Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Foods ; 13(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39200528

ABSTRACT

Green and roasted coffee oils are products rich in bioactive compounds, such as linoleic acid and the diterpenes cafestol and kahweol, being a potential ingredient for food and cosmetic industries. An overview of oil extraction techniques most applied for coffee beans and their influence on the oil composition is presented. Both green and roasted coffee oil extractions are highlighted. Pressing, Soxhlet, microwave, and supercritical fluid extraction were the most used techniques used for coffee oil extraction. Conventional Soxhlet is most used on a lab scale, while pressing is most used in industry. Supercritical fluid extraction has also been evaluated mainly due to the environmental approach. One of the highlighted activities in Brazilian agribusiness is the industrialization of oils due to their increasing use in the formulation of cosmetics, pharmaceuticals, and foods. Green coffee oil (raw bean) has desirable bioactive compounds, increasing the interest of private companies and research institutions in its extraction process to preserve the properties contained in the oils.

2.
Int J Biol Macromol ; 256(Pt 2): 128064, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967606

ABSTRACT

This study developed a combination method between protein-polysaccharide complex coacervation and freezing drying for the preparation of green coffee oil (GCO) encapsulated powders. Different combinations of soy protein isolate, sodium caseinate, sodium carboxymethylcellulose, and sodium alginate were utilised as wall materials. The occurrence of complexation between the biopolymers were compared to the final emulsion of the individual protein and confirmed by fourier transform infrared spectrometry and X-ray diffraction. The mean diameter and estimated PDI of GCO microcapsules were 72.57-295.00 µm and 1.47-2.02, respectively. Furthermore, the encapsulation efficiency of GCO microcapsules was between 61.47 and 90.01 %. Finally, oxidation kinetics models of GCO and its microcapsules demonstrated that the zero-order model of GCO microcapsules was found to have a higher fit, which could better reflect the quality changes of GCO microcapsules during storage. Different combinations of proteins and polysaccharides exhibited effective oxidative stability against single proteins because of polysaccharide addition. This research revealed that soy protein isolate, sodium caseinate combined with polysaccharides can be used as a promising microencapsulating agent for microencapsulation of GCO, especially with sodium carboxymethylcellulose and sodium alginate, and provided useful information for the potential use of GCO in the development of powder food.


Subject(s)
Caseins , Soybean Proteins , Caseins/chemistry , Soybean Proteins/chemistry , Coffee , Capsules/chemistry , Carboxymethylcellulose Sodium , Drug Compounding/methods , Polysaccharides/chemistry , Alginates/chemistry
3.
Food Res Int ; 165: 112470, 2023 03.
Article in English | MEDLINE | ID: mdl-36869483

ABSTRACT

Green coffee oil (GCO) extracted from green coffee beans, is known for its antioxidant and anticancer properties, and has been increasingly utilised in cosmetic and other consumer products. However, lipid oxidation of GCO fatty acid components during storage may be harmful to human health, and there remains a need to understand the evolution of GCO chemical component oxidation. In this study, proton nuclear magnetic resonance (1H and 13C NMR) spectroscopy was used to investigate the oxidation status of solvent-extracted and cold-pressed GCO under accelerated storage conditions. Results show that the signal intensity of oxidation products gradually increased with increasing oxidation time, while unsaturated fatty acid signals gradually weakened. Five different types of GCO extracts were clustered according to their properties, except for minor overlapping in the two-dimensional plane of the principal component analysis. Partial least squares-least analysis results demonstrate that oxidation products (δ = 7.8-10.3 ppm), unsaturated fatty acids (δ = 5.28-5.42 ppm), and linoleic acid (δ = 2.70-2.85 ppm) in 1H NMR can be used as characteristic indicators of GCO oxidation levels. Furthermore, the kinetics curves of unsaturated fatty acids, linoleic, and linolenic acyl groups all fit an exponential equation with high coefficients of GCO for 36 days under accelerated storage conditions. Our results show that the current NMR system is a fast, easy-operated and convenient tool for the oxidation process monitoring and quality control of GCO.


Subject(s)
Antioxidants , Magnetic Resonance Imaging , Humans , Proton Magnetic Resonance Spectroscopy , Oxidation-Reduction , Solvents
4.
Ultrason Sonochem ; 74: 105578, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33965776

ABSTRACT

In this study, ultrasonic/microwave-assisted extraction (UMAE), microwave-assisted extraction (UAE), ultrasound-assisted extraction (UAE), and pressurized liquid extraction (PLE) were applied to extract green coffee oil (GCO), and the physicochemical indexes, fatty acids, tocopherols, diterpenes, and total phenols as well as antioxidant activity of GCO were investigated and compared. The results indicated that the extraction yield of UMAE was the highest (10.58 ± 0.32%), while that of PLE was the lowest (6.34 ± 0.65%), and linoleic acid and palmitic acid were the major fatty acids in the GCO, ranging from 40.67% to 43.77% and 36.57% to 38.71%, respectively. A large proportion of fatty acids and phytosterols were not significantly influenced by the four extraction techniques. However, tocopherols, diterpenes, total phenols, and the free radical scavenging activity were significantly different among these four GCOs. Moreover, structural changes in the coffee residues were explored by scanning electron microscopy and Fourier transform infrared spectroscopy. Overall, the high antioxidant activity of GCO demonstrated that it can be used as a highly economical natural product in the food and agricultural industries.


Subject(s)
Antioxidants/analysis , Antioxidants/chemistry , Coffee/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Food Quality , Plant Oils/isolation & purification , Microwaves , Plant Oils/chemistry
5.
Regul Toxicol Pharmacol ; 110: 104517, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31707131

ABSTRACT

Green coffee oil enriched with cafestol and kahweol was obtained by supercritical fluid extraction using carbon dioxide while its safety and possible effects from acute and subacute treatment were evaluated in rats. For acute toxicity study, single dose of green coffee oil (2000 mg/kg) was administered by gavage in female rats. For subacute study (28 days), 32 male rats received different doses of green coffee oil extract (25, 50, and 75 mg/kg/day). In the acute toxicity study, main findings of this treatment indicated no mortality, body weight decrease, no changes in hematological and biochemical parameters, and relative weight increase in heart and thymus, without histopathological alterations in all assessed organs. All these findings suggest that LD50 is higher than aforesaid dose. In the subacute toxicity, main findings showed body weight decrease mainly at the highest dose without food consumption change, serum glucose and tryglicerides levels decrease, and relative weight increase in liver. As evidenced in histopathological pictures, no changes were observed at all treated doses. Our study suggest that green coffee oil can be explored to clinically develop new hypocholesteromic and hypoglycemic agents. However, further studies evaluating long-term effects are needed in order to have sufficient safety evidence for its use in humans.


Subject(s)
Coffea , Diterpenes/toxicity , Plant Oils/toxicity , Administration, Oral , Animals , Female , Male , Rats, Wistar , Toxicity Tests, Acute , Toxicity Tests, Subacute
6.
Int J Biol Macromol ; 146: 730-738, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31739026

ABSTRACT

Carboxymethyl cellulose (CMC)-based films were developed by incorporating green coffee oil (GCO) obtained by cold pressing and hydroalcoholic extracts of its residues. The effect of cake (CE) and sediment extracts (SE) in different proportions (20-40%) and GCO on chemical, morphological, physical, mechanical, optical, and antioxidant properties of the films was investigated. Eight fatty acids and four major phenolic compounds were identified by High-Resolution Direct-Infusion Mass Spectrometry in GCO and residue extracts. FTIR indicated interactions among CMC, phenolic compounds, and fatty acids. Films enriched with residue extracts presented heterogeneous microstructure. The tensile strength of the films decreased from 58 to 3 MPa with the extracts concentration, while elongation increased from 28 to 156% (p < 0.05). The water vapor permeability (averaging 3.94 × 10-8 g mm/cm2 h Pa) was not significantly affected by the extracts and GCO. The surface color was influenced by the type and concentration of extracts (p < 0.05), the film with SE40% had remarkable UV-vis barrier properties. The incorporation of GCO residue extracts imparted high antioxidant capacity to the CMC-based films, especially with CE40% (643.8 µmol Trolox eq./g dried film; 51.3 mg GAE/g dried film). General observations indicated the potential of these films, mainly the ones containing CE, like active packaging material for food applications.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Coffea/chemistry , Coffee/chemistry , Antioxidants/analysis , Chemical Phenomena , Chromans/chemistry , Color , Food Packaging , Permeability , Phenol/analysis , Plant Extracts/analysis , Spectroscopy, Fourier Transform Infrared , Steam , Tensile Strength
7.
Int J Cosmet Sci ; 37(5): 506-10, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25819329

ABSTRACT

OBJECTIVE: Green coffee oil (GCO) has been used in cosmetic formulations due to its emollient and anti-ageing properties. However, there are insufficient studies about its safety when applied in cosmetic formulations. METHODS: Cytotoxicity of GCO and of formulations containing 2.5-15% of GCO was evaluated by the MTT reduction assay, in human keratinocytes. Formulations containing 15% of GCO and the vehicle were applied under in use conditions in the volar forearm of human volunteers during 3 days. Transepidermal water loss, stratum corneum water content and erythema index were evaluated each 24 h using biophysical techniques. The same formulations were probed for skin tolerance through a patch test. RESULTS: Neither pure GCO nor its formulations showed cytotoxic effects in concentrations up to 100 µg mL(-1) . Transepidermal water loss values showed a slight reduction when the formulation containing GCO was applied. Stratum corneum water content and erythema index did not show significant differences, as the results observed in the first day of the study were maintained throughout 3 days. None of the volunteers display any reaction after using an occlusive patch. CONCLUSION: The results obtained in the study indicate that GCO seems to be safe for topical applications and showed good skin compatibility under the experimental conditions of the study.


Subject(s)
Coffee , Cosmetics , Plant Oils , Skin , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL