Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 20724, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237527

ABSTRACT

First-principles calculations engaging density functional theory (DFT) are employed to systematically study the optical characteristics of monolayer and bilayer boron nitride (BN) triphenylene-graphdiyne (Tp-BNyne) structures featuring varying lengths of C-chains. The thermal stability of Tp-BNyne structures at temperatures up to 1000 K is verified. The weak van der Waals interactions due to the small binding energies and significant interlayer distances maintain the cohesion between the layers. The investigation revealed that all Tp-BNyne structures under examination exhibit semiconductor behavior with a band gap in the range of 0.97-2.74 eV. The bilayer configurations demonstrated a narrower energy band gap in comparison to the monolayer ones. Increasing the length of C-chains leads to a reduction in the energy band gap. Delving into the optical behavior of Tp-BNyne structures under photon incidence with parallel and perpendicular polarizations, a distinct anisotropy in the optical characteristics of Tp-BNyne is revealed. The static dielectric constant increases and the optical band gap decreases with increasing C-chain length. The absorption coefficients of monolayer and bilayer Tp-BNyne structures, on the order of 107/m, demonstrate that these sheets can effectively absorb light in the visible and ultraviolet regions. These findings present Tp-BNyne sheets as promising candidates for use in photovoltaic devices to convert sunlight into electrical current, as well as for designing optical devices for ultraviolet protection. Additionally, Tp-BNyne structures are transparent materials, especially in the high-energy range.

2.
Sci Rep ; 14(1): 21543, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278960

ABSTRACT

This work initiates a concept of reduced reverse degree based RR D M -Polynomial for a graph, and differential and integral operators by using this RR D M -Polynomial. In this study twelve reduced reverse degree-based topological descriptors are formulated using the RR D M -Polynomial. The topological descriptors, denoted as T D 's, are numerical invariants that offer significant insights into the molecular topology of a molecular graph. These descriptors are essential for conducting QSPR investigations and accurately estimating physicochemical attributes. The structural and algebraic characteristics of the graphene and graphdiyne are studied to apply this methodology. The study involves the analysis and estimation of Reduced reverse degree-based topological descriptors and physicochemical features of graphene derivatives using best-fit quadratic regression models. This work opens up new directions for scientists and researchers to pursue, taking them into new fields of study.

4.
Angew Chem Int Ed Engl ; 63(40): e202410413, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38973379

ABSTRACT

The catalytic activity of platinum for CO oxidation depends on the interaction of electron donation and back-donation at the platinum center. Here we demonstrate that the platinum bromine nanoparticles with electron-rich properties on bromine bonded with sp-C in graphdiyne (PtBr NPs/Br-GDY), which is formed by bromine ligand and constitutes an electrocatalyst with a high CO-resistant for methanol oxidation reaction (MOR). The catalyst showed peak mass activity for MOR as high as 10.4 A mgPt -1, which is 20.8 times higher than the 20 % Pt/C. The catalyst also showed robust long-term stability with slight current density decay after 100 hours at 35 mA cm-2. Structural characterization, experimental, and theoretical studies show that the electron donation from bromine makes the surface of platinum catalysts highly electron-rich, and can strengthen the adsorption of CO as well as enhance π back-donation of Pt to weaken the C-O bond to facilitate CO electrooxidation and enhance catalytic performance during MOR. The results highlight the importance of electron-rich structure among active sites in Pt-halogen catalysts and provide detailed insights into the new mechanism of CO electrooxidation to overcome CO poisoning at the Pt center on an orbital level.

5.
Angew Chem Int Ed Engl ; : e202411722, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39081066

ABSTRACT

Thermally-induced dehydrogenative coupling of polyphenylenes on metal surfaces is an important technique to synthesize 𝜋-conjugated carbon nanostructures with atomic precision. However, this protocol has rarely been utilized to fabricate structurally defined carbon nanosheets composed of sp- and sp2-hybridized carbon atoms. Here, we present the synthesis of butadiyne-linked hexabenzocoronenes (HBCs) on Au(111) surfaces as core-expanded graphdiynes. The reaction started from hexa(4-ethylphenyl)benzene, which undergoes dehydrogenation toward hexa(4-vinylphenyl)benzene, followed by planarization to hexabenzocoronene, coupling between the vinyl groups, and further dehydrogenation. In addition to butadiyne linkages, benzene groups were also found as another type of linker. The reaction sequences were monitored by scanning tunneling microscopy and bond-resolved non-contact atomic force microscopy, which disclose the structures of intermediates and final products. In combination with density functional theory simulations, the key steps from ethyl substituents to butadiyne and benzene linkers were elucidated. This is a new on-surface synthesis of core-expanded graphdiynes with unprecedented electronic properties.

6.
Natl Sci Rev ; 11(8): nwae189, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39007000

ABSTRACT

A major impediment to the development of the efficient use of artificial photosynthesis is the lack of highly selective and efficient photocatalysts toward the conversion of CO2 by sunlight energy at room temperature and ambient pressure. After many years of hard work, we finally completed the synthesis of graphdiyne-based palladium quantum dot catalysts containing high-density metal atom steps for selective artificial photosynthesis. The well-designed interface structure of the catalyst is composed of electron-donor and acceptor groups, resulting in the obvious incomplete charge-transfer phenomenon between graphdiyne and plasmonic metal nanostructures on the interface. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on its mechanism reveal that the synergism between 'hot electron' from local surface plasmon resonance and rapid photogenerated carrier separation at the ohmic contact interface accelerates the multi-electron reaction kinetics. The catalyst can selectively synthesize CH4 directly from CO2 and H2O with selectivity of near 100% at room temperature and pressure, and exhibits transformative performance, with an average CH4 yield of 26.2 µmol g-1 h-1 and remarkable long-term stability.

7.
ACS Nano ; 18(24): 15607-15616, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38838347

ABSTRACT

Photothermal modulation of neural activity offers a promising approach for understanding brain circuits and developing therapies for neurological disorders. However, the low neuron selectivity and inefficient light-to-heat conversion of existing photothermal nanomaterials significantly limit their potential for neuromodulation. Here, we report that graphdiyne (GDY) can be developed into an efficient neuron-targeted photothermal transducer for in vivo modulation of neuronal activity through rational surface functionalization. We functionalize GDY with polyethylene glycol (PEG) through noncovalent hydrophobic interactions, followed by antibody conjugation to specifically target the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1) on the surface of neural cells. The nanotransducer not only exhibits high photothermal conversion efficiency in the near-infrared region but also shows great TRPV1-targeting capability. This enables photothermal activation of TRPV1, leading to neurotransmitter release in cells and modulation of neural firing in living mice. With its precision and selectivity, the GDY-based transducer provides an innovative avenue for understanding brain function and developing therapeutic strategies for neurodegenerative diseases.


Subject(s)
Neurons , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , Neurons/metabolism , Mice , Humans , Graphite/chemistry , Graphite/pharmacology , Polyethylene Glycols/chemistry , Transducers
8.
Nano Lett ; 24(26): 7999-8007, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900975

ABSTRACT

The rapid increase in data storage worldwide demands a substantial amount of energy consumption annually. Studies looking at low power consumption accompanied by high-performance memory are essential for next-generation memory. Here, Graphdiyne oxide (GDYO), characterized by facile resistive switching behavior, is systematically reported toward a low switching voltage memristor. The intrinsic large, homogeneous pore-size structure in GDYO facilitates ion diffusion processes, effectively suppressing the operating voltage. The theoretical approach highlights the remarkably low diffusion energy of the Ag ion (0.11 eV) and oxygen functional group (0.6 eV) within three layers of GDYO. The Ag/GDYO/Au memristor exhibits an ultralow operating voltage of 0.25 V with a GDYO thickness of 5 nm; meanwhile, the thicker GDYO of 29 nm presents multilevel memory with an ON/OFF ratio of up to 104. The findings shed light on memory resistive switching behavior, facilitating future improvements in GDYO-based devices toward opto-memristors, artificial synapses, and neuromorphic applications.

9.
J Colloid Interface Sci ; 672: 700-714, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38870761

ABSTRACT

Precisely crafting heterojunctions for efficient charge separation is a major obstacle in the realm of photocatalytic hydrogen evolution. A 0D/2D heterojunction was successfully fabricated by anchoring Ag2S quantum dots (Ag2S QDs) onto graphdiyne (GDY) nanosheets (Ag2S QDs/GDY) using a straightforward physical mixing technique. This unique structure allows for excellent contact between GDY and Ag2S QDs, thereby enhancing the rate of charge transfer. The light absorption capabilities of Ag2S QDs/GDY extend up to 1200 nm, enabling strong absorption of light, including infrared. Through DFT calculations and in-situ XPS analysis, it was demonstrated that incorporating Ag2S QDs onto GDY effectively modulates the electronic structure, promotes an internal electric field, and facilitates directional electron transfer. This directed electron transfer enhances the utilization of electrons by GDY and Ag2S QDs, with the added benefit of Ag2S QDs serving as electron reservoirs for efficient photocatalytic hydrogen evolution. A 7 %Ag2S QDs/GDY composite exhibited impressive efficiency and stable performance in photocatalytic hydrogen evolution (2418 µmol g-1 h-1), which is much higher than that of GDY and Ag2S QDs. This study conclusively demonstrates that the 0D/2D heterojunction formed by GDY and Ag2S QDs can establish high-quality contact and efficient charge transfer, ultimately enhancing photocatalytic performance.

10.
Angew Chem Int Ed Engl ; 63(35): e202406043, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38866704

ABSTRACT

Metal atom catalysts have been among the most important research objects due to their specific physical and chemical properties. However, precise control of the anchoring of metal atoms is still challenging to achieve. Cobalt and iridium atomic arrays formed sequentially ordered stable arrays in graphdiyne (GDY) triangular cavities depending on their intrinsic chemical properties and interactions. The success of this method was attributed to multifunctional integration of GDY, enabling selective growth from one to several atoms and various atomic densities. The bimetallic atom arrays show several advantages resulting from reducibility of acetylene bonds, space limiting effect, incomplete charge transfer between GDY and metal atoms, and sp-C hybridized triple bond skeleton. This well-designed system exhibits unprecedented oxygen evolution reaction (OER) performance with a mass activity of 2.6 A mgcat. -1 at a low overpotential of 300 mV, which is 216.6 times higher than the state-of-the-art IrO2 catalyst, and long-term stability.

11.
ChemSusChem ; : e202400832, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845094

ABSTRACT

The performance of zinc-air battery is constrained by the sluggish rate of oxygen electrode reaction, particularly under high current discharge conditions where the kinetic process of the oxygen reduction reaction (ORR) decelerates significantly. To address this challenge, we present a novel phase transition strategy that facilitates the creation of a heteroatom-doped heterointerface (CoN/CoS2). The meticulously engineered CoN/CoS2/NC electrocatalyst displays a superior ORR half-wave potential of 0.87 V and an OER overpotential of 320 mV at 10 mA cm-2. Experimental and computational analysis confirm that the CoN/CoS2 heterostructure optimizes local charge distribution, accelerates electron transfer, and tunes active sites for enhanced catalysis. Notably, this heterojunction improves stability by resisting corrosion and degradation under harsh alkaline conditions, thus demonstrating superior performance and longevity in a custom-made liquid zinc-air battery. This research provides valuable practical and theoretical foundations for designing efficient heterointerfaces in electrocatalysis applications.

12.
Adv Mater ; : e2405660, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884637

ABSTRACT

The electrocatalytic reduction reaction of nitrate (NO3 -) to ammonia (NH3) is a feasible way to achieve artificial nitrogen cycle. However, the low yield rate and poor selectivity toward NH3 product is a technical challenge. Here a graphdiyne (GDY)-based tandem catalyst featuring Cu/CuxO nanoparticles anchored to GDY support (termed Cu/CuxO/GDY) for efficient electrocatalytic NO3 - reduction is presented. A high NH3 yield rate of 25.4 mg h-1 mgcat. -1 (25.4 mg h-1 cm-2) with a Faradaic efficiency of 99.8% at an applied potential of -0.8 V versus RHE using the designed catalyst is achieved. These performance metrics outperform most reported NO3 - to NH3 catalysts in the alkaline media. Electrochemical measurements and density functional theory reveal that the NO3 - preferentially attacks Cu/CuxO, and the GDY can effectively catalyze the reduction of NO2 - to NH3. This work highlights the efficacy of GDY as a new class of tandem catalysts for the artificial nitrogen cycle and provides powerful guidelines for the design of tandem electrocatalysts.

13.
Small ; 20(37): e2401347, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38716685

ABSTRACT

A challenge facing the chlor-alkali process is the lack of electrocatalyst with high activity and selectivity for the efficient industrial production of chlorine. Herein the authors report a new electrocatalyst that can generate multi-interface structure by in situ growth of graphdiyne on the surface of cobalt oxides (GDY/Co3O4), which shows great potential in highly selective and efficient chlorine production. This result is due to the strong electron transfer and high density charge transport between GDY and Co3O4 and the interconversion of the mixed valence states of the Co atoms itself. These intrinsic characteristics efficiently enhance the conductivity of the catalyst, facilitate the reaction kinetics, and improve the overall catalytic selectivity and activity. Besides, the protective effect of the formed GDY layer is remarkable endowing the catalyst with excellent stability. The catalyst can selectively produce chlorine in low-concentration of NaCl aqueous solution at room temperature and pressure with the highest Faraday efficiency of 80.67% and an active chlorine yield rate of 184.40 mg h-1 cm-2, as well as superior long-term stability.

14.
Int J Nanomedicine ; 19: 3957-3972, 2024.
Article in English | MEDLINE | ID: mdl-38711614

ABSTRACT

Purpose: Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods: We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results: We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion: The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.


Subject(s)
Copper , Doxorubicin , Graphite , Metal-Organic Frameworks , Prostatic Neoplasms , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Doxorubicin/pharmacology , Doxorubicin/chemistry , Animals , Humans , Cell Line, Tumor , Copper/chemistry , Copper/pharmacology , Graphite/chemistry , Graphite/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Drug Liberation , Reactive Oxygen Species/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice, Nude , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Xenograft Model Antitumor Assays
15.
ACS Sens ; 9(5): 2317-2324, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38752502

ABSTRACT

Cu2+ accelerates the viral-like propagation of α-synuclein fibrils and plays a key role in the pathogenesis of Parkinson's disease (PD). Therefore, the accurate detection of Cu2+ is essential for the diagnosis of PD and other neurological diseases. The Cu2+ detection process is impeded by substances that have similar electrochemical properties. In this study, graphdiyne (GDY), a new kind of carbon allotrope with strong electron-donating ability, was utilized for the highly selective detection of Cu2+ by taking advantage of its outstanding adsorption capacity for Cu2+. Density functional theory (DFT) calculations show that Cu atoms are adsorbed in the cavity of GDY, and the absorption energy between Cu and C atoms is higher than that of graphene (GR), indicating that the cavity of GDY is favorable for the adsorption of Cu atoms and electrochemical sensing. The GDY-based electrochemical sensor can effectively avoid the interference of amino acids, metal ions and neurotransmitters and has a high sensitivity of 9.77 µA·µM-1·cm-2, with a minimum detectable concentration of 200 nM. During the investigating pathogenesis and therapeutic process of PD with α-synuclein as the diagnostic standard, the concentration of Cu2+ in cells before and after L-DOPA and GSH treatments were examined, and it was found that Cu2+ exhibits high potential as a biomarker for PD. This study not only harnesses the favorable adsorption of the GDY and Cu2+ to improve the specificity of ion detection but also provide clues for deeper understanding of the role of Cu2+ in neurobiology and neurological diseases.


Subject(s)
Copper , Electrochemical Techniques , Graphite , Parkinson Disease , alpha-Synuclein , Copper/chemistry , Parkinson Disease/diagnosis , Graphite/chemistry , Humans , Electrochemical Techniques/methods , alpha-Synuclein/analysis , alpha-Synuclein/chemistry , Density Functional Theory , Levodopa/chemistry , Limit of Detection , Glutathione/chemistry
16.
Adv Mater ; 36(30): e2402961, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38727517

ABSTRACT

Artificial heterostructures with structural advancements and customizable electronic interfaces are fundamental for achieving high-performance lithium-ion batteries (LIBs). Here, a design idea for a covalently bonded lateral/vertical black phosphorus (BP)-graphdiyne oxide (GDYO) heterostructure achieved through a facile ball-milling approach, is designed. Lateral heterogeneity is realized by the sp2-hybridized mode P-C bonds, which connect the phosphorus atoms at the edges of BP with the carbon atoms of the terminal acetylene in GDYO. The vertical connection of the heterojunction of BP and GDYO is connected by P-O-C bond. Experimental and theoretical studies demonstrate that BP-GDYO incorporates interfacial and structural engineering features, including built-in electric fields, chemical bond interactions, and maximized nanospace confinement effects. Therefore, BP-GDYO exhibits improved electrochemical kinetics and enhanced structural stability. Moreover, through ex- and in-situ studies, the lithiation mechanism of BP-GDYO, highlighting that the introduction of GDYO inhibits the shuttle/dissolution effect of phosphorus intermediates, hinders volume expansion, provides more reactive sites, and ultimately promotes reversible lithium storage, is clarified. The BP-GDYO anode exhibits lithium storage performance with high-rate capacity and long-cycle stability (602.6 mAh g-1 after 1 000 cycles at 2.0 A g-1). The proposed interfacial and structural engineering is universal and represents a conceptual advance in building high-performance LIBs electrode.

17.
Adv Sci (Weinh) ; 11(28): e2401240, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733090

ABSTRACT

Efficiently reconciling the substantial volume strain with maintaining the stabilities of both interfacial protection and three-dimensional (3D) conductive networks is a scientific and technical challenge in developing tin-based anodes for sodium ion storage. To address this issue, a proof-of-concept self-adaptive protection for the Sn anode is designed, taking advantage of the arbitrary substrate growth of graphdiyne. This protective layer, employing a flexible chain doping strategy, combines the benefits of 2D graphdiyne and linear chain structures to achieve 2D mechanical stability, electronic and ion conductions, ion selectivity, adequate elongation, and flexibility. It establishes close contact with the Sn particles and can adapt to dynamic size changes while effectively facilitating both electronic and ion transports. It successfully mitigates the detrimental effects of particle pulverization and coarsening induced by large-volume changes. The as-obtained Sn electrodes demonstrate exceptional stability, enduring 1800 cycles at a high current density of 2.5 A g-1. This strategy promises to address the general issues associated with large-strain electrodes in next-generation of high-energy-density batteries.

18.
Angew Chem Int Ed Engl ; 63(30): e202404819, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38728151

ABSTRACT

Interfacial engineering of synergistic catalysts is one of the keys to achieving multiple proton-coupled electron transfer processes in nitrate-to-ammonia conversion. Herein, by joining ultrathin nickel-based metal-organic framework (denoted Ni-MOF) nanosheets with few-layered hydrogen-substituted graphdiyne-supported copper single atoms and clusters (denoted HsGDY@Cu), a tandem catalyst of Ni-MOFs@HsGDY@Cu with dual-active interfaces was developed for the concerted catalysis of nitrate-to-ammonia. In such a system, the sandwiched HsGDY layer could serve as a bridge to connect the coordinated unsaturated Ni2+ sites with Cu single atoms/clusters in a limited range of 0 to 3.6 nm. From Ni2+ to Cu, via the hydrogen spillover process, the hydrogen radicals (H⋅) generated at the unsaturated Ni2+ sites could migrate across HsGDY to the Cu sites to participate in the transformation of *HNO3 to NH3. From Cu to Ni2+, bypassing the higher reaction energy for *HNO3 formation on the Ni2+ sites, the NO2 - detached from the Cu sites could diffuse onto the unsaturated Ni2+ sites to form NH3 as well. The combined results make this hybrid a tandem catalyst with dual active sites for the catalysis of nitrate-to-ammonia conversion with improved Faradaic efficiency at lower overpotentials.

19.
Small Methods ; : e2301571, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795321

ABSTRACT

The accurate construction of composite material systems containing graphdiyne (GDY) and other metallic materials has promoted the formation of innovative structures and practical applications in the fields of energy, catalysis, optoelectronics, and biomedicine. To fulfill the practical requirements, the precise formation of multiscale interfaces over a wide range, from single atoms to nanostructures, plays an important role in the optimization of the structural design and properties. The intrinsic correlations between the structure, synthesis process, characteristic properties, and device performance are systematically investigated. This review outlines the current research achievements regarding the controlled formation of multiscale metallic interfaces on GDY. Synthetic strategies for interface regulation, as well as the correlation between the structure and performance, are presented. Furthermore, innovative research ideas for the design and synthesis of functional metal-based materials loaded onto GDY-based substances are also provided, demonstrating the promising application potential of GDY-based materials.

20.
Article in English | MEDLINE | ID: mdl-38615809

ABSTRACT

Graphdiyne (GDY) is a new member of family of carbon-based 2D nanomaterials (NMs), but the environmental toxicity is less investigated compared with other 2D NMs, such as graphene oxide (GO). In this study, we compared with developmental toxicity of GO and GDY to zebrafish larvae. It was shown that exposure of zebrafish embryos from 5 h post fertilization to GO and GDY for up to 5 days decreased hatching rate and induced morphological deformity. Behavioral tests indicated that GO and GDY treatment led to hyperactivity of larvae. However, blood flow velocity was not significantly affected by GO or GDY. RNA-sequencing data revealed that both types of NMs altered gene expression profiles as well as gene ontology terms and KEGG pathways related with metabolism. We further confirmed that the NMs altered the expression of genes related with lipid droplets and autophagy, which may be account for the delayed development of zebrafish larvae. At the same mass concentrations, GO induced comparable or even larger toxic effects compared with GDY, indicating that GDY might be more biocompatible compared with GO. These results may provide novel understanding about the environmental toxicity of GO and GDY in vivo.


Subject(s)
Graphite , Larva , Zebrafish , Animals , Graphite/toxicity , Larva/drug effects , Larva/growth & development , Embryo, Nonmammalian/drug effects , Gene Expression Regulation, Developmental/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL