Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.013
Filter
1.
Int J Nanomedicine ; 19: 6757-6776, 2024.
Article in English | MEDLINE | ID: mdl-38983132

ABSTRACT

Glioma is a primary malignant tumor in the central nervous system. In recent years, the treatment of glioma has developed rapidly, but the overall survival of glioma patients has not significantly improved. Due to the presence of the blood-brain barrier and intracranial tumor barrier, many drugs with good effects to cure glioma in vitro cannot be accurately transported to the corresponding lesions. In order to enable anti-tumor drugs to overcome the barriers and target glioma, nanodrug delivery systems have emerged recently. It is gratifying that liposomes, as a multifunctional nanodrug delivery carrier, which can be compatible with hydrophilic and hydrophobic drugs, easily functionalized by various targeted ligands, biodegradable, and hypoimmunogenic in vivo, has become a quality choice to solve the intractable problem of glioma medication. Therefore, we focused on the liposome nanodrug delivery system, and summarized its current research progress in glioma. Hopefully, this review may provide new ideas for the research and development of liposome-based nanomaterials for the clinical treatment of glioma.


Subject(s)
Antineoplastic Agents , Blood-Brain Barrier , Brain Neoplasms , Glioma , Liposomes , Nanostructures , Glioma/drug therapy , Liposomes/chemistry , Humans , Brain Neoplasms/drug therapy , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Animals , Nanostructures/chemistry , Nanostructures/therapeutic use , Drug Delivery Systems/methods , Nanomedicine/methods , Drug Carriers/chemistry
2.
Oncol Rep ; 52(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994769

ABSTRACT

Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that the 'Control' data panel shown for the EdU assay experiment in Fig. 6D on p. 1209 was strikingly similar to a data panel featured in Fig. 7 that had already been submitted to the journal Cancer Management and Research by different authors at different research institutes [Chen T­J, Gao F, Yang T, Li H, Li Y, Ren H and Chen M­W: Knockdown of linc­POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Cancer Manag Res 12: 4379­4390, 2020]. Owing to the fact that contentious data in the above article had already been submitted for publication prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 1202­1212, 2021; DOI: 10.3892/or.2021.7949].

3.
BMC Cancer ; 24(1): 818, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982347

ABSTRACT

BACKGROUND: Glioma is the most common primary brain tumor with high mortality and disability rates. Recent studies have highlighted the significant prognostic consequences of subtyping molecular pathological markers using tumor samples, such as IDH, 1p/19q, and TERT. However, the relative importance of individual markers or marker combinations in affecting patient survival remains unclear. Moreover, the high cost and reliance on postoperative tumor samples hinder the widespread use of these molecular markers in clinical practice, particularly during the preoperative period. We aim to identify the most prominent molecular biomarker combination that affects patient survival and develop a preoperative MRI-based predictive model and clinical scoring system for this combination. METHODS: A cohort dataset of 2,879 patients was compiled for survival risk stratification. In a subset of 238 patients, recursive partitioning analysis (RPA) was applied to create a survival subgroup framework based on molecular markers. We then collected MRI data and applied Visually Accessible Rembrandt Images (VASARI) features to construct predictive models and clinical scoring systems. RESULTS: The RPA delineated four survival groups primarily defined by the status of IDH and TERT mutations. Predictive models incorporating VASARI features and clinical data achieved AUC values of 0.85 for IDH and 0.82 for TERT mutations. Nomogram-based scoring systems were also formulated to facilitate clinical application. CONCLUSIONS: The combination of IDH-TERT mutation status alone can identify the most distinct survival differences in glioma patients. The predictive model based on preoperative MRI features, supported by clinical assessments, offers a reliable method for early molecular mutation prediction and constitutes a valuable scoring tool for clinicians in guiding treatment strategies.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , Magnetic Resonance Imaging , Telomerase , Humans , Glioma/genetics , Glioma/mortality , Glioma/diagnostic imaging , Glioma/pathology , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Female , Male , Magnetic Resonance Imaging/methods , Isocitrate Dehydrogenase/genetics , Middle Aged , Telomerase/genetics , Mutation , Adult , Nomograms , Prognosis , Aged
4.
Adv Protein Chem Struct Biol ; 141: 255-297, 2024.
Article in English | MEDLINE | ID: mdl-38960477

ABSTRACT

Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.


Subject(s)
Glioma , Gliosis , Membrane Proteins , Humans , Membrane Proteins/metabolism , Glioma/metabolism , Glioma/pathology , Gliosis/metabolism , Gliosis/pathology , Animals , Receptors, Peptide
5.
PeerJ ; 12: e17631, 2024.
Article in English | MEDLINE | ID: mdl-39006026

ABSTRACT

Background: Human olfactory receptors (ORs) account for approximately 60% of all human G protein-coupled receptors. The functions of ORs extend beyond olfactory perception and have garnered significant attention in tumor biology. However, a comprehensive pan-cancer analysis of ORs in human cancers is lacking. Methods: Using data from public databases, such as HPA, TCGA, GEO, GTEx, TIMER2, TISDB, UALCAN, GEPIA2, and GSCA, this study investigated the role of olfactory receptor family 7 subfamily A member 5 (OR7A5) in various cancers. Functional analysis of OR7A5 in LGG and GBM was performed using the CGGA database. Molecular and cellular experiments were performed to validate the expression and biological function of OR7A5 in gliomas. Results: The results revealed heightened OR7A5 expression in certain tumors, correlating with the expression levels of immune checkpoints and immune infiltration. In patients with gliomas, the expression levels of OR7A5 were closely associated with adverse prognosis, 1p/19p co-deletion status, and wild-type IDH status. Finally, in vitro experiments confirmed the inhibitory effect of OR7A5 knockdown on the proliferative capacity of glioma cells and on the expression levels of proteins related to lipid metabolism. Conclusion: This study establishes OR7A5 as a novel biomarker, potentially offering a novel therapeutic target for gliomas.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Glioma , Receptors, Odorant , Humans , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Glioma/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Cell Line, Tumor , Prognosis , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
6.
J Cancer ; 15(14): 4643-4655, 2024.
Article in English | MEDLINE | ID: mdl-39006067

ABSTRACT

Glioma is the most common malignant tumor of the central nervous system (CNS), and is characterized by high aggressiveness and a high recurrence rate. Currently, the main treatments for gliomas include surgical resection, temozolomide chemotherapy and radiotherapy. However, the prognosis of glioma patients after active standardized treatment is still poor, especially for glioblastoma (GBM); the median survival is still only 14.6 months, and the 5-year survival rate is only 4-5%. The current challenges in glioma treatment include difficulty in complete surgical resection, poor blood‒brain barrier (BBB) drug permeability, therapeutic resistance, and difficulty in tumor-specific targeting. In recent years, the rapid development of nanotechnology has provided new directions for diagnosing and treating gliomas. Nanoparticles (NPs) are characterized by excellent surface tunability, precise targeting, excellent biocompatibility, and high safety. In addition, NPs can be used for gene therapy, photodynamic therapy, and antiangiogenic therapy and can be combined with biomaterials for thermotherapy. In recent decades, breakthroughs in diagnosing and treating gliomas have been made with various functional NPs, and NPs are expected to become a new strategy for glioma diagnosis and treatment. In this paper, we review the main obstacles in the treatment of glioma and discuss the potential and challenges of the latest nanotechnology in the diagnosis and treatment of glioma.

7.
Neurooncol Pract ; 11(4): 475-483, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006516

ABSTRACT

Background: We observed rapid tumor progression following COVID-19 infection among patients with glioblastoma and sought to systematically characterize their disease course in a retrospective case-control study. Methods: Using an institutional database, we retrospectively identified a series of COVID-19-positive glioblastoma cases and matched them by age and sex 1:2 to glioblastoma controls who had a negative COVID-19 test during their disease course. Demographic and clinical data were analyzed. Hyperprogression was defined using modified response evaluation criteria in solid tumors criteria. Time to progression and overall survival were estimated using the Kaplan-Meier method. Results: Thirty-two glioblastoma cases with positive COVID-19 testing were matched to 64 glioblastoma controls with negative testing; age, sex, and molecular profiles did not differ between groups. Progression events occurred in 27 cases (84%) and 46 controls (72%). Of these, 14 cases (52%) presented with multifocal disease or leptomeningeal disease at progression compared with 10 controls (22%; P = .0082). Hyperprogression was identified in 13 cases (48%) but only 4 controls (9%; P = .0001). Cases had disease progression at a median of 35 days following COVID-19 testing, compared with 164 days for controls (P = .0001). Median survival from COVID-19 testing until death was 8.3 months for cases but 17 months for controls (P = .0016). Median overall survival from glioblastoma diagnosis was 20.7 months for cases and 24.6 months for controls (P = .672). Conclusions: Patients with glioblastoma may have accelerated disease progression in the first 2 months after COVID-19 infection. Infected patients should be monitored vigilantly. Future investigations should explore tumor-immune microenvironment changes linking tumor progression and COVID-19.

8.
Neurooncol Pract ; 11(4): 404-412, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006519

ABSTRACT

Background: Patients with high-grade glioma have high palliative care needs, yet few receive palliative care consultation. This study aims to explore themes on (1) benefits of primary (delivered by neuro-oncologists) and specialty palliative care (SPC) and (2) barriers to SPC referral, according to a diverse sample of clinicians. Methods: From September 2021 to May 2023, 10 palliative physicians and 10 neuro-oncologists were recruited via purposive sampling for diversity in geographic setting, seniority, and practice structure. Semistructured, 45-minute interviews were audio-recorded, professionally transcribed, and coded by 2 investigators. A qualitative, phenomenological approach to thematic analysis was used. Results: Regarding primary palliative care, (1) neuro-oncologists have primary ownership of cancer-directed treatment and palliative management and (2) the neuro-oncology clinic is glioma patients' medical home. Regarding SPC, (1) palliative specialists' approach is beneficial even without disease-specific expertise; (2) palliative specialists have time to comprehensively address palliative needs; and (3) earlier SPC enhances its benefits. For referral barriers, (1) appointment burden can be mitigated with telehealth, home-based, and embedded palliative care; (2) heightened stigma associating SPC with hospice in a population with high death anxiety can be mitigated with earlier referral to promote rapport-building; and (3) lack of neuro-oncologic expertise among palliative specialists can be mitigated by emphasizing their role in managing nonneurologic symptoms, coping support, and anticipatory guidance. Conclusions: These themes emphasize the central role of neuro-oncologists in addressing palliative care needs in glioma, without obviating the need for or benefits of SPC. Tailored models may be needed to optimize the balance of primary and specialty palliative care in glioma.

9.
Neurooncol Pract ; 11(4): 432-440, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006525

ABSTRACT

Background: Because family caregivers of patients with a high-grade glioma experience high levels of distress and feel unprepared to perform the complex caregiving tasks associated with the disease and its treatment, we pilot-tested a caregiving skills intervention that integrates hands-on caregiving with coping skill training. Methods: In this single-arm trial, caregivers participated in a 4-session research nurse-led intervention involving simulation-based caregiving skills training at the hospital and psychoeducation delivered via videoconference. We collected measures of patients' and caregivers' psychological symptoms; caregivers' caregiving self-efficacy and role adjustment; and patients' cancer-related symptoms (MDASI) at baseline and again postintervention. We tracked feasibility data. Results: We approached 29 dyads of which 10 dyads (34%) consented. All patients (mean age: 60 years, 89% male) and caregivers (mean age: 58 years, 80% female, 80% spouses) completed the baseline and 7 dyads completed the follow-up assessments (attrition was related to patient's hospice transfer). Seven caregivers completed all 4 sessions and rated the program as beneficial. Paired t-tests revealed a significant improvement in caregiving self-efficacy at 6 weeks postintervention (t = -3.06, P = .02). Although improvements in caregiver role adjustment and patient and caregiver symptoms were not observed, no decreases in symptom burden or role adjustment were found during the follow-up period. Conclusions: This novel supportive care program appears to be safe, feasible, acceptable, and perceived as useful for caregivers of patients with high-grade glioma. Based on feasibility indicators and a signal of intervention efficacy, a randomized controlled trial is warranted.

10.
Cureus ; 16(6): e62278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39006708

ABSTRACT

BACKGROUND: Although the use of transcranial ultrasound dates to the mid-20th century, the main purpose of this research work is to standardize its use in the resection of brain tumors. This is due to its wide availability, low cost, lack of contraindications, and absence of harmful effects for the patient and medical staff, along with the possibility of real-time verification of the complete resection of tumor lesions and minimization of vascular injuries or damage to adjacent structures. METHODS: A retrospective study was conducted from June to December 2022. The study included eight patients (three men and five women) aged between 32 and 76 years. Histological examination revealed two high-grade gliomas, one low-grade glioma, and five metastatic lesions. RESULTS: The low-grade glioma appeared as a homogeneously echogenic structure and easily distinguishable from brain parenchyma, whereas metastases and high-grade gliomas showed higher echogenicity, being identified as malignant lesions due to areas of low echogenicity necrosis and peritumoral edema identified as a hyperechogenic structure. CONCLUSIONS: The use of intraoperative transcranial ultrasound constitutes an important tool for neurosurgeons during tumor resection. Although it is easy to use, intraoperative ultrasound requires a relatively short learning curve and a good understanding of the fundamentals of ultrasound. Its main advantage over neuronavigation is that it is not affected by the "brain shift" phenomenon that commonly occurs during tumor resection, since the ultrasound images are updated during surgery.

11.
Pathol Res Pract ; 260: 155442, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38991456

ABSTRACT

Circular RNAs (CircRNAs) are non-coding RNAs (ncRNAs) characterized by a stable circular structure that regulates gene expression at both transcriptional and post-transcriptional levels. They play diverse roles, including protein interactions, DNA methylation modification, protein-coding potential, pseudogene creation, and miRNA sponging, all of which influence various physiological processes. CircRNAs are often highly expressed in brain tissues, and their levels vary with neural development, suggesting their significance in nervous system diseases such as gliomas. Research has shown that circRNA expression related to the PI3K pathway correlates with various clinical features of gliomas. There is an interact between circRNAs and the PI3K pathway to regulate glioma cell processes such as proliferation, differentiation, apoptosis, inflammation, angiogenesis, and treatment resistance. Additionally, PI3K pathway-associated circRNAs hold potential as biomarkers for cancer diagnosis, prognosis, and treatment. In this study, we reviewed the latest advances in the expression and cellular roles of PI3K-mediated circRNAs and their connections to glioma carcinogenesis and progression. We also highlighted the significance of circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in glioma.

12.
Cancer Lett ; : 217114, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992488

ABSTRACT

Gender plays a crucial role in the occurrence and development of cancer, as well as in the metabolism of nutrients and energy. Men and women display significant differences in the incidence, prognosis, and treatment response across various types of cancer, including certain sex-specific tumors. It has been observed that male glioma patients have a higher incidence and worse prognosis than female patients, but there is currently a limited systematic evaluation of sex differences in gliomas. The purpose of this study is to provide an overview of the association between fluctuations in sex hormone levels and changes in their receptor expression with the incidence, progression, treatment, and prognosis of gliomas. Estrogen may have a protective effect on glioma patients, while exposure to androgens increases the risk of glioma. We also discussed the specific genetic and molecular differences between genders in terms of the malignant nature and prognosis of gliomas. Factors such as TP53, MGMT methylation status may play a crucial role. Therefore, it is essential to consider the gender of patients while treating glioma, particularly the differences at the hormonal and molecular levels. This approach can help in the adoption of an individualized treatment strategy.

13.
Crit Rev Oncol Hematol ; : 104445, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992848

ABSTRACT

In high-grade gliomas, pseudoprogression after radiation treatment might dramatically impact patient's management. We searched for perioperative imaging predictors of pseudoprogression in high-grade gliomas according to PRISMA guidelines, using MEDLINE/Pubmed and Embase (until January 2024). Study design, sample size, setting, diagnostic gold standard, imaging modalities and contrasts, and differences among variables or measures of diagnostic accuracy were recorded. Study quality was assessed through the QUADAS-2 tool. Twelve studies (11 with MRI, one with PET; 1058 patients) were reviewed. Most studies used a retrospective design (9/12), and structural MRI (7/12). Studies were heterogeneous in metrics and diagnostic reference standards; patient selection bias was a frequent concern. Pseudoprogression and progression showed some significant group differences in perioperative imaging metrics, although often with substantial overlap. Radiomics showed moderate accuracy but requires further validation. Current literature is scarce and limited by methodological concerns, highlighting the need of new predictors and multiparametric approaches.

14.
J Med Signals Sens ; 14: 7, 2024.
Article in English | MEDLINE | ID: mdl-38993200

ABSTRACT

Background: Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from inter- and intratumor heterogeneity which makes the outcome of similar treatment protocols vary from patient to patient. This article is aimed to overview the potential imaging markers for individual diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the correlation between imaging findings and biological and clinical information of glioma patients is reviewed. Materials and Methods: The search strategy in this study is to select related studies from scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until 2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging techniques, and malignant glioma, according to Medical Subject Headings. Results: Some imaging parameters that are effective in glioma management include: ADC, FA, Ktrans, regional cerebral blood volume (rCBV), cerebral blood flow (CBF), ve, Cho/NAA and lactate/lipid ratios, intratumoral uptake of 18F-FET (for diagnostic application), RD, ADC, ve, vp, Ktrans, CBFT1, rCBV, tumor blood flow, Cho/NAA, lactate/lipid, MI/Cho, uptakes of 18F-FET, 11C-MET, and 18F-FLT (for prognostic and predictive application). Cerebral blood volume and Ktrans are related to molecular markers such as vascular endothelial growth factor (VEGF). Preoperative ADCmin value of GBM tumors is associated with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. 2-hydroxyglutarate metabolite and dynamic 18F-FDOPA positron emission tomography uptake are related to isocitrate dehydrogenase (IDH) mutations. Conclusion: Parameters including ADC, RD, FA, rCBV, Ktrans, vp, and uptake of 18F-FET are useful for diagnosis, prognosis, and treatment response prediction in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH mutations with some diffusion and perfusion imaging parameters has been identified.

15.
Front Oncol ; 14: 1380793, 2024.
Article in English | MEDLINE | ID: mdl-38947892

ABSTRACT

Glioma is the most common type of primary malignant tumor of the central nervous system (CNS), and is characterized by high malignancy, high recurrence rate and poor survival. Conventional imaging techniques only provide information regarding the anatomical location, morphological characteristics, and enhancement patterns. In contrast, advanced imaging techniques such as dynamic contrast-enhanced (DCE) MRI or DCE CT can reflect tissue microcirculation, including tumor vascular hyperplasia and vessel permeability. Although several studies have used DCE imaging to evaluate gliomas, the results of data analysis using conventional tracer kinetic models (TKMs) such as Tofts or extended-Tofts model (ETM) have been ambiguous. More advanced models such as Brix's conventional two-compartment model (Brix), tissue homogeneity model (TH) and distributed parameter (DP) model have been developed, but their application in clinical trials has been limited. This review attempts to appraise issues on glioma studies using conventional TKMs, such as Tofts or ETM model, highlight advancement of DCE imaging techniques and provides insights on the clinical value of glioma management using more advanced TKMs.

16.
Heliyon ; 10(12): e33030, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948040

ABSTRACT

Glioma is the most common primary malignant tumor in the brain, characterizing by high disability rate and high recurrence rate. Although low-grade glioma (LGG) has a relative benign biological behavior, the prognosis of LGG patients still varies greatly. Glioma stem cells (GSCs) are considered as the chief offenders of glioma cell proliferation, invasion and resistance to therapies. Our study screened a series of glioma stem cell-related genes (GSCRG) based on mDNAsi and WCGNA, and finally established a reliable single-gene prognostic model through 101 combinations of 10 machine learning methods. Our result suggested that the expression level of TNFAIP6 is negatively correlated with the prognosis of LGG patients, which may be the result of pro-cancer signaling pathways activation and immunosuppression. In general, this study revealed that TNFAIP6 is a robust and valuable prognostic factor in LGG, and may be a new target for LGG treatment.

17.
Article in English | MEDLINE | ID: mdl-38950414

ABSTRACT

Gliomas are malignant tumors of the central nervous system; current treatment methods have low efficacy. Twisted gastrulation BMP signaling modulator 1 (TWSG1) has been shown to play a role in gliomas but it is not known whether TWSG1 participates in glioma pathogenesis and macrophage immune regulation. This study identified a total of 24 differentially expressed genes with survival differences in gliomas using bioinformatics analysis. Among them, TWSG1 exhibited the strongest correlation with gliomas and was positively correlated with macrophage enrichment. The results showed that TWSG1 was highly expressed in various glioma cell lines, with the highest expression observed in the A172 cell line. Silencing TWSG1 significantly decreased the viability, migration, and invasion of A172 cells in vitro and tumor growth in a mouse xenograft model in vivo. It also reduced the expression of the matrix metalloproteinases MMP2 and MMP9 both in vivo and in vitro. Silencing TWSG1 significantly reduced the expression of M2 macrophage makers and upregulated the expression of M1 macrophage markers in A172 cells and tumor tissues. These data suggest that interference with TWSG1 suppressed the progression of A172 glioma cells and regulated immune infiltration.

18.
Neurochem Res ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951281

ABSTRACT

The purpose of this study is to explore the shared molecular pathogenesis of traumatic brain injury (TBI) and high-grade glioma and investigate the mechanism of propofol (PF) as a potential protective agent. By analyzing the Chinese glioma genome atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, we compared the transcriptomic data of high-grade glioma and TBI patients to identify common pathological mechanisms. Through bioinformatics analysis, in vitro experiments and in vivo TBI model, we investigated the regulatory effect of PF on extracellular matrix (ECM)-related genes through Prrx1 under oxidative stress. The impact of PF on BBB integrity under oxidative stress was investigated using a dual-layer BBB model, and we explored the protective effect of PF on tight junction proteins and ECM-related genes in mice after TBI. The study found that high-grade glioma and TBI share ECM instability as an important molecular pathological mechanism. PF stabilizes the ECM and protects the BBB by directly binding to Prrx1 or indirectly regulating Prrx1 through miRNAs. In addition, PF reduces intracellular calcium ions and ROS levels under oxidative stress, thereby preserving BBB integrity. In a TBI mouse model, PF protected BBB integrity through up-regulated tight junction proteins and stabilized the expression of ECM-related genes. Our study reveals the shared molecular pathogenesis between TBI and glioblastoma and demonstrate the potential of PF as a protective agent of BBB. This provides new targets and approaches for the development of novel neurotrauma therapeutic drugs.

19.
Mol Neurobiol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951469

ABSTRACT

Gliomas are common brain tumors. Despite extensive research, the 5-year survival rate of glioma remains low. Many studies have reported that circular RNAs (circRNAs) play a role in promoting the malignant progression of glioma; however, the role of circ_0059914 in this process remains unclear. In this study, we aimed to investigate the function and underlying mechanism of circ_0059914 in glioma. Western blotting and qRT-PCR were used to determine the levels of circ_0059914, miR-1249, VEGFA, N-cadherin, vimentin, Snail, and EIF4A3. EDU and colony formation assays were conducted to evaluate cell proliferation. Transwell assays were used to explore cell migration and invasion and tube formation assays were used to analyze angiogenesis. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were used to explore the relationship between EIF4A3, circ_0059914, miR-1249, and VEGFA. A xenograft tumor assay was performed to determine the role of circ_0059914 in vivo. Circ_0059914 expression was upregulated in gliomas. Knockdown of gliomal circ_0059914 expression reduced the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, and growth of glioma cells in vivo. Circ_0059914 sponged miR-1249, and miR-1249 inhibition reversed the circ_0059914 knockdown-mediated effects in glioma cells. VEGFA was found to be a target gene of miR1249; overexpression of VEGFA reversed the effect of miR-1249 up-regulation in glioma. Finally, EIF4A3 increased the expression of circ_0059914. EIF4A3-induced circ_0059914 expression plays a role in promoting glioma via the miR-1249/VEGFA axis.

20.
Med Phys ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949565

ABSTRACT

BACKGROUND: Measuring non-parametric intravoxel mean diffusivity distributions (MDDs) using magnetic resonance imaging (MRI) is a sensitive method for detecting intracellular diffusivity changes during physiological alterations. Histological and molecular glioma classifications are essential for prognosis and treatment, with distinct water diffusion dynamics among subtypes. PURPOSE: We developed a data-driven approach using a fully connected network (FCN) to enhance the speed and stability of calculating MDDs across varying SNRs, enable tumor microstructural mapping, and test its reliability in identifying MIB-1 labeling index (LI) levels and molecular status of gliomas. METHODS: An FCN was trained to learn the mapping between the simulated diffusion decay curves and the ground truth MDDs. We performed 5 000 000 simulation curves with various diffusivity components and random SNR ∈ [ 30 , 300 ] $ \in [ {30,\ 300} ]$ . Eighty percent of simulation curves were used for the FCN training, 10% for validation, and the others were external tests for the FCN performance evaluation. In vivo data were collected to evaluate its clinical reliability. One hundred one patients (44 years ± $ \pm $ 14, 67 men) with gliomas and six healthy controls underwent a 3.0 T MRI examination with a spin echo-echo planar imaging (SE-EPI) diffusion-weighted imaging (DWI) sequence. The trained FCN was employed to calculate MDDs of each brain voxel by voxel. We used the Fuzzy C-means algorithm to cluster the MDDs of tumor voxels, facilitating the characterization of distinct glioma tissues. Quantitative assessments were conducted through sectional integrals of the MDDs, demarcated by six bands to derive signal fractions ( f n , n = 1 - 6 ${{f}_n},\ n = 1 -6$ ) and diffusivities of the maximum peaks ( D p e a k ${{D}_{peak}}$ ). Cosine similarity scores (CSS) were used for MDD similarity. ANOVA and Mann-Whitney U test were used for difference analysis. Logistic regression and area under the receiver operator characteristic curve (AUC) were used for classification evaluation. RESULTS: The simulation results showed that the FCN-based MDD approach (FCN-MDD) achieved higher CSS than non-negative least squares-based MDD (NNLS-MDD). For in vivo data, the spectra of ET and NET obtained by FCN-MDD are more distinguishable than NNLS-MDD. Fraction maps delineate the characteristics of different tumor tissues (enhancing and non-enhancing tumor, edema, and necrosis). f 3 , f 4 , D p e a k ${{f}_3},\ {{f}_4},{{D}_{peak}}$ showed a positive and negative correlation with MIB-1 respectively ( r = 0.568 , r = - 0.521 , r = - 0.654 $r = 0.568,\ r = - 0.521,\ r = - 0.654$ , all p < 0.001 $p < 0.001$ ). The AUC of D p e a k ${{D}_{peak}}$ for predicting MIB-1 LI levels was 0.900 (95% CI, 0.826-0.974), versus 0.781 (0.677-0.886) of ADC. The highest AUC of isocitrate dehydrogenase (IDH) mutation status, assessed by a logistic regression model ( f 1 + f 3 ${{f}_1} + {{f}_3}$ ) was 0.873 (95% CI, 0.802-0.944). CONCLUSION: The proposed FCN-MDD method was more robust to variations in SNR and less reliant on empirically set regularization values than the NNLS-MDD method. FCN-MDD also enabled qualitative and quantitative evaluation of the composition of gliomas.

SELECTION OF CITATIONS
SEARCH DETAIL
...