Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
Nano Lett ; 24(32): 9801-9807, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087900

ABSTRACT

Cation-doped cubic Li7La3Zr2O12 is regarded as a promising solid electrolyte for safe and energy-dense solid-state lithium batteries. However, it suffers from the formation of Li2CO3 and high electronic conductivity, which give rise to an unconformable Li/Li7La3Zr2O12 interface and lithium dendrites. Herein, composite AlF3-Li6.4La3Zr1.4Ta0.6O12 solid electrolytes were created based on thermal AlF3 decomposition and F/O displacement reactions under a high-temperature sintering process. When the AlF3 is thermally decomposed, it leaves Al2O3/AlF3 meliorating the grain boundaries and F- ions partially displacing O2- ions in the grains. Due to the higher electronegativity of F- in the grains and the grain-boundary modification, these AlF3-Li6.4La3Zr1.4Ta0.6O12 deliver optimized electronic conduction and chemical stability against the formation of Li2CO3. The Li/AlF3-Li6.4La3Zr1.4Ta0.6O12/Li cell exhibits a low interfacial resistance of ∼16 Ω cm2 and an ultrastable long-term cycling behavior for 800 h under a current density of 200 µA/cm2, leading to Li//LiCoO2 solid-state batteries with good rate performance and cycling stability.

2.
Materials (Basel) ; 17(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39124542

ABSTRACT

The remarkable stability, suitable thermomechanical characteristics, and acceptable electrical properties of donor-doped strontium titanates make them attractive materials for fuel electrodes, interconnects, and supports of solid oxide fuel and electrolysis cells (SOFC/SOEC). The present study addresses the impact of processing and thermochemical treatment conditions on the electrical conductivity of SrTiO3-derived ceramics with moderate acceptor-type substitution in a strontium sublattice. A-site-deficient Sr0.85La0.10TiO3-δ and cation-stoichiometric Sr0.85Pr0.15TiO3+δ ceramics with varying microstructures and levels of reduction have been prepared and characterized by XRD, SEM, TGA, and electrical conductivity measurements under reducing conditions. The analysis of the collected data suggested that the reduction process of dense donor-doped SrTiO3 ceramics is limited by sluggish oxygen diffusion in the crystal lattice even at temperatures as high as 1300 °C. A higher degree of reduction and higher electrical conductivity can be obtained for porous structures under similar thermochemical treatment conditions. Metallic-like conductivity in dense reduced Sr0.85La0.10TiO3-δ corresponds to the state quenched from the processing temperature and is proportional to the concentration of Ti3+ in the lattice. Due to poor oxygen diffusivity in the bulk, dense Sr0.85La0.10TiO3-δ ceramics remain redox inactive and maintain a high level of conductivity under reducing conditions at temperatures below 1000 °C. While the behavior and properties of dense reduced Sr0.85Pr0.15TiO3+δ ceramics with a large grain size (10-40 µm) were found to be similar, decreasing grain size down to 1-3 µm results in an increasing role of resistive grain boundaries which, regardless of the degree of reduction, determine the semiconducting behavior and lower total electrical conductivity of fine-grained Sr0.85Pr0.15TiO3+δ ceramics. Oxidized porous Sr0.85Pr0.15TiO3+δ ceramics exhibit faster kinetics of reduction compared to the Sr0.85La0.10TiO3-δ counterpart at temperatures below 1000 °C, whereas equilibration kinetics of porous Sr0.85La0.10TiO3-δ structures can be facilitated by reductive pre-treatments at elevated temperatures.

3.
J Colloid Interface Sci ; 677(Pt B): 795-803, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39173512

ABSTRACT

Transition metal oxides (TMOs) with high discharge capacity are considered as one of the most promising anodes for lithium-ion batteries. However, the practical utilization of TMOs is largely limited by cycling stability issues arising from volume expansion, structural collapse. In this study, we synthesized a high-entropy spinel oxide material (FeCrNiMnZn)3O4 using a solution combustion method. With the implementation of five cations through high-entropy engineering, the agglomeration and expansion of the electrode materials during charging and discharging are suppressed, and the cycling stability is enhanced. The results demonstrate that entropy-induced high-density grain boundaries and the reversibility of spinel structure contribute to improved capacity and cycling stability. Herein, (FeCrNiMnZn)3O4 provides a high capacity (1374 mAh g-1) at 0.1 A g-1 and superior cycling stability (almost 100 %) during 200 cycles with a current density of 0.5 A g-1. The study provides valuable understanding for designing the high entropy oxides anode electrodes.

4.
Article in English | MEDLINE | ID: mdl-39175186

ABSTRACT

To forge ahead with the next generation of power batteries boasting superior energy density, nickel-rich layered oxides are regarded as some of the most promising cathode materials. However, challenges such as microcracks, which are attributed to the elevated nickel content of the materials, have posed impediments to their further development and application. Consequently, this article focuses on the understanding of the materials in the deep delithiation state, dissecting their degradation mechanisms through a dual lens of electrochemical and mechanical properties. The comprehensive analysis reveals that microcracks within the particles exhibit a degree of reversibility. However, with repeated Li+ de-/intercalation, these microcracks progressively propagate and permeate the entire particle, ultimately leading to particle fragmentation. Therefore, this study employs Dy2O3 as an inducer to facilitate the growth of primary crystal grains, reducing the internal porosity of the particles. This effectively enhances the conductivity and lithium-ion diffusion kinetics in deep lithium-ion deintercalation states of nickel-rich cathode materials. The modified material exhibits significant suppression of microcrack formation and growth during cycling, leading to notable improvements in its chemical-mechanical properties. These degradation mechanisms and modification strategies of Ni-rich cathodes offer valuable insights into the development of Ni-rich cathode materials tailored for electric vehicles.

5.
ACS Appl Mater Interfaces ; 16(32): 42917-42930, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39102288

ABSTRACT

Material thermal conductivity is a key factor in various applications, from thermal management to energy harvesting. With microstructure engineering being a widely used method for customizing material properties, including thermal properties, understanding and controlling the role of extended phonon-scattering defects, like grain boundaries, is crucial for efficient material design. However, systematic studies are still lacking primarily due to limited tools. In this study, we demonstrate an approach for measuring grain boundary thermal resistance by probing the propagation of thermal waves across grain boundaries with a temperature-sensitive scanning probe. The method, implemented with a spatial resolution of about 100 nm on finely grained Nb-substituted SrTiO3 ceramics, achieves a detectability of about 2 × 10-8 K m2 W-1, suitable for chalcogenide-based thermoelectrics. The measurements indicated that the thermal resistance of the majority of grain boundaries in the STiO3 ceramics is below this value. While there are challenges in improving sensitivity, considering spatial resolution and the amount of material involved in the detection, the sensitivity of the scanning probe method is comparable to that of optical thermoreflectance techniques, and the method opens up an avenue to characterize thermal resistance at the level of single grain boundaries and domain walls in a spectrum of microstructured materials.

6.
Small ; : e2404861, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073293

ABSTRACT

Spiral inorganic perovskite nanowires (NWs) possess unique morphologies and properties that allow them highly attractive for applications in optoelectronic and catalytic fields. In popular solution-based synthesis methodology, however, challenges persist in simultaneously achieving precise and facile control over morphological twisting and fantastic carrier lifetimes. Here, a cooperative strategy of concurrently employing selective etching and ligand engineering is applied to facilitate the formation of spiral CsPbBr3 perovskite NWs with an ultralong carrier lifetime of ≈2 µs. Specifically, a novel amine of 1-(p-tolyl)ethanamine is introduced to functionalize as both a selective etchant and the source of forming an effective ligand to passivate the exposed facets, favoring the structural twisting and the enhancement of carrier lifetimes. The twisting behaviors are dependent on the etch ratios, which are essentially associated with the densities of grain boundaries and dislocations in the NWs. The ultralong carrier lifetime and long-term stability of the spiral NWs open up new possibilities for all-inorganic perovskites in optoelectronic and photocatalytic fields, while the cooperative synthesis strategy paves the way for exploring complex spiral structures with tunable morphology and functionality.

7.
Adv Mater ; : e2401698, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075821

ABSTRACT

Narrow-bandgap (NBG) mixed tin-lead (Sn-Pb) perovskite solar cells (PSCs) serve as crucial top subcells in all-perovskite tandem solar cells (TSCs). However, the prevalent use of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) hole transport layers (HTLs) in NBG PSCs compromises device efficiency and stability. To address this, the study proposes a revitalizing strategy for the buried interface of Sn-Pb perovskites by directly immersing acetylcholine chloride (ACh) into PEDOT: PSS. ACh acts as a proficient "diver," not only modulating the bottom PEDOT: PSS HTLs but also facilitating the reconstruction of the buried interface and significantly enhancing the quality of the top perovskite layers. This intervention with ACh prevents Sn2+ oxidation, mitigates buried defects, and encourages the growth of large, densely packed grains within Sn-Pb perovskites. Consequently, the optimized NBG PSCs exhibit significantly improved hole transport and reduced carrier recombination, achieving a steady-state efficiency of 22.98% with enhanced stability. Furthermore, these optimized NBG Sn-Pb cells enable highly efficient two-terminal and four-terminal all-perovskite TSCs, boasting steady-state efficiencies of 27.54% (certified at 26.41%) and 28.01%, respectively. This study emphasizes the importance of optimizing NBG PSCs through buried interface reconstruction, propelling the advancement of all-perovskite TSCs.

8.
Nano Lett ; 24(30): 9345-9352, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39011983

ABSTRACT

The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon chemicals provides a promising avenue for storing renewable energy. Herein, we synthesized small Cu nanoparticles featuring enriched tiny grain boundaries (RGBs-Cu) through spatial confinement and in situ electroreduction. In-situ spectroscopy and theoretical calculations demonstrate that small-sized Cu grain boundaries significantly enhance the adsorption of the *CO intermediate, owing to the presence of abundant low-coordinated and disordered atoms. Furthermore, these grain boundaries, generated in situ under high current conditions, exhibit excellent stability during the eCO2RR process, thereby creating a stable *CO-rich microenvironment. This high local *CO concentration around the catalyst surface can reduce the energy barrier for C-C coupling and significantly increase the Faradaic efficiency (FE) for multicarbon products across both neutral and alkaline electrolytes. Specifically, the developed RGBs-Cu electrocatalyst achieved a peak FE of 77.3% for multicarbon products and maintained more than 134 h stability at a constant current density of -500 mA cm-2.

9.
Nano Lett ; 24(29): 8911-8919, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38991153

ABSTRACT

Oxide ceramics are considered promising candidates as solid electrolytes (SEs) for sodium metal batteries. However, the high sintering temperature induced boundaries and pores between angular grains lead to high grain boundary resistance and pathways for dendrite growth. Herein, we report a grain boundary modification strategy, which in situ generates an amorphous matrix among Na5SmSi4O12 oxide grains via tuning the chemical composition. The mechanical properties as well as electron mitigating capability of modified SE have been significantly enhanced. As a result, the SE achieves a room-temperature total ionic conductivity of 5.61 mS cm-1, the highest value for sodium-based oxide SEs. The Na|SE|Na symmetric cell achieves a high critical current density of 2.5 mA cm-2 and excellent cycle life over more than 2800 h at 0.15 mA cm-2 without dendrite formation. The full cell with Na3V2(PO4)3 as the cathode demonstrates impressive cycling performance, maintaining stability over 3000 cycles at 5C without observable loss of capacity.

10.
Adv Sci (Weinh) ; : e2402147, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041948

ABSTRACT

Manipulating the grain boundary and chiral structure of enantiomorphic inorganic thermoelectric materials facilitates a new degree of freedom for enhancing thermoelectric energy conversion. Chiral twist mechanisms evolve by the screw dislocation phenomenon in the nanostructures; however, contributions of such chiral transport have been neglected for bulk crystals. Tellurium (Te) has a chiral trigonal crystal structure, high band degeneracy, and lattice anharmonicity for high thermoelectric performance. Here, Sb-doped Te crystals are grown to minimize the severe grain boundary effects on carrier transport and investigate the interface of chiral Te matrix and embedded achiral Sb2Te3 precipitates, which induce unusual lattice twists. The low grain boundary scattering and conformational grain restructuring provide electrical-favorable semicoherent interfaces. This maintains high electrical conductivity leading to a twofold increase in power factor compared to polycrystal samples. The embedded Sb2Te3 precipitates concurrently enable moderate phonon scattering leading to a remarkable decrease in lattice thermal conductivity and a high dimensionless figure of merit (zT) of 1.1 at 623 K. The crystal growth and chiral atomic reorientation unravel the emerging benefits of interface engineering as a crucial contributor to effectively enhancing carrier transport and minimizing phonon propagation in thermoelectric materials.

11.
Materials (Basel) ; 17(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39063759

ABSTRACT

Cu-Cu joints have been adopted for ultra-high-density packaging for high-end devices. However, the atomic diffusion rate is notably low at the preferred processing temperature, resulting in clear and distinct weak bonding interfaces, which, in turn, lead to reliability issues. In this study, a new method for eliminating the bonding interfaces using two types of Cu films in Cu-Cu bonding is proposed. The difference in grain size was utilized as the primary driving force for the migration of bonding interfaces/interfacial grain boundaries. Additionally, the columnar nanotwinned Cu structure acted as a secondary driving force, making the migration more significant. When bonded at 300 °C, the grains from one side grew and extended to the bottom, eliminating the bonding interfaces. A mechanism for the evolution of the Cu bonding interfaces/interfacial grain boundaries is proposed.

12.
Nanomaterials (Basel) ; 14(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39057875

ABSTRACT

A phase-field model for the precipitation of Fe-Cr-Al alloy is established incorporating grain boundary (GB) effects and irradiation-accelerated diffusion. The radiation source and grain boundary effect are incorporated to broaden the applicability of the Fe-Cr-Al precipitated phase-field model. The model is firstly employed to simulate the precipitation of the Cr-rich α' phase in a single-crystal alloy. The precipitation rate and the size distribution of the precipitated phase were analyzed. Subsequently, the model is utilized to simulate segregation at GBs in a double-crystal system, analyzing the enrichment of Cr and depletion of Al near these boundaries. The simulation results are consistent with experimental observations reported in the references. Finally, the model is applied to simulate the precipitation in a polycrystalline Fe-Cr-Al system. The simulated results revealed that the presence of GBs induces the formation of localized regions with enhanced Cr and Al content as well as depleted zones adjacent to these boundaries. GBs also diminish both the quantity and precipitation rate of the formed phase within the grains.

13.
Sci Rep ; 14(1): 16433, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014027

ABSTRACT

The orientation and shape of ceramics grains was always neglected, resulting in a lot of information during sintering has not been excavated. In this study, a modified phase-field model in order to express the anisotropy of grain boundary energy is developed. The effects of the anisotropy of grain boundary energy on the grain orientation and shape evolution are investigated in detail. The ferroelectric ceramic thick films are prepared by tape casting. The comparison of experiment and simulation results shows that the anisotropy of grain boundary energy results in uneven grain orientation and bimodal grain size distribution. The quantitative analysis of grain microstructures helps to establish a relationship with the degree of anisotropy of grain boundary energy. Our findings provide a new way to judge the degree of anisotropy by calculating the relevant parameters in the SEM images of ceramics materials.

14.
Materials (Basel) ; 17(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998392

ABSTRACT

The last two decades have witnessed significant progress in the development of severe plastic deformation techniques to produce ultrafine-grained materials with new and superior properties. This review examines works and achievements related to the low-temperature superplasticity of ultrafine-grained aluminum alloys. The examples are provided of the possibility to observe low-temperature superplasticity in aluminum alloys at temperatures less than 0.5 Tmelt and even at room temperature, and herein, we demonstrate the cases of achieving high ductility and high strength in aluminum alloys from processing utilizing severe plastic deformation. Special emphasis is placed on recent studies of the formation of segregations of alloying elements at grain boundaries in UFG Al alloys and their influence on the development of grain boundary sliding and manifestation of low-temperature superplasticity. In addition, the current status and innovative potential of low-temperature superplasticity in aluminum alloys are observed.

15.
Adv Mater ; : e2403783, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023001

ABSTRACT

In 2D noble metals like copper, the carrier scattering at grain boundaries has obscured the intrinsic nature of electronic transport. However, it is demonstrated that the intrinsic nature of transport by hole carriers in 2D copper can be revealed by growing thin films without grain boundaries. As even a slight deviation from the twin boundary is perceived as grain boundaries by electrons, it is only through the thorough elimination of grain boundaries that the hidden hole-like attribute of 2D single-crystal copper can be unmasked. Two types of Fermi surfaces, a large hexagonal Fermi surface centered at the zone center and the triangular Fermi surface around the zone corner, tightly matching to the calculated Fermi surface topology, confirmed by angle-resolved photoemission spectroscopy (ARPES) measurements and vivid nonlinear Hall effects of the 2D single-crystal copper account for the presence of hole carriers experimentally. This breakthrough suggests the potential to manipulate the majority carrier polarity in metals by means of grain boundary engineering in a 2D geometry.

16.
Nano Lett ; 24(31): 9627-9634, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39072492

ABSTRACT

We present large-scale atomistic simulations that reveal triple junction (TJ) segregation in Pt-Au nanocrystalline alloys in agreement with experimental observations. While existing studies suggest grain boundary solute segregation as a route to thermally stabilize nanocrystalline materials with respect to grain coarsening, here we quantitatively show that it is specifically the segregation to TJs that dominates the observed stability of these alloys. Our results reveal that doping the TJs renders them immobile, thereby locking the grain boundary network and hindering its evolution. In dilute alloys, it is shown that grain boundary and TJ segregation are not as effective in mitigating grain coarsening, as the solute content is not sufficient to dope and pin all grain boundaries and TJs. Our work highlights the need to account for TJ segregation effects in order to understand and predict the evolution of nanocrystalline alloys under extreme environments.

17.
Nano Lett ; 24(31): 9635-9642, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39077994

ABSTRACT

Natural phosphatases featuring paired metal sites inspire various advanced nanozymes with phosphatase-like activity as alternatives in practical applications. Numerous efforts to create point defects show limited metal site pairs, further resulting in insufficient activity. However, it remains a grand challenge to accurately engineer abundant metal site pairs in nanozymes. Herein, we report a grain-boundary-rich ceria metallene nanozyme (GB-CeO2) with phosphatase-like activity. Grain boundaries acting as the line or interfacial defects can effectively increase the content of Ce4+/Ce3+ site pairs to 72.28%, achieving a 49.28-fold enhancement in activity. Furthermore, abundant grain boundaries optimize the band structure to assist the photoelectron transfer under irradiation, which further increases the content of metal site pairs to 88.96% and finally realizes a 114.39-fold enhanced activity over that of CeO2 without irradiation. Given the different inhibition effects of pesticides on catalysts with and without irradiation, GB-CeO2 was successfully applied to recognize mixed toxic pesticides.


Subject(s)
Cerium , Cerium/chemistry , Catalysis , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Nanostructures/chemistry , Pesticides/chemistry
18.
Microsc Microanal ; 30(4): 712-723, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38976492

ABSTRACT

Materials characterization using electron backscatter diffraction (EBSD) requires indexing the orientation of the measured region from Kikuchi patterns. The quality of Kikuchi patterns can degrade due to pattern overlaps arising from two or more orientations, in the presence of defects or grain boundaries. In this work, we employ constrained nonnegative matrix factorization to segment a microstructure with small grain misorientations, (<1∘), and predict the amount of pattern overlap. First, we implement the method on mixed simulated patterns-that replicates a pattern overlap scenario, and demonstrate the resolution limit of pattern mixing or factorization resolution using a weight metric. Subsequently, we segment a single-crystal dendritic microstructure and compare the results with high-resolution EBSD. By utilizing weight metrics across a low-angle grain boundary, we demonstrate how very small misorientations/low-angle grain boundaries can be resolved at a pixel level. Our approach constitutes a versatile and robust tool, complementing other fast indexing methods for microstructure characterization.

19.
Materials (Basel) ; 17(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893768

ABSTRACT

The composition of grain boundaries (GBs) determines their mechanical behavior, which in turn affects the mechanical properties of nanocrystalline materials. Inspired by GB segregation and the concept of high-entropy alloys (HEAs), we investigated, respectively, the mechanical responses of nanocrystalline Cu samples with and without multi-element GBs, as well as the grain size effects, aiming to explore the effects of GB composition decoration on mechanical properties. Our results show that introducing multi-element segregation GBs can significantly improve the mechanical properties of nanocrystalline Cu by effectively inhibiting GB migration and sliding. Additionally, we proposed an improved a theoretical model that can reasonably describe the strengths of the materials with multi-element or single-element segregation GBs. Notably, the introduction of multi-element segregation GBs inhibits both migration and sliding behavior, with migration being more effectively suppressed than sliding. These results present a novel approach for designing high-performance nanometallic materials and offer valuable insights into the role of GB composition decoration in enhancing mechanical properties.

20.
Materials (Basel) ; 17(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38893942

ABSTRACT

Grain boundary (GB) precipitation-induced cracking is a significant issue for S31254 super austenitic stainless steel during hot working. Investigating the deformation behavior based on precipitate morphology and distribution is essential. In this study, continuous smaller and intermittent larger precipitates were obtained through heat treatments at 950 °C and 1050 °C. The microstructure evolution and mechanical properties influenced by precipitates were experimentally investigated using an in situ tensile stage inside a scanning electron microscope (SEM) combined with electron backscatter diffraction (EBSD). The results showed that continuous precipitates at 950 °C had a stronger pinning effect on the GB, making grain rotation difficult and promoting slip deformation in the plastic interval. Continuous precipitates caused severe stress concentration near GB and reduced coordinated deformation ability. Additionally, the crack propagation path changed from transcrystalline to intercrystalline. Furthermore, internal precipitates were a crucial factor affecting the initial crack nucleation position. Interconnected precipitates led to an intergranular fracture tendency and severe deterioration of the material's plasticity, as observed in fracture morphology.

SELECTION OF CITATIONS
SEARCH DETAIL