the branches of the plastics industry is the production of plastics for agriculture e.g., seed trays and pots. In this paper, novel metakaolin-based geopolymer composites reinforced with cellulosic fibres are presented as an alternative to plastic pots. Materials can be dedicated to agricultural applications, provided they have neutral properties, however, geopolymer paste and its final products have high pH. Therefore, a two-step protocol of neutralisation of the geopolymer foam pots was optimised and implemented. The strength of the geopolymer samples was lower when foams were neutralised. The reinforcement of geopolymers with cellulose clearly prevented the reduction of mechanical properties after neutralisation, which was correlated with the lower volume of pores in the foam and with the cellulose chemical properties. Both, neutralisation and reinforcement with cellulose can also eliminate an efflorescence. Significantly increased plant growth was found in geopolymer pots in comparison to plastic pots. The cellulose in geopolymers resulted in better adsorption and slower desorption of minerals during fertilisation. This effect could also be associated with a lower number of large pores in the presence of cellulose fibres in pots, and thus more stable pore filling and better protection of internal surface interactions.

SELECTION OF CITATIONS
SEARCH DETAIL