Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 957
Filter
1.
Int J Biol Macromol ; : 134595, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122066

ABSTRACT

Biopolymers used to mitigate the environmental impact needed establish biodegradation percentage. The thermal and structural changes of two plastic materials, a flexible film based on cassava starch - Poly(lactic acid) (PLA) and a semi-rigid cassava flour-stay cellulose fique fiber, were evaluated biodegradation under ISO 4855-1 standard. The tests were carried out for four weeks at constant temperature and flow of 58 °C ±â€¯2 °C and 250 mL/h, using a mature compost as inoculum. The percentages of CO2, thermal, morphological, and structural changes, variation of degradation temperatures, glass transition temperatures (Tg), Melting temperatures (Tm) and enthalpies of fusion (Hm), were properly evaluated as indicators of the materials biodegradation of two materials. Scanning electron microscopy (SEM), showed the microorganisms colonization on the materials surface, evidencing the appearance of cracks and microbial population. The flexible film showed a biodegradation percentage of 98.24 %, the semi-rigid tray 89.06 %, and the microcrystalline cellulose, 81.37 %.

2.
Polymers (Basel) ; 16(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125180

ABSTRACT

A previous related paper dealing with the density relaxation of polystyrene (PS) has shown that the equilibrium relaxation time (τeq) has a purely exponential temperature dependence (ETD) below ≈100 °C. Such an ETD is now also confirmed based upon available dielectric spectra data for PS. By combining the ETD behavior of τeq (or aT) at low temperatures with a VFTH behavior at higher temperatures (based mainly on available recoverable shear compliance data), a composite correlation for τeq (or aT) is developed, which is continuous with continuous slope at a crossover temperature that is found to be 99.22 °C, where τeq = 92.15 s. This composite representation is shown to describe (without any adjustable parameters) available independent data for the segmental relaxation time over a finite range both above and below Tcrossover (i.e., the glass transition temperature).

3.
Small ; : e2405573, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39104295

ABSTRACT

Volatile solid additives have emerged as a promising strategy for enhancing film morphology and promoting the power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, a series of novel polycyclic aromatic additives with analogous chemical structures, including fluorene (FL), dibenzothiophene (DBT), and dibenzofuran (DBF) derived from crude oils, are presented and incorporated into OSCs. All these additives exhibit strong interactions with the electron-deficient terminal groups of L8-BO within the bulk-heterojunction OSCs. Moreover, they demonstrate significant sublimation during thermal annealing, leading to increase free volumes for the rearrangement and recrystallization of L8-BO. This phenomenon leads to an improved film morphology and an elevated glass-transition temperature of the photoactive layers. Consequently, the PCE of the PM6:L8-BO blend has been boosted from 16.60% to 18.60% with 40 wt% DBF additives, with a champion PCE of 19.11% achieved for ternary PM6:L8-BO:BTP-eC9 OSCs. Furthermore, the prolonged shelf and thermal stability have been observed in OSCs with these additives. This study emphasizes the synergic effect of volatile solid additives on the performance and thermal stability of OSCs, highlighting their potential for advancing the field of photovoltaics.

4.
Article in English | MEDLINE | ID: mdl-39177447

ABSTRACT

Due to the slow diffusion of photovoltaic molecules, in particular, small-molecule acceptors (SMAs), under light and heating, the morphology of the active layer in organic solar cells (OSCs) prefers to deviate from the favorably metastable status, leading to the challenge of stability during long-term operation. Employing materials with a high glass transition temperature (Tg) as the third component to suppress molecular diffusion is an efficient method to achieve the balance of efficiency and stability of OSCs. Herein, a dimerized small-molecule acceptor denoted as F6D is synthesized by introducing a polyfluoride moiety as the linker to enhance the Tg. Benefitting from a rational molecular design, F6D not only exhibits a higher Tg, complementary absorption, and cascade energy levels with the host materials of the polymer donor PM6 and the SMA Y6 but also has excellent miscibility and multiple intermolecular interactions with Y6. As a result, a champion power conversion efficiency of 17.52% is achieved in the optimal PM6:Y6:F6D-based device. More importantly, the ternary device exhibits superior stability under continuous heating and lighting compared with the binary device.

5.
Macromol Rapid Commun ; : e2400198, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150329

ABSTRACT

Statistical copolymers are commercially important because their properties can be tuned by comonomer selection and composition. Rubbery-state styrene (S)/n-butyl acrylate (nBA) copolymers have previously been reported to exhibit facile, autonomous self-healing over a narrow composition band (47/53 to 53/47 mol%). The need for a narrow composition band is explained by alternating comonomer sequences that accommodate interchain secondary bonding. It is hypothesized that copolymers that achieve interchain secondary bonding without alternating sequences can exhibit facile self-healing over a broad composition range. 2-ethylhexyl acrylate (EHA) is identified as yielding sequence-independent secondary bonding interactions. For these interactions it is tested experimentally by glass transition breadth in rubbery-state S/EHA copolymers, with S/n-hexyl acrylate (nHA) and S/nBA copolymers as controls. The n-alkyl acrylate random copolymers exhibit enhanced glass transition breadths over narrow composition bands that correspond to autonomous self-healing. In contrast, S/EHA copolymers exhibit much greater glass transition breadths than S/nHA and S/nBA copolymers at all compositions tested as well as self-healing of damage over a broad composition range with full tensile-property recovery, often in 3-10 h. Characterization of glass transition breadth may serve as a simple screening tool for identifying copolymers that exhibit broad-composition-range, facile, autonomous self-healing and contribute to polymer resilience and sustainability.

6.
Cryobiology ; 116: 104938, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38960349

ABSTRACT

It is thought that surface melting and puffing of freeze-dried amorphous materials are related to the difference between the surface temperature (Tsur) and freeze-concentrated glass transition temperature (Tg') of the materials. Although Tg' is a material-specific parameter, Tsur is affected by the type and amount of solute and freeze-drying conditions. Therefore, it will be practically useful for preventing surface melting and puffing if Tsur can be calculated using only the minimum necessary parameters. This study aimed to establish a predictive model for the surface melting and puffing of freeze-dried amorphous materials according to the calculated Tsur. First, a Tsur-predictive model was proposed under the thermodynamic equilibrium assumptions. Second, solutions with various solute mass fractions of sucrose, maltodextrin, and sucrose-maltodextrin mixture were prepared, and three material-specific parameters (Tg', unfrozen water content, and true density) were experimentally determined. According to the proposed model with the parameters, the Tsur of the samples was calculated at chamber pressures of 13, 38, and 103 Pa. The samples were freeze-dried at the chamber pressures, and their appearance was observed. As expected, surface melting and puffing occurred at calculated Tsur > Tg' with some exceptions. The water activity (aw) of the freeze-dried samples increased as the Tsur - Tg' increased. This will have resulted from surface melting and puffing, which created a covering film, thereby preventing subsequent dehydration. The observations suggest that the proposed model is also useful for predetermining the drying efficiency and storage stability of freeze-dried amorphous materials.

7.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996487

ABSTRACT

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Subject(s)
Genome , Mammoths , Skin , Animals , Mammoths/genetics , Genome/genetics , Female , Elephants/genetics , Chromatin/genetics , Fossils , DNA, Ancient/analysis , Mice , Humans , X Chromosome/genetics
8.
Materials (Basel) ; 17(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39063772

ABSTRACT

Traditional rock wool fibres are susceptible to crystallization and pulverization. To mitigate this, glass fibres were produced from iron ore waste (IOW). When the ratio of Fe2+ and Fe3+ is 1:3 and the Al2O3 content is 10 wt.%, increasing the FexOy content enhances the thermal stability.At an FexOy content of 17-19% and an Al2O3 content of 10-13%, the glass transition temperature (Tg) peaked. Increasing the FexOy content from 10% to 20% enhanced the stability of Si-O and Al-O bonds and increased bridged oxygen, stabilizing the structure. Here, Fe2+ balances structural charges, while Fe3+ replaces some Al atoms in the network. When the Al2O3 content is 10-13% and the FexOy content is 17-19%, the thermal stability of the IOW rock glass reaches its optimal level. At 20% FexOy content, the structure becomes three-dimensional and cyclic, increasing polymerization. Consequently, incorporating FexOy alongside a 10% Al2O3 content improves thermal stability, supporting the development of high-stability rock wool from IOW. This approach also enhances the refractory properties of rock wool fibres within the FexOy-Al2O3-SiO2-MgO-CaO system.

9.
Molecules ; 29(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39064830

ABSTRACT

The performance and phase-separated microstructures of epoxy asphalt binders greatly depend on the concentration of epoxy resin or bitumen. In this paper, the effect of the epoxy resin (ER) concentration (10-90%) on the viscosity, thermo-mechanical properties, and phase-separated morphology of warm-mix epoxy asphalt binders (WEABs) was investigated using the Brookfield rotational viscometer, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and laser scanning confocal microscopy (LSCM). Due to the high reactivity of epoxy resin, the viscosity of WEABs increases with time. Furthermore, the initial viscosity of WEABs decreases with the ER concentration. Depending on the ER concentration, the viscosity-time behavior of WEABs is divided into three stages: slow (10-40%), fast (50-80%), and extremely slow (90%). In the slow stage, the viscosity slightly increases with the ER concentration, while the fast stage shows an opposite trend. DSC and DMA results reveal that WEABs with 10-80% ER exhibit two glass transition temperatures (Tgs) for cured epoxy resin and bitumen. Moreover, the Tgs of epoxy resin and bitumen increase with the ER concentration. However, WEAB with 90 % ER has only one Tg. LSCM observation shows that phase separation occurs in all WEABs. For WEABs containing 10-40% ER, spherical epoxy particles act as the discontinuous phase and disperse in the continuous bitumen phase. However, in WEABs with 50-90% ER, phase inversion takes place. Contrarily, bitumen particles disperse in the continuous epoxy phase. The damping properties of WEABs with the continuous epoxy phases increase with the ER concentration, while the crosslinking density shows an opposite trend. The occurrence of phase inversion results in a sharp increase in the tensile strength of WEABs. For WEABs with the continuous epoxy phases, the elongation at break increases with the ER concentration. The toughness first increases and then decreases with the ER concentration. A maximum toughness value shows at 70% ER.

10.
PNAS Nexus ; 3(7): pgae238, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994498

ABSTRACT

Densely packed, motile bacteria can adopt collective states not seen in conventional, passive materials. These states remain in many ways mysterious, and their physical characterization can aid our understanding of natural bacterial colonies and biofilms as well as materials in general. Here, we overcome challenges associated with generating uniformly growing, large, quasi-two-dimensional bacterial assemblies by a membrane-based microfluidic device and report the emergence of glassy states in two-dimensional suspension of Escherichia coli. As the number density increases by cell growth, populations of motile bacteria transition to a glassy state, where cells are packed and unable to move. This takes place in two steps, the first one suppressing only the orientational modes and the second one vitrifying the motion completely. Characterizing each phase through statistical analyses and investigations of individual motion of bacteria, we find not only characteristic features of glass such as rapid slowdown, dynamic heterogeneity, and cage effects, but also a few properties distinguished from those of thermal glass. These distinctive properties include the spontaneous formation of micro-domains of aligned cells with collective motion, the appearance of an unusual signal in the dynamic susceptibility, and the dynamic slowdown with a density dependence generally forbidden for thermal systems. Our results are expected to capture general characteristics of such active rod glass, which may serve as a physical mechanism underlying dense bacterial aggregates.

11.
Polymers (Basel) ; 16(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000785

ABSTRACT

Thermoresponsive shape memory polymers (SMPs) have garnered increasing interest for their exceptional ability to retain a temporary shape and recover the original configuration through temperature changes, making them promising in various applications. The SMP shape change and recovery that happen due to a combination of mechanical loading and appropriate temperatures are related to its particular microstructure. The deformation process leads to the formation and growth of micro-cracks in the SMP structure, whereas the subsequent heating over its glass transition temperature Tg leads to the recovery of its original shape and properties. These processes also affect the SMP microstructure. In addition to the observed macroscopic shape recovery, the healing of micro-crazes and micro-cracks that have nucleated and developed during the loading occurs. Therefore, our study delves into the microscopic aspect, specifically addressing the healing of micro-cracks in the cyclic loading process. The proposed research concerns a thermoplastic polyurethane shape memory polymer (PU-SMP) MM4520 with a Tg of 45 °C. The objective of the study is to investigate the effect of the number of tensile loading-unloading cycles and thermal shape recovery on the evolution of the PU-SMP microstructure. To this end, comprehensive research starting from structural characterization of the initial state and at various stages of the PU-SMP mechanical loading was conducted. Dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and scanning electron microscopy (SEM) were used. Moreover, the shape memory behavior in the thermomechanical loading program was investigated. The obtained average shape fixity value was 99%, while the shape recovery was 92%, which confirmed good shape memory properties of the PU-SMP. Our findings reveal that even during a single loading-unloading tension cycle, crazes and cracks nucleate on the surface of the PU-SMP specimen, whereas the subsequent temperature-induced shape recovery process carried out at the temperature above Tg enables the healing of micro-cracks. Interestingly, the surface of the specimen after three and five loading-unloading cycles did not exhibit crazes and cracks, although some traces of cracks were visible. The traces disappeared after exposing the material to heating at Tg + 20 °C (65 °C) for 30 min. The crack closure phenomenon during deformation, even without heating over Tg, occurred within three and five subsequent cycles of loading-unloading. Notably, in the case of eight loading-unloading cycles, cracks appeared on the surface of the PU-SMP and were healed only after thermal recovery at the particular temperature over Tg. Upon reaching a critical number of cycles, the proper amount of energy required for crack propagation was attained, resulting in wide-open cracks on the material's surface. It is worth noting that WAXS analysis did not indicate strong signs of typical highly ordered structures in the PU-SMP specimens in their initial state and after the loading history; however, some orientation after the cyclic deformation was observed.

12.
Int J Pharm ; 661: 124470, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39004294

ABSTRACT

The influence of different preparation methods on the physicochemical properties of amorphous solid forms have gained considerable attention, especially with recent publications on pharmaceutical polyamorphism. In the present study, we have investigated the possible occurrence of polyamorphism in the drug celecoxib (CEL) by investigating the thermal behavior, morphology, structure, molecular mobility and physical stability of amorphous CEL obtained by quench-cooling (QC), ball milling (BM) and spray drying (SD). Similar glass transition temperatures but different recrystallization behaviors were observed for CEL-QC, CEL-BM and CEL-SD using modulated differential scanning calorimetry analysis. A correlation between the different recrystallization behaviors of the three CEL amorphous forms and the respective distinct powder morphologies, was also found. Molecular dynamics simulations however, reveal that CEL presents similar molecular conformational distributions when subjected to QC and SD. Moreover, the obtained molecular conformational distributions of CEL are different from the ones found in its crystal structure and also from the ones found in the lowest-energy structure obtained by quantum mechanical calculations. The type and strength of CEL hydrogen bond interactions found in CEL-QC and CEL-SD systems are almost identical, though different from the ones presented in the crystal structure. Pair distribution function analyses and isothermal microcalorimetry show similar local structures and structural relaxation times, respectively, for CEL-QC, CEL-BM and CEL-SD. The present work shows that not only similar physicochemical properties (glass transition temperature, and structural relaxation time), but also similar molecular conformational distributions were observed for all prepared CEL amorphous systems. Hence, despite their different recrystallization behaviors, the three amorphous forms of CEL did not show any signs of polyamorphism.


Subject(s)
Calorimetry, Differential Scanning , Celecoxib , Crystallization , Molecular Dynamics Simulation , Transition Temperature , Celecoxib/chemistry , Drug Stability , Hydrogen Bonding , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Powders/chemistry
13.
Eur J Pharm Biopharm ; 202: 114395, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971200

ABSTRACT

Drugs with poor water and lipid solubility are termed "brick dust." We previously successfully developed a co-amorphous system of a novel neuropeptide Y5 receptor antagonist (AntiY5R), a brick dust molecule, using sodium taurocholate (NaTC) as a co-former. However, the maximum improvement in AntiY5R dissolution by the co-amorphous system was only approximately 10 times greater than that of the crystals. Therefore, in the current study, other bile salts, including sodium cholate (NaC), sodium chenodeoxycholate (NaCC), and sodium glycocholate (NaGC), were examined as co-formers to further improve AntiY5R dissolution. NaC, NaCC, and NaGC have glass transition temperatures above 150°C. All three co-amorphous systems prepared successfully retained the amorphous form of AntiY5R for 3 months at 40°C, but the co-amorphous system with NaGC (AntiY5R-NaGC; 1:9 molar ratio) provided the highest improvement in AntiY5R dissolution, which was approximately 50 times greater than that of the crystals. Possible intermolecular interactions via the glycine moiety of NaGC more than the other bile salts would contribute to the highest dissolution enhancement with AntiY5R-NaGC. Thus, NaGC would be a promising co-former for formulating stable co-amorphous systems to enhance the dissolution behavior of brick dust molecules.


Subject(s)
Drug Stability , Glycocholic Acid , Receptors, Neuropeptide Y , Solubility , Water , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism , Glycocholic Acid/chemistry , Water/chemistry , Neuropeptide Y/chemistry , Crystallization , Bile Acids and Salts/chemistry
14.
Food Res Int ; 188: 114503, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823881

ABSTRACT

The aim of this work was to investigate wheat gluten protein network structure throughout the deep-frying process and evaluate its contribution to frying-induced micro- and macrostructure development. Gluten polymerization, gluten-water interactions, and molecular mobility were assessed as a function of the deep-frying time (0 - 180 s) for gluten-water model systems of differing hydration levels (40 - 60 % moisture content). Results showed that gluten protein extractability decreased considerably upon deep frying (5 s) mainly due to glutenin polymerization by disulfide covalent cross-linking. Stronger gliadin and glutenin protein-protein interactions were attributed to the formation of covalent linkages and evaporation of water interacting with protein chains. Longer deep-frying (> 60 s) resulted in progressively lower protein extractabilities, mainly due to the loss in gliadin protein extractability, which was associated with gliadin co-polymerization with glutenin by thiol-disulfide exchange reactions. The mobility of gluten polymers was substantially reduced during deep-frying (based on the lower T2 relaxation time of the proton fraction representing the non-exchanging protons of gluten) and gluten proteins gradually transitioned from the rubbery to the glassy state (based on the increased area of said protons). The sample volume during deep-frying was strongly correlated to the reduced protein extractability (r = -0.792, p < 0.001) and T2 relaxation time of non-exchanging protons of gluten proteins (r = -0.866, p < 0.001) thus demonstrating that the extent of gluten structural expansion as a result of deep-frying is dictated both by the polymerization of proteins and the reduction in their molecular mobility.


Subject(s)
Cooking , Gliadin , Glutens , Hot Temperature , Triticum , Glutens/chemistry , Triticum/chemistry , Cooking/methods , Gliadin/chemistry , Polymerization , Water/chemistry
15.
Macromol Rapid Commun ; : e2400312, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860731

ABSTRACT

Vitrimers, possessing associative covalent adaptable networks, are cross-linked polymers exhibiting malleable (glass-like) feature and recyclable and reprocessable (thermoplastics-like) properties. The dynamic behaviors of vitrimer are dependent on both chain/molecular mobility (glass transition temperature, Tg) and dynamic bond-exchanging reaction rate (topology freezing transition temperature, Tv). This work aims on probing the effect of high Tg on the stress relaxation and physical recyclability of vitrimers, employing a polyimide cross-linked with dynamic ester bonds (Tg: 310 °C) as the example. Due to its high Tg and chain rigidity, the cross-linked polyimide does not exhibit a high extent of stress relaxation behavior at 320 °C (10 °C above its Tg), even though the temperature is much higher than the hypothetical Tv. While raising the processing temperature to 345 °C, the cross-linked polyimide exhibits a stress relaxation time of about 3300 s and physical malleability. Nevertheless, side reactions may occur in the recycling and reprocessing process under the harsh condition (high temperature and high pressure) to alter the thermal properties of the recycled sample. The diffusion control plays a critical role on the topography transition of a vitrimer having a high Tg. The Tg ceiling is noticeable for developments of vitrimers.

16.
Plants (Basel) ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891386

ABSTRACT

This study investigated the thermal properties of potato and hop pollen for cryopreservation and subsequent cross-breeding. Phase transitions and frozen water content in selected pollen samples were measured using a differential scanning calorimeter (DSC). Unlike hop pollen, potato pollen showed high variability in thermal properties and water content. Three specific types of pollen samples based on their thermal characteristics and water content were distinguished by DSC in potato: (1) 'glassy', with a water content lower than 0.21 g water per g dry matter; (2) 'transient', with a water content between 0.27 and 0.34 g of water per g of dry matter; (3) 'frozen', with a water content higher than 0.34 g of water per g of dry matter. Only the 'glassy' pollen samples with a low water content showed suitable properties for its long-term storage using cryopreservation in potato and hops. Cryopreservation of pollen did not significantly reduce its viability, and cryopreserved pollen was successfully used to produce both potato and hop hybrids. The results indicate that cryopreservation is a feasible technique for the preservation and utilization of pollen of these crops in the breeding process.

17.
Polymers (Basel) ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891440

ABSTRACT

The frontal polymerization (FP) of carbon/epoxy (C/Ep) composites is investigated, considering FP as a viable route for the additive manufacturing (AM) of thermoset composites. Neat epoxy (Ep) resin-, short carbon fiber (SCF)-, and continuous carbon fiber (CCF)-reinforced composites are considered in this study. The evolution of the exothermic reaction temperature, polymerization frontal velocity, degree of cure, microstructures, effects of fiber concentration, fracture surface, and thermal and mechanical properties are investigated. The results show that exothermic reaction temperatures range between 110 °C and 153 °C, while the initial excitation temperatures range from 150 °C to 270 °C. It is observed that a higher fiber content increases cure time and decreases average frontal velocity, particularly in low SCF concentrations. This occurs because resin content, which predominantly drives the exothermic reaction, decreases with increased fiber content. The FP velocities of neat Ep resin- and SCF-reinforced composites are seen to be 0.58 and 0.50 mm/s, respectively. The maximum FP velocity (0.64 mm/s) is observed in CCF/Ep composites. The degree of cure (αc) is observed to be in the range of 70% to 85% in FP-processed composites. Such a range of αc is significantly low in comparison to traditional composites processed through a long cure cycle. The glass transition temperature (Tg) of neat epoxy resin is seen to be approximately 154 °C, and it reduces slightly to a lower value (149 °C) for SCF-reinforced composites. The microstructures show significantly high void contents (12%) and large internal cracks. These internal cracks are initiated due to high thermal residual stress developed during curing for non-uniform temperature distribution. The tensile properties of FP-cured samples are seen to be inferior in comparison to autoclave-processed neat epoxy. This occurs mostly due to the presence of large void contents, internal cracks, and a poor degree of cure. Finally, a highly efficient and controlled FP method is desirable to achieve a defect-free microstructure with improved mechanical and thermal properties.

18.
Polymers (Basel) ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891486

ABSTRACT

The in-line control of curing during the molding process significantly improves product quality and ensures the reliability of packaging materials with the required thermo-mechanical and adhesion properties. The choice of the morphological and thermo-mechanical properties of the molded material, and the accuracy of their determination through carefully selected thermo-analytical methods, play a crucial role in the qualitative prediction of trends in packaging product properties as process parameters are varied. This work aimed to verify the quality of the models and their validation using a highly filled molding resin with an identical chemical composition but 10 wt% difference in silica particles (SPs). Morphological and mechanical material properties were determined by dielectric analysis (DEA), differential scanning calorimetry (DSC), warpage analysis and dynamic mechanical analysis (DMA). The effects of temperature and injection speed on the morphological properties were analyzed through the design of experiments (DoE) and illustrated by response surface plots. A comprehensive approach to monitor the evolution of ionic viscosity (IV), residual enthalpy (dHrest), glass transition temperature (Tg), and storage modulus (E) as a function of the transfer-mold process parameters and post-mold-cure (PMC) conditions of the material was established. The reliability of Tg estimation was tested using two methods: warpage analysis and DMA. The noticeable deterioration in the quality of the analytical signal for highly filled materials at high cure rates is discussed. Controlling the temperature by increasing the injection speed leads to the formation of a polymer network with a lower Tg and an increased storage modulus, indicating a lower density and a more heterogeneous structure due to the high heating rate and shear heating effect.

19.
J Pharm Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825234

ABSTRACT

The purpose of this study was to investigate the mechanical stresses and strains acting on pharmaceutical glass tubing vials during freezing and thawing of model pharmaceutical formulations. Strain measurements were conducted inside of a laboratory-scale freeze-dryer using a custom wireless sensor. In both sucrose and trehalose formulations at concentrations between 5 % and 20 % w/v, the strain measurements initially increased before peaking in magnitude at temperatures close to the respective glass transition temperatures of the maximally freeze concentrated solutes, Tg'. We attribute this behavior to a shift in the mechanical properties of the frozen system from a purely elastic glass below Tg' to a viscoelastic rubber-like material above Tg'. That is, when the interstitial region becomes mechanically compliant at temperature above Tg'. The outputs were less predictable below 5 % w/v and tended to exhibit two separate peaks in strain output, one near the equilibrium melting temperature of pure ice and the other near Tg'. The peaks merged at concentrations between 4 and 5 % w/v where the largest strain magnitude was observed. The strain on primary packaging has traditionally been applied to evaluate the risk of damage or breakage due to, for example, crystallization of excipients. However, data collected during this study suggest there may be utility in formulation design or as a process analytical technology to minimize potentially destabilizing stresses and strains in the frozen formulation.

20.
Appl Microbiol Biotechnol ; 108(1): 361, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837050

ABSTRACT

Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: • Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress • Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only • Activation energy revealed chemically limited reactions ruled the activity loss in storage.


Subject(s)
Freeze Drying , Freeze Drying/methods , Spectroscopy, Fourier Transform Infrared , Spray Drying , Microbial Viability , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/physiology , Lactobacillus delbrueckii/metabolism , Lactobacillus delbrueckii/physiology , Lactobacillales/metabolism , Lactobacillales/physiology , Desiccation
SELECTION OF CITATIONS
SEARCH DETAIL