Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
BMC Pediatr ; 24(1): 568, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243091

ABSTRACT

BACKGROUND: Newborns are exposed to varying degrees of stressful interventions due to procedures such as heel lancing used in routine metabolic screenings. It is an examination of the effects of white noise and kangaroo care on some physiological parameters and stress markers (cortisol and glucose-regulated protein 78-GRP78) in heel lancing in newborns. METHODS: Randomized controlled study was conducted at a gynecology service of a hospital between January and September 2023. 90 babies were divided into three groups: 30 babies in the Kangaroo Care Group (KCG), 30 babies in the White Music Group (WMG), and 30 babies in the Control Group (CG). All babies were randomly divided into groups. Stress parameters were measured by saliva collection method and physiological parameters by saturation device. RESULTS: A statistically significant difference was determined between the total crying time, pulse and saturation values ​​according to the groups (p < 0.001; p = 0.001). A statistically significant difference was determined between the mean values ​​of cortisol and GRP78 measurements according to group and time interaction (p < 0.001). KCG was more effective in reducing total crying time and stabilizing pulse, saturation, salivary cortisol, GRP-78 values compared to WNG and CG. CONCLUSION: It was concluded that white noise and kangaroo care help reduce newborns' stress in the case of heel lancing. PRACTICAL IMPLICATIONS: The practice of kangaroo care and the use of white noise methods may assist healthcare professionals as supportive methods in stress management during invasive procedures. TRIAL REGISTRATION: NCT06278441, registered on 19/02/2024.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Hydrocortisone , Kangaroo-Mother Care Method , Noise , Saliva , Stress, Physiological , Humans , Infant, Newborn , Hydrocortisone/analysis , Hydrocortisone/metabolism , Female , Saliva/chemistry , Saliva/metabolism , Male , Noise/adverse effects , Heat-Shock Proteins/metabolism , Heel , Crying
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(3): 304-312, 2024 Jun 01.
Article in English, Chinese | MEDLINE | ID: mdl-39049649

ABSTRACT

OBJECTIVES: This study aims to investigate the influence of glucose regulated protein (GRP) 78 on osteoblast differentiation in periodontal ligament fibroblasts (PDLFs) under cyclic mechanical stretch and determine the underlying mechanism. METHODS: FlexCell 5000 cell mechanical device was applied to simulate the stress environment of orthodontic teeth. GRP78High and GRP78Low subpopulation were obtained by flow sorting. Gene transfection was performed to knockdown GRP78 and c-Src expression and overexpress c-Src. Western blot analysis was used to detect the protein expression of Runt-related gene 2 (RUNX2), Osterix, osteocalcin (OCN), and osteopontin (OPN). Immunoprecipitation assay was used to determine the interaction of GRP78 with c-Src. The formation of cellular mineralized nodules was determined by alizarin red staining. RESULTS: GRP78 was heterogeneously expressed in PDLFs, and GRP78High and GRP78Low subpopulations were obtained by flow sorting. The osteogenic differentiation ability and phosphorylation level of c-Src kinase in the GRP78High subpopulation were significantly increased compared with those in GRP78Low subpopulation after cyclic mechanical stretch (P<0.05). GRP78 interacted with c-Src in PDLFs. The overexpression c-Src group showed significantly increased osteogenic differentiation ability than the vector group (P<0.05), and the sic-Src group showed significantly decreased osteogenic differentiation ability (P<0.05) after cyclic mechanical stretch. CONCLUSIONS: GRP78 upregulates c-Src expression by interacting with c-Src kinase and promotes osteogenic differentiation under cyclic mechanical stretch in PDLFs.


Subject(s)
Cell Differentiation , Heat-Shock Proteins , Osteoblasts , Periodontal Ligament , Proto-Oncogene Proteins pp60(c-src) , Signal Transduction , Stress, Mechanical , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , CSK Tyrosine-Protein Kinase/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Fibroblasts/metabolism , Heat-Shock Proteins/metabolism , Osteoblasts/metabolism , Osteocalcin/metabolism , Osteogenesis , Osteopontin/metabolism , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Phosphorylation , src-Family Kinases/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism
3.
Nutr Res ; 126: 180-192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759501

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.


Subject(s)
Diet, High-Fat , Endoplasmic Reticulum Stress , High-Intensity Interval Training , Insulin Resistance , Liver , Mice, Inbred C57BL , Mitochondria, Liver , Physical Conditioning, Animal , Animals , Diet, High-Fat/adverse effects , Male , Liver/metabolism , Mitochondria, Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Fatty Liver/prevention & control , Oxidation-Reduction
4.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 228-234, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38584104

ABSTRACT

Objective: To analyze the clinical application value of serum heme oxygenase (HO)-1expression level in non-alcoholic fatty liver disease (NAFLD) and, based on that, establish a diagnostic model combined with glucose regulatory protein 78 (GRP78) so as to clarify its diagnostic effectiveness and application value. Methods: A total of 210 NAFLD patients diagnosed by abdominal B-ultrasound and liver elastography were included, and at the same time, 170 healthy controls were enrolled. The general clinical data, peripheral blood cell counts, and biochemical indicators of the research subjects were collected. The expression levels of HO-1 and GRP78 were detected using an enzyme-linked immunosorbent assay. Multivariate analysis was used to screen independent risk factors for NAFLD. Visual output was performed through nomogram diagrams, and the diagnostic model was constructed. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA) were used to evaluate the diagnostic effectiveness of NAFLD. Measurement data were analyzed using a t-test or Mann-Whitney U rank sum test to detect data differences between groups. Enumeration data were analyzed using the Fisher's exact probability test or the Pearson χ(2) test. Results: Compared with the healthy control group, the white blood cell count, aspartate aminotransferase (AST), alanine aminotransferase, gamma-glutamyl transferase (GTT), fasting blood glucose (Glu), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), serum HO-1, and GRP78 levels were significantly increased in the NAFLD group patients (P < 0.05). Binary logistic analysis results showed that AST, TG, LDL-C, serum HO-1, and GRP78 were independent risk factors for NAFLD (P < 0.05). A nomogram clinical predictive model HGATL was established using HO-1 (H), GRP78 (G) combined with AST (A), TG (T), and LDL-C (L), with the formula P=-21.469+3.621×HO-1+0.116 ×GRP78+0.674×AST+6.250×TG+4.122 ×LDL-C. The results confirmed that the area under the ROC curve of the HGATL model was 0.965 8, with an optimal cutoff value of 81.69, a sensitivity of 87.06%, a specificity of 92.82%, a P < 0.05, and the diagnostic effectiveness significantly higher than that of a single indicator. The calibration curve and DCA both showed that the model had good diagnostic performance. Conclusion: The HGATL model can be used as a novel, non-invasive diagnosis model for NAFLD and has a positive application value in NAFLD diagnosis and therapeutic effect evaluation. Therefore, it should be explored and promoted in clinical applications.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Glucose , Cholesterol, LDL , Heme Oxygenase-1 , Endoplasmic Reticulum Chaperone BiP , Triglycerides
5.
J Appl Biomed ; 22(1): 40-48, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505969

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress has been shown to play an important role in osteoarthritis (OA). OBJECTIVE: This study was aimed at assessing the relationship of endoplasmic reticulum (ER) stress-related glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) concentrations in the serum/synovial fluid (SF) with disease severity of primary knee osteoarthritis (pkOA). METHODS: Patients with pkOA together with healthy individuals were consecutively recruited from our hospital. The levels of GRP78 and CHOP in serum / SF were detected using enzyme-linked immunosorbent assay. The levels of IL-6 and MMP-3 were also examined. Radiographic progression of pkOA was evaluated based on Kellgren-Lawrence (K-L) grades. Receiver Operating Characteristic (ROC) curves were used to assess the diagnostic value of GRP78/CHOP levels with regard to K-L grades. The assessment of clinical severity was conducted using the visual analogue scale (VAS), Oxford knee score (OKS), and Lequesne algofunctional index (LAI). RESULTS: A total of 140 pkOA patients and 140 healthy individuals were included. Serum GRP78 and CHOP levels in pkOA patients were not significantly different from those in healthy individuals. The SF GRP78 and CHOP levels in healthy controls were not detected due to ethical reasons. Compared to those with K-L grade 2 and 3, the pkOA patients with K-L grade 4 had higher GRP78 and CHOP levels in the SF with statistical significance. In addition, the pkOA patients with K-L grade 3 exhibited drastically upregulated GRP78 and CHOP concentrations in the SF compared to those with K-L grade 2. Positive correlations of GRP78 and CHOP levels with K-L grades, IL-6, and MMP-3 levels in the SF were observed. ROC curve analysis indicated that both GRP78 and CHOP levels may act as decent indicators with regard to OA. GRP78 and CHOP concentrations in the SF were positively correlated with VAS/LAI score and negatively associated with OKS score. CONCLUSION: The study indicated that GRP78 and CHOP levels in the SF but not the serum were positively correlated with disease severity of pkOA.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnostic imaging , Synovial Fluid/chemistry , Synovial Fluid/metabolism , Matrix Metalloproteinase 3/metabolism , Cross-Sectional Studies , Endoplasmic Reticulum Chaperone BiP , Interleukin-6/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Disease Progression
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003440

ABSTRACT

Objective@#To study the effect of low concentrations of sodium fluoride on the osteogenic/odontogenic differentiation of human dental pulp cells (hDPCs) in vitro.@*Methods@#This study was reviewed and approved by the Ethics Committee. hDPCs were cultured using a modified tissue explant technique in vitro. The effects of different concentrations of sodium fluoride on the proliferation of hDPCs were measured by methylthiazol tetrazolium (MTT) assay. Appropriate concentrations were added to the osteogenic/odontogenic differentiation induction medium, and the cells were induced in vitro. Alizarin red S staining was used to detect the osteoblastic/odontogenic differentiation ability of the cells, and the mRNA expression of the key differentiation factors was detected by RT-qPCR. Moreover, the expression of key molecules of endoplasmic reticulum stress (ERS) was detected by RT-qPCR and Western blot. The data were analyzed with the SPSS 18.0 software package.@*Results@#Low concentration of NaF (0.1 mmol/L) could stimulate cell proliferation in vitro, while a high concentration (5-10 mmol/L) could inhibit cell proliferation (P<0.05). According to the literature and the experimental data, 0.1 mmol/L NaF was selected as the following experimental concentration. The levels of alizarin red S staining were increased after NaF induction of mixed osteogenic/odontogenic differentiation in vitro. The mRNA expression levels of key molecules for osteogenic/odontogenic differentiation, dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP) and osteocalcin (OCN), were increased (P<0.05). The mRNA levels of ERS markers (splicing x-box binding protein-1 (sXBP1), glucose-regulated protein 78 (GRP78) and activating transcription Factor 4 (ATF4) were increased in NaF-treated cells. The protein expression levels of key ER stress molecules (phosphorylated RNA-activated protein kinase-like ER-resident kinase (p-PERK), phosphorylated eukaryotic initiation factor-2α (p-eIF2α) and ATF4) were higher in NaF-treated cells.@*Conclusion@#A low concentration of NaF promotes the osteogenic/odontogenic differentiation of hDPCs and increases the level of ER stress.

7.
World J Clin Cases ; 11(30): 7284-7293, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37969442

ABSTRACT

BACKGROUND: Breast infiltrating ductal carcinoma (BIDC) represents the largest heterotypic tumor group, and an in-depth understanding of the pathogenesis of BIDC is key to improving its prognosis. AIM: To analyze the expression profiles and clinical implications of forkhead box M1 (FOXM1), cyclooxygenase-2 (COX-2), and glucose-regulated protein 78 (GRP78) in BIDC. METHODS: A total of 65 BIDC patients and 70 healthy controls who presented to our hospital between August 2019 and May 2021 were selected for analysis. The peripheral blood FOXM1, COX-2, and GRP78 levels in both groups were measured and the association between their expression profiles in BIDC was examined. Additionally, we investigated the diagnostic value of FOXM1, COX-2, and GRP78 in patients with BIDC and their correlations with clinicopathological features. Furthermore, BIDC patients were followed for 1 year to identify factors influencing patient prognosis. RESULTS: The levels of FOXM1, COX-2, and GRP78 were significantly higher in BIDC patients compared to healthy controls (P < 0.05), and a positive correlation was observed among them (P < 0.05). Receiver operating characteristic analysis demonstrated that FOXM1, COX-2, and GRP78 had excellent diagnostic value in predicting the occurrence of BIDC (P < 0.05). Subsequently, we found significant differences in FOXM1, COX-2, and GRP78 levels among patients with different histological grades and metastasis statuses (with vs without) (P < 0.05). Cox analysis revealed that FOXM1, COX-2, GRP78, increased histological grade, and the presence of tumor metastasis were independent risk factors for prognostic death in BIDC (P < 0.001). CONCLUSION: FOXM1, COX-2, and GRP78 exhibit abnormally high expression in BIDC, promoting malignant tumor development and closely correlating with prognosis. These findings hold significant research implications for the future diagnosis and treatment of BIDC.

8.
IBRO Neurosci Rep ; 15: 225-234, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37822517

ABSTRACT

After spinal cord injury (SCI), endoplasmic reticulum (ER) stress has been reported to be an integral part of the secondary injury process that causes apoptosis of glial cells, leading to remyelination failure. This report focuses on exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist widely used to treat diabetes, as a potential agent to improve functional outcome after SCI by improving the ER stress response. Exenatide administered subcutaneously immediately after injury and 7 days later in a rat model of moderate contusive SCI revealed significant improvement in hindlimb function without any hypoglycemia. Changes in the expression of glucose regulatory protein 78 (GRP78), an endoplasmic reticulum chaperone that protects against ER stress, and C/EBP homologous transcription factor protein (CHOP), a pro-apoptotic transcription factor in the apoptosis pathway were examined as indices of ER stress. We found that administration of exenatide after SCI suppressed CHOP while increasing GRP78 in the injured spinal cord, leading to a significant decrease in tissue damage and a significant increase in oligodendrocyte progenitor cell survival. This study suggests that administration of exenatide after SCI decreases ER stress and improves functional recovery without any apparent side-effects.

9.
Cell Stress Chaperones ; 28(4): 409-422, 2023 07.
Article in English | MEDLINE | ID: mdl-37326827

ABSTRACT

Glucose-regulated protein 78 (GRP78) is frequently and highly expressed in various human malignancies and protects cancer cells against apoptosis induced by multifarious stresses, particularly endoplasmic reticulum stress (ER stress). The inhibition of GRP78 expression or activity could enhance apoptosis induced by anti-tumor drugs or compounds. Herein, we will evaluate the efficacy of lysionotin in the treatment of human liver cancer as well as the molecular mechanism. Moreover, we will examine whether inhibition of GRP78 enhanced the sensitivity of hepatocellular carcinoma cells to lysionotin. We found that lysionotin significantly suppressed proliferation and induced apoptosis of liver cancer cells. TEM showed that lysionotin-treated liver cancer cells showed an extensively distended and dilated endoplasmic reticulum lumen. Meanwhile, the levels of the ER stress hallmark GRP78 and UPR hallmarks (e.g., IRE1α and CHOP) were significantly increased in response to lysionotin treatment in liver cancer cells. Moreover, the reactive oxygen species (ROS) scavenger NAC and caspase-3 inhibitor Ac-DEVD-CHO visibly attenuated the induction of GRP78 and attenuated the decrease in cell viability induced by lysionotin. More importantly, the knockdown of GRP78 expression by siRNAs or treatment with EGCG, both induced remarkable increase in lysionotin-induced PARP and pro-caspase-3 cleavage and JNK phosphorylation. In addition, knockdown of GRP78 expression by siRNA or suppression GRP78 activity by EGCG both significantly improved the effectiveness of lysionotin. These data indicated that pro-survival GRP78 induction may contribute to lysionotin resistance. The combination of EGCG and lysionotin is suggested to represent a novel approach in cancer chemo-prevention and therapeutics.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Liver Neoplasms , Humans , Endoribonucleases , Heat-Shock Proteins/metabolism , Protein Serine-Threonine Kinases , Endoplasmic Reticulum Stress/genetics , Apoptosis/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , RNA, Small Interfering , Cell Line, Tumor
10.
J Cell Biochem ; 124(5): 743-752, 2023 05.
Article in English | MEDLINE | ID: mdl-36947703

ABSTRACT

Glucose-regulated protein-78 (Grp78) is an endoplasmic reticulum chaperone, which is secreted by cells and associates with cell surfaces, where it functions as a receptor for activated α2 -macroglobulin (α2 M) and tissue-type plasminogen activator (tPA). In macrophages, α2 M and tPA also bind to the transmembrane receptor, LDL receptor-related protein-1 (LRP1), activating a cell-signaling receptor assembly that includes the NMDA receptor (NMDA-R) to suppress innate immunity. Herein, we demonstrate that an antibody targeting Grp78 (N88) inhibits NFκB activation and expression of proinflammatory cytokines in bone marrow-derived macrophages (BMDMs) treated with the toll-like receptor-4 (TLR4) ligand, lipopolysaccharide, or with agonists that activate TLR2, TLR7, or TLR9. Pharmacologic inhibition of the NMDA-R or deletion of the gene encoding LRP1 (Lrp1) in BMDMs neutralizes the activity of N88. The fibrinolysis protease inhibitor, plasminogen activator inhibitor-1 (PAI1), has been implicated in diverse diseases including metabolic syndrome, cardiovascular disease, and type 2 diabetes. Deletion of Lrp1 independently increased expression of PAI1 and PAI2 in BMDMs, as did treatment of wild-type BMDMs with TLR agonists. tPA, α2 M, and N88 inhibited expression of PAI1 and PAI2 in BMDMs treated with TLR-activating agents. Inhibiting Src family kinases blocked the ability of both N88 and tPA to function as anti-inflammatory agents, suggesting that the cell-signaling pathway activated by tPA and N88, downstream of LRP1 and the NMDA-R, may be equivalent. We conclude that targeting cell-surface Grp78 may be effective in suppressing innate immunity by a mechanism that requires LRP1 and the NMDA-R.


Subject(s)
Cytokines , Diabetes Mellitus, Type 2 , Humans , Cytokines/metabolism , Membrane Proteins/metabolism , Plasminogen Inactivators/metabolism , Diabetes Mellitus, Type 2/metabolism , Endoplasmic Reticulum Chaperone BiP , N-Methylaspartate/metabolism , Macrophages/metabolism , Antibodies , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism
11.
Heliyon ; 9(2): e13436, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36820047

ABSTRACT

Background and aims: The destruction of endoplasmic reticulum (ER) homeostasis leads to heart failure (HF), which further aggravates ER stress. Limited data are available on the levels of ER stress markers in HF patients in clinical practice. This study aimed to determine the clinical significance of the ER stress markers, glucose-regulated protein 78 (GRP78), Caspase-3, and C/EBP homologous protein (CHOP), in predicting HF and its severity. Materials and methods: A total of 62 patients with HF and 44 healthy controls were enrolled in the study, and all participants were followed-up for 2 years. Results: Serum GRP78, Caspase-3, and CHOP levels were significantly higher in patients with HF than those in healthy controls. The level of GRP78 increased with the severity of HF. GRP78 levels were negatively correlated with left ventricular ejection fraction, and positively correlated with N-terminal B-type natriuretic peptide, D-dimer, and lactic acid. Serum GRP78 and Caspase-3 levels showed moderate predictive values for HF patients. Conclusion: ER stress markers, GRP78 and Caspase-3, had a certain predictive value in HF and can be used as serum biomarkers for the diagnosis of HF. Additionally, GRP78 showed a certain predictive value in HF severity.

12.
Cancers (Basel) ; 15(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36831486

ABSTRACT

BACKGROUND: Understanding malignant transformation associated with ovarian cancer (OVCA) is important to establish early detection tests. This study examined whether expression of glucose-regulated protein 78 (GRP78, marker of cellular stress) increases during OVCA development, and whether GRP78 can be detected by targeted-transvaginal ultrasound (TVUS) imaging. METHODS: Normal ovaries (n = 10), benign (n = 10) and malignant ovarian tumors at early (n = 8) and late stages (n = 16), hens with and without ovarian tumors at early and late stages (n = 10, each) were examined for GRP78 expression during OVCA development by immunohistochemistry, immunoblotting, gene expression and immunoassay. Feasibility of GRP78-targeted TVUS imaging in detecting early OVCA was examined. RESULTS: Compared with normal ovaries and benign tumors, intensity of GRP78 expression was higher (p < 0.0001) in OVCA patients. Compared with normal (9007.76 ± 816.54 pg/mL), serum GRP78 levels were significantly higher (p < 0.05) in patients with early (12,730.59 ± 817.35 pg/mL) and late-stage OVCA (13,930.12 ± 202.35) (p < 0.01). Compared with normal (222.62 ± 181.69 pg/mL), serum GRP78 levels increased (p < 0.05) in hens with early (590.19 ± 198.18 pg/mL) and late-stage OVCA (1261.38 ± 372.85) (p < 0.01). Compared with non-targeted, GRP78-targeted imaging enhanced signal intensity of TVUS (p < 0.0001). CONCLUSIONS: Tissue and serum levels of GRP78 increase in association with OVCA. GRP78 offers a potential serum and imaging marker for early OVCA detection.

13.
J Biomed Sci ; 30(1): 4, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36639650

ABSTRACT

BACKGROUND: The leading cause of cancer-related mortality worldwide is lung cancer, and its clinical outcome and prognosis are still unsatisfactory. The understanding of potential molecular targets is necessary for clinical implications in precision diagnostic and/or therapeutic purposes. Histone deacetylase 6 (HDAC6), a major deacetylase enzyme, is a promising target for cancer therapy; however, the molecular mechanism regulating cancer pathogenesis is largely unknown. METHODS: The clinical relevance of HDAC6 expression levels and their correlation with the overall survival rate were analyzed based on the TCGA and GEO databases. HDAC6 expression in clinical samples obtained from lung cancer tissues and patient-derived primary lung cancer cells was evaluated using qRT-PCR and Western blot analysis. The potential regulatory mechanism of HDAC6 was identified by proteomic analysis and validated by immunoblotting, immunofluorescence, microtubule sedimentation, and immunoprecipitation-mass spectrometry (IP-MS) assays using a specific inhibitor of HDAC6, trichostatin A (TSA) and RNA interference to HDAC6 (siHDAC6). Lung cancer cell growth was assessed by an in vitro 2-dimensional (2D) cell proliferation assay and 3D tumor spheroid formation using patient-derived lung cancer cells. RESULTS: HDAC6 was upregulated in lung cancer specimens and significantly correlated with poor prognosis. Inhibition of HDAC6 by TSA and siHDAC6 caused downregulation of phosphorylated extracellular signal-regulated kinase (p-ERK), which was dependent on the tubulin acetylation status. Tubulin acetylation induced by TSA and siHDAC6 mediated the dissociation of p-ERK on microtubules, causing p-ERK destabilization. The proteomic analysis demonstrated that the molecular chaperone glucose-regulated protein 78 (GRP78) was an important scaffolder required for p-ERK localization on microtubules, and this phenomenon was significantly inhibited by either TSA, siHDAC6, or siGRP78. In addition, suppression of HDAC6 strongly attenuated an in vitro 2D lung cancer cell growth and an in vitro 3D patient derived-lung cancer spheroid growth. CONCLUSIONS: HDAC6 inhibition led to upregulate tubulin acetylation, causing GRP78-p-ERK dissociation from microtubules. As a result, p-ERK levels were decreased, and lung cancer cell growth was subsequently suppressed. This study reveals the intriguing role and molecular mechanism of HDAC6 as a tumor promoter, and its inhibition represents a promising approach for anticancer therapy.


Subject(s)
Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Lung Neoplasms , Tubulin , Humans , Acetylation , Cell Proliferation , Endoplasmic Reticulum Chaperone BiP , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/pharmacology , Lung Neoplasms/genetics , Phosphorylation , Proteomics , Tubulin/metabolism
14.
Trends Food Sci Technol ; 132: 40-53, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36594074

ABSTRACT

Background: COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity. The robust transmission of Omicron despite attenuated disease severity still poses a great challenge for pandemic control. Under this circumstance, its tropism shift may be utilized for discovering effective preventive approaches. Scope and approach: This review aims to estimate the potential of green tea epigallocatechin gallate (EGCG), the most potent antiviral catechin, in neutralizing SARS-CoV-2 Omicron variant, based on current knowledge concerning EGCG distribution in tissues and Omicron tropism. Key findings and conclusions: EGCG has a low bioavailability. Plasma EGCG levels are in the range of submicromolar concentrations following green tea drinking, or reach at most low µM concentrations after pharmacological intervention. Nonetheless, its levels in the upper respiratory tract could reach concentrations as high as tens or even hundreds of µM following green tea consumption or pharmacological intervention. An approach for delivering sufficiently high concentrations of EGCG in the pharynx has been developed. Convincing data have demonstrated that EGCG at tens to hundreds of µM can dramatically neutralize SARS-CoV-2 and effectively eliminate SARS-CoV-2-induced cytopathic effects and plaque formation. Thus, EGCG, which exhibits hyperaccumulation in the upper respiratory tract, deserves closer investigation as an antiviral in the current global battle against COVID-19, given Omicron's greater tropism toward the upper respiratory tract.

15.
J Hepatobiliary Pancreat Sci ; 30(2): 165-176, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35586893

ABSTRACT

BACKGROUND/PURPOSE: To overcome liver failure, we focused on liver regeneration mechanisms by the activation of hepatic stellate cells (HSCs) and Kupffer cells (KCs). It is known that the HSC-secreted Mac-2-binding protein glycan isomer (M2BPGi) activates KC in the fibrotic liver. However, its importance for liver regeneration of the HSCs/M2BPGi/KCs axis after hepatectomy is still unknown. The aim of this study was to clarify whether the HSC-derived M2BPGi can activate KCs after hepatectomy, and elucidate the new molecular mechanism of liver regeneration. METHODS: We examined the effect of M2BPGi on human hepatocytes and KCs, and explored secretory factors from M2BPGi-activated KCs using proteomics. Furthermore, the effect on liver regeneration of glucose-regulated protein 78 (GRP78) as one of the M2BPGi-related secreted proteins was examined in vitro and in murine hepatectomy models. RESULTS: Although M2BPGi had no hepatocyte-promoting effect, M2BPGi promoted the production of GRP78 in KCs. The KC-driven GRP78 promoted hepatocyte proliferation. GRP78 administration facilitated liver regeneration after 70% hepatectomy and increased the survival rate after 90% hepatectomy in mice. CONCLUSIONS: The M2BPGi-activated KCs secrete GRP78, which facilitates liver regeneration and improves the survival in a lethal mice model. Our data suggest that the new hepatotrophic factor GRP78 may be a promising therapeutic tool for lethal liver failure.


Subject(s)
Kupffer Cells , Liver Failure , Humans , Mice , Animals , Kupffer Cells/metabolism , Kupffer Cells/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Regeneration , Endoplasmic Reticulum Chaperone BiP , Liver Cirrhosis/pathology , Liver
16.
Neural Regen Res ; 18(7): 1607-1612, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36571369

ABSTRACT

The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury. Valproate is a histone deacetylase inhibitor and multitarget drug, which has been demonstrated to protect retinal neurons. In this study, we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling. We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope. Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein, phosphorylated eukaryotic translation initiation factor 2α, and caspase-12 in the endoplasmic reticulum of retinal ganglion cells. These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress. These findings represent a newly discovered mechanism that regulates how valproate protects neurons.

17.
Cancer Cell Int ; 22(1): 387, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482387

ABSTRACT

BACKGROUND: Glioblastomas (GBs) are characterised as one of the most aggressive primary central nervous system tumours (CNSTs). Single-cell sequencing analysis identified the presence of a highly heterogeneous population of cancer stem cells (CSCs). The proteins anterior gradient homologue 2 (AGR2) and glucose-regulated protein 78 (GRP78) are known to play critical roles in regulating unfolded protein response (UPR) machinery. The UPR machinery influences cell survival, migration, invasion and drug resistance. Hence, we investigated the role of AGR2 in drug-resistant recurrent glioblastoma cells. METHODS: Immunofluorescence, biological assessments and whole exome sequencing analyses were completed under in situ and in vitro conditions. Cells were treated with CNSTs clinical/preclinical drugs taxol, cisplatin, irinotecan, MCK8866, etoposide, and temozolomide, then resistant cells were analysed for the expression of AGR2. AGR2 was repressed using single and double siRNA transfections and combined with either temozolomide or irinotecan. RESULTS: Genomic and biological characterisations of the AGR2-expressed Jed66_GB and Jed41_GB recurrent glioblastoma tissues and cell lines showed features consistent with glioblastoma. Immunofluorescence data indicated that AGR2 co-localised with the UPR marker GRP78 in both the tissue and their corresponding primary cell lines. AGR2 and GRP78 were highly expressed in glioblastoma CSCs. Following treatment with the aforementioned drugs, all drug-surviving cells showed high expression of AGR2. Prolonged siRNA repression of a particular region in AGR2 exon 2 reduced AGR2 protein expression and led to lower cell densities in both cell lines. Co-treatments using AGR2 exon 2B siRNA in conjunction with temozolomide or irinotecan had partially synergistic effects. The slight reduction of AGR2 expression increased nuclear Caspase-3 activation in both cell lines and caused multinucleation in the Jed66_GB cell line. CONCLUSIONS: AGR2 is highly expressed in UPR-active CSCs and drug-resistant GB cells, and its repression leads to apoptosis, via multiple pathways.

18.
Biomedicines ; 10(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359223

ABSTRACT

Cellular senescence is linked with chemotherapy resistance. Based on previous studies, GRP78 is a signal transducer in senescent cells. However, the association between GRP78 and stem cell phenotype remains unknown. Cisplatin treatment was clarified to induce cellular senescence leading to stemness induction via GRP78/Akt signal transduction. H460 cells were treated with 5 µM of cisplatin for 6 days to develop senescence. The colony formation assay and cell cycle analysis were performed. SA-ß-galactosidase staining indicated senescence. Western blot analysis and RT-PCR were operated. Immunoprecipitation (IP) and immunocytochemistry assays (ICC) were also performed. Colony-forming activity was completely inhibited, and 87.07% of the cell population was arrested in the G2 phase of the cell cycle. mRNA of p21 and p53 increased approximately by 15.91- and 19.32-fold, respectively. The protein level of p21 and p53 was elevated by 9.57- and 5.9-fold, respectively. In addition, the c-Myc protein level was decreased by 0.2-fold when compared with the non-treatment control. Even though, the total of GRP78 protein was downregulated after cisplatin treatment, but the MTJ1 and downstream regulator, p-Akt/Akt ratio were upregulated by approximately 3.38 and 1.44-fold, respectively. GRP78 and MTJ1 were found at the cell surface membrane. Results showed that the GRP78/MTJ1 complex and stemness markers, including CD44, CD133, Nanog, Oct4, and Sox2, were concomitantly increased in senescent cells. MTJ1 anchored GRP78, facilitating the signal transduction of stem-like phenotypes. The strategy that could interrupt the binding between these crucial proteins or inhibit the translocation of GRP78 might beuseful for cancer therapy.

19.
Cell Adh Migr ; 16(1): 107-114, 2022 12.
Article in English | MEDLINE | ID: mdl-36203272

ABSTRACT

Hypochlorous acid (HOCl) is an essential signal molecule in cancer cells. Activated GRP78 ATPase by a HOCl probe named ZBM-H inhibits lung cancer cell growth. However, the role and underlying mechanism of GRP78 ATPase in lung cancer cell migration have not been established. Here, we reported that activation of GRP78 ATPase by ZBM-H suppressed A549 cell migration and inhibited EMT process. Notably, ZBM-H time-dependently decreased the protein level of integrin ß4 (ITGB4) in A549 cells. Combinatorial treatment of 3BDO (an autophagy inhibitor) and ZBM-H partially rescued the protein level of ITGB4. Consistently, 3BDO partially reversed ZBM-H-inhibited cell migration. Furthermore, ZBM-H promoted the interaction between ANXA7 and Hsc70, which participated in the regulation of selective autophagy and degradation of ITGB4.


Subject(s)
Endoplasmic Reticulum Chaperone BiP/metabolism , Integrin beta4 , Lung Neoplasms , A549 Cells , Adenosine Triphosphatases , Cell Line, Tumor , Cell Movement , Humans , Hypochlorous Acid , Integrin beta4/metabolism
20.
Int J Oncol ; 61(5)2022 Nov.
Article in English | MEDLINE | ID: mdl-36177897

ABSTRACT

The present study aimed to investigate the potential molecular mechanisms by which galectin­1 (Gal­1) and glucose­regulated protein 78 (GRP78) influence the development of malignant gastric cancer (GC). Immunohistochemistry and western blotting were used to map the expression and location of the Gal­1 gene in the 80 paraffin­embedded GC samples, 16 fresh samples and surrounding tissues. Gal­1 was overexpressed and knocked down using lentiviral vectors in the human GC cell lines HGC­27 and AGS. Through the use of the Cell Counting Kit­8 assay, clone formation assay, wound healing assay, invasion assay and tumor xenograft, the possible biological roles of Gal­1 were further evaluated. The downstream interacting proteins were predicted by the BioGRID database, and GRP78 was chosen for further investigation. Immunofluorescence labeling and Co­IP were used to confirm the connection. The statistical tests utilized were the two­tailed paired Student's t­test, χ2 test, Kaplan­Meier and Cox regression analysis, and Spearman's rank correlation coefficients. In GC, Gal­1 is extensively expressed and has the potential to interact with GRP78. Poor prognosis is linked to high levels of GRP78 and Gal­1 expression in patients with GC. According to the functional study, Gal­1 knockdown prevented cells from thriving and pushed Gal­1 expression, which aided in the proliferation, migration and invasion of GC. Gal­1 overexpression additionally aided the development of subcutaneous xenograft tumors. The mechanistic investigation proved that GRP78 and Gal­1 interacted, accelerating the course of GC. Gal­1 silencing had an inhibitory effect on the proliferation of HGC­27 cells that was removed by ectopic GRP78 expression, whereas the stimulating effects of Gal­1 overexpression in AGS cells were inhibited by GRP78 knockdown. In conclusion, Gal­1 interacts with GRP78 to facilitate the advancement of GC. The Gal­1/GRP78 axis is supported by the functional data of the present study as a possible GC treatment target.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Galectin 1 , Stomach Neoplasms , Animals , Benzamides , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Endoplasmic Reticulum Chaperone BiP/metabolism , Galectin 1/genetics , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Stomach Neoplasms/pathology , Tyrosine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL