Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Biochemistry (Mosc) ; 89(6): 1146-1157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981707

ABSTRACT

Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H2O2, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (Solanum lycopersicum L.) varieties. The contents of H2O2 and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.


Subject(s)
Antioxidants , Ascorbate Peroxidases , Droughts , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological , Water/metabolism , Ascorbic Acid/metabolism , Peroxidase/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Proline/metabolism
2.
BMC Plant Biol ; 24(1): 531, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862885

ABSTRACT

BACKGROUND: This study examines the impact of titanium dioxide nanoparticles (TiO2NPs) on gene expression associated with menthol biosynthesis and selected biochemical parameters in peppermint plants (Mentha piperita L.). Menthol, the active ingredient in peppermint, is synthesized through various pathways involving key genes like geranyl diphosphate synthase, menthone reductase, and menthofuran synthase. Seedlings were treated with different concentrations of TiO2NPs (50, 100, 200, and 300 ppm) via foliar spray. After three weeks of treatment, leaf samples were gathered and kept at -70 °C for analysis. RESULTS: According to our findings, there was a significant elevation (P ≤ 0.05) in proline content at concentrations of 200 and 300 ppm in comparison with the control. Specifically, the highest proline level was registered at 200 ppm, reaching 259.64 ± 33.33 µg/g FW. Additionally, hydrogen peroxide and malondialdehyde content exhibited a decreasing trend following nanoparticle treatments. Catalase activity was notably affected by varying TiO2NP concentrations, with a significant decrease observed at 200 and 300 ppm compared to the control (P ≤ 0.05). Conversely, at 100 ppm, catalase activity significantly increased (11.035 ± 1.12 units/mg of protein/min). Guaiacol peroxidase activity decreased across all nanoparticle concentrations. Furthermore, RT-qPCR analysis indicated increased expression of the studied genes at 300 ppm concentration. CONCLUSIONS: Hence, it can be inferred that at the transcript level, this nanoparticle exhibited efficacy in influencing the biosynthetic pathway of menthol.


Subject(s)
Gene Expression Regulation, Plant , Mentha piperita , Menthol , Nanoparticles , Titanium , Titanium/pharmacology , Mentha piperita/drug effects , Mentha piperita/metabolism , Mentha piperita/genetics , Menthol/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Metal Nanoparticles , Genes, Plant , Hydrogen Peroxide/metabolism
3.
3 Biotech ; 14(6): 159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38770163

ABSTRACT

There is little data, to our knowledge, on the biochemical properties of different Satureja sp. genotypes affected by plant growth regulators (PGR) under temperature stress. A split plot research on the basis of a complete randomized block design with three replicates examining temperature stress (planting dates, 8th of April, May and June) (main factor), and the factorial combination of plant growth regulators (PGR, control (CO), gibberellic acid (GA), fertilization (MI), and amino acid (A)), and genotypes (Khuzestani, Mutika, and Bakhtiari) on plant biochemical properties, was conducted. Plant pigment contents (chlorophyll a, and b and carotenoids (car)), antioxidant activity (catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GP)), and leaf protein were determined. Treatments significantly and differently affected the genotypes performance. PD3 and PD1resulted in significantly higher activity of APX (0.059 U. mg-1) and GP (0.190 U. mg-1), respectively (P ≤ 0.05). Temperature stress significantly affected plant CAT activity (U. mg-1) at PD1 (0.084) and PD3 (0.820). Higher temperature significantly enhanced leaf Pro, MI increased plant APX (0.054) and CAT activities (0.111 U. mg-1) significantly, and GA resulted in the highest and significantly different GP activity (0.186 U. mL-1). Treatments T1 and T3 significantly enhanced Chla and Car content, and MI resulted in significantly higher Chlb content (0.085 mg g-1 leaf fresh weight). Car and CAT are the two most sensitive biochemical traits under temperature stress and can more effectively regulate Satureja growth and activity. It is possible to alleviate temperature stress on Satureja biochemical properties by the tested PGR.

4.
Plants (Basel) ; 12(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37299071

ABSTRACT

Soil with excess Mn induces toxicity and impairs crop growth. However, with the development in the soil of an intact extraradical mycelia (ERM) from arbuscular mycorrhizal fungi (AMF) symbiotic to native Mn-tolerant plants, wheat growth is promoted due to a stronger AMF colonization and subsequent increased protection against Mn toxicity. To determine the biochemical mechanisms of protection induced by this native ERM under Mn toxicity, wheat grown in soil from previously developed Lolium rigidum (LOL) or Ornithopus compressus (ORN), both strongly mycotrophic plants, was compared to wheat grown in soil from previously developed Silene gallica (SIL), a non-mycotrophic plant. Wheat grown after LOL or ORN had 60% higher dry weight, ca. two-fold lower Mn levels and almost double P contents. Mn in the shoots was preferentially translocated to the apoplast along with Mg and P. The activity of catalase increased; however, guaiacol peroxidase (GPX) and superoxide dismutase (SOD) showed lower activities. Wheat grown after ORN differed from that grown after LOL by displaying slightly higher Mn levels, higher root Mg and Ca levels and higher GPX and Mn-SOD activities. The AMF consortia established from these native plants can promote distinct biochemical mechanisms for protecting wheat against Mn toxicity.

5.
BMC Plant Biol ; 22(1): 374, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35902800

ABSTRACT

BACKGROUND: Silicon (Si) is a multiple stress attenuator element in plants, however more research is needed to elucidate the actions in the plants defense system with low nutrition of manganese (Mn) for a prolonged period, and the attenuation mechanisms involved in the effects of Mn deficiency on energy cane with high fiber content. Thus, the objective of this study was to evaluate whether Si reduces the oxidative stress of the energy cane grown in low Mn in nutrient solution, to mitigate the effects of Mn deficiency, improving enzymatic and non-enzymatic defense, uptake of Mn the plant growth. METHODS: An experiment was carried out with pre-sprouted seedlings of Saccharum spontaneum L. in a 2 × 2 factorial scheme in five replications in which the plants were grown under sufficiency (20.5 µmol L-1) and deficiency (0.1 µmol L-1) of Mn combined with the absence and presence of Si (2.0 mmol L-1) for 160 days from the application of the treatments. The following parameters were evaluated: accumulation of Mn and Si, H2O2, MDA, activity of SOD and GPOX, total phenol content, pigments, and quantum efficiency of PSII. RESULTS: Mn deficiency induced the oxidative stress for increase the H2O2 and MDA content in leaves of plants and reduce the activity of antioxidant enzymes and total phenols causing damage to quantum efficiency of photosystem II and pigment content. Si attenuated the effects of Mn deficiency even for a longer period of stress by reducing H2O2 (18%) and MDA (32%) content, and increased the Mn uptake efficiency (53%), SOD activity (23%), GPOX (76%), phenol contents, thus improving growth. CONCLUSIONS: The supply of Si promoted great nutritional and physiological improvements in energy cane with high fiber content in Mn deficiency. The results of this study propose the supply of Si via fertirrigation as a new sustainable strategy for energy cane cultivation in low Mn environments.


Subject(s)
Manganese , Silicon , Antioxidants/metabolism , Canes , Hydrogen Peroxide/pharmacology , Oxidative Stress , Phenol/pharmacology , Plant Leaves/metabolism , Silicon/pharmacology , Superoxide Dismutase/metabolism
6.
Saudi J Biol Sci ; 28(5): 2619-2625, 2021 May.
Article in English | MEDLINE | ID: mdl-34025145

ABSTRACT

This study investigated the stress responses of cinnamic acid (CA) in pea plants and explored the protective role of spermidine (SPD) against CA-induced adverse effects. Pea seedlings exposed to CA had reduced length, biomass, moisture, chlorophyll, sugar, and protein contents and reduced nitrate reductase activity. These parameters increased when SPD was applied alone and in combination with CA. Electrolyte leakage and malondialdehyde content were high in seedlings treated with CA but decreased when the SPD + CA treatment was applied. Foliar exposure to SPD partially mitigated CA-induced stress effects by strengthening the antioxidant defense system, which helped preserve the integrity of biochemical processes. These results indicate that SPD (1 mM) could mitigate the adverse effects of CA and enhance plant defense system. Hence, SPD can be used as a growth regulator for the maintenance of physiological functions in pea plants in response to the pernicious consequences of CA stress.

7.
Saudi J Biol Sci ; 28(1): 825-832, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33424372

ABSTRACT

In the current study, we investigated the impact of inoculation with a selected indigenous arbuscular mycorrhizal fungi (AMF) complex on the growth and physiology of carob plants at increasing levels of watering (25, 50, 75 and 100% field capacity). The following growth and stress parameters were monitored in carob seedlings after 6 months of growth and 2 months of applied drought stress: fresh and dry weight, root and shoot lengths, leaf surface area, relative water content, stomatal conductance and membrane stability. Chlorophyll a and b, total soluble sugars, proline and protein contents were also determined along with the activities of stress enzymes: Catalase, Peroxidase and Superoxide dismutase. The obtained results indicate that inoculation with the indigenous AMF complex has a positive impact on the plant's growth as all the assessed parameters were significantly improved in the mycorrhizal plants. Additionally, our results show that mycorrhization contributes to the minimization of the impact of drought stress on the carob plants and allows a better adaptation to dry conditions.

8.
Ecotoxicol Environ Saf ; 208: 111643, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396163

ABSTRACT

Sulfur (S) can play essential roles in protecting plants against abiotic stress, including heavy metal toxicity. However, the effect of this nutrient on plants exposed to barium (Ba) is still unknown. This study was designed to evaluate the S supply on oxidative stress and the antioxidant system of Tanzania guinea grass under exposure to Ba, grown in a nutrient solution under greenhouse conditions. It was studied the influence of S/Ba combinations in nutrient solution on oxidative stress indicators (hydrogen peroxide, malondialdehyde, and proline) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and glutathione reductase). The treatments consisted in thirteen S/Ba combinations in the nutrient solution (0.1/0.0; 0.1/5.0; 0.1/20.0; 1.0/2.5; 1.0/10.0; 1.9/0.0 - control; 1.9/5.0; 1.9/20.0; 2.8/2.5; 2.8/10.0; 3.7/0.0; 3.7/5.0 and 3.7/20.0 mM of S and Ba, respectively). The plants were grown for two growth periods, which consisted of fourteen days of S supply and the eight days of Ba exposure each one. The severe S deficiency decreased the superoxide dismutase activity, regardless of Ba exposure in recently expanded leaves and culms plus sheaths. However, supplemental S supply (above 1.9 mM S, which corresponds to S supply adequate to plant growth) it improved the superoxide dismutase activity in these tissues under high Ba concentrations. Conversely, the severe S deficiency increased the activities of catalase, ascorbate peroxidase, and glutathione reductase in grass leaves slightly, without Ba exposure influence. It was observed that the supplemental S supply also induced the guaiacol peroxidase activity and proline production in culms plus sheaths under high Ba rates, showing values until 2.5 and 3.1 folds higher than the control treatment, respectively. In plants under exposure to 20.0 mM Ba, the supplemental S supply decreased the malondialdehyde content in culms plus sheaths in 17% compared to 1.9 mM S. These results indicate that supplemental S supply can mitigate Ba toxicity in Tanzania guinea grass, mainly by improving superoxide dismutase and guaiacol peroxidase activities, and proline metabolism.


Subject(s)
Antioxidants/metabolism , Barium/toxicity , Panicum/drug effects , Proline/metabolism , Sulfur/pharmacology , Fertilizers , Oxidative Stress/drug effects , Panicum/growth & development , Panicum/metabolism , Peroxidase/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Superoxide Dismutase/metabolism
9.
Front Plant Sci ; 12: 791549, 2021.
Article in English | MEDLINE | ID: mdl-34987536

ABSTRACT

Somatic embryogenesis is being piloted for the commercial production of genetically improved Norway spruce (Picea abies L. Karst) forest regeneration material in Finland. The main challenge to making the process commercially relevant is the dependence on time-consuming and highly skilled manual labor. Automation and scaling up are needed to improve cost-effectiveness. Moving from the proliferation of embryogenic tissue on semisolid media to suspension cultures could improve process scalability. In a series of four experiments (overall, with 20 cell lines, 4-9 per experiment), the suitability of proliferation in suspension culture for Norway spruce somatic embryogenesis was evaluated based on the growth rate, indicators of stress conditions, good-quality cotyledonary embryo yield, and embling survival in a greenhouse. The proliferation rate in suspension was found equal to on semisolid media, but with a remarkable genotypic variation. Embryogenic tissue matured directly without pre-treatments from suspension onto semisolid media produced lower numbers of good-quality embryos than tissue matured from semisolid media. Rinsing the suspension-grown tissue with hormone-free liquid media before maturation improved embryo yield, bringing it closer to that of semisolid-grown tissue. Decreasing 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid concentrations in suspension proliferation media to 0.5 or 0.1 times those in semisolid media did not affect tissue growth and did not improve embryo production. The hydrogen peroxide (H2O2) content and guaiacol peroxidase activity were elevated in suspension cultures compared with semisolid medium, which had the same plant growth regulator content. In one experiment out of four, the greenhouse survival of germinants was lower when proliferation was carried out in full strength suspension than on semisolid media; in other experiments the survival rates were equal.

10.
Front Plant Sci ; 11: 559876, 2020.
Article in English | MEDLINE | ID: mdl-33178233

ABSTRACT

An investigation was carried out to elucidate growth, anatomical, physiological, and major ROS detoxification pathways involved in the tolerance of A. tricolor under salinity stress. Both VA14 and VA3 varieties exhibited the reduction in relative water content (RWC), photosynthetic pigments, growth, increased electrolyte leakage (EL), and leaf anatomy adaptation under salinity stress, whereas VA14 was well adapted and performed better compared to VA3. Higher ROS accumulation was demonstrated in the sensitive variety (VA3) in comparison to the tolerant variety (VA14). Salinity stress changed the cellular antioxidant pool by increasing total carotenoids, ascorbate, proline, total polyphenol content (TPC), total flavonoid content (TFC), and total antioxidant capacity (TAC) in both varieties. Although a higher increment was demonstrated in the tolerant variety, the proline increment was much more pronounced in the sensitive variety. Non-enzymatic antioxidant, ascorbate, carotenoids, TPC, TFC, TAC, and antioxidant enzymes SOD and APX were noted to be a major H2O2 detoxifier in the tolerant A. tricolor variety, where there is a comparatively lower H2O2 load. It was complemented by GPOX and CAT activity at a comparatively higher H2O2 load (in the sensitive variety). SOD contributed to the dismutation of superoxide radical (SOR) both in the tolerant and sensitive varieties; however, it greatly contributed to the dismutation of SOR in the tolerant variety. The increase in SOD, ascorbate, and APX makes it predominantly evident that SOD and the AsA-GSH cycle had greatly contributed to quench reactive oxygen species (ROS) of the tolerant variety of A. tricolor.

11.
Biochem Biophys Rep ; 23: 100781, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32715102

ABSTRACT

Duckweed is recognized as a phytoremediation aquatic plant due to the production of large biomass and a high level of tolerance in stressed conditions. A laboratory experiment was conducted to investigate antioxidant response and mechanism of copper and mercury tolerance of S. polyrhiza (L.) Schleid. To understand the changes in chlorophyll content, MDA, proline, and activities of ROS-scavenging enzymes (SOD, CAT, GPOD) during the accumulation of Cu+2 and Hg+2, S. polyrhiza were exposed to various concentrations of Cu+2 (0.0-40 µM) and Hg+2 (0.0-0.4 µM). antioxidant activity initially indicated enhancing trend with application of 10 µM Cu+2; 0.2 µM Hg+2 (SOD), of 20 µM Cu+2; 0.2 µM Hg+2 (CAT) and of 10 µM Cu+2;0.2 µM Hg+2 (GPOD) and then decreased consistently up to 40 µM Cu+2 and 0.4 µM Hg+2. In the experiment chlorophyll and frond multiplication initially showed increasing tendency and decreased gradually with the application of increased metal concentration. Application of heavy metal has constantly enhanced proline and MDA content while the maximum increase was observed with the application of 40 µM Cu; 0.4 µM Hg for proline and MDA respectively. The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2.

12.
Phytochemistry ; 170: 112199, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31759269

ABSTRACT

The Mediterranean crop Olea europaea is often exposed to high UV-B irradiation conditions. To understand how this species modulates its enzymatic and non-enzymatic antioxidant system under high UV-B radiation, young O. europaea plants (cultivar "Galega Vulgar") were exposed, for five days, to UV-B radiation (6.5 kJ m-2 d-1 and 12.4 kJ m-2 d-1). Our data indicate that UV-doses slightly differ in the modulation of the antioxidant protective mechanisms. Particularly, superoxide dismutase (SOD), guaiacol peroxidase (GPox) and catalase (CAT) activities increased contributing to H2O2 homeostasis, being more solicited by higher UV-B doses. Also, glutathione reductase (Gr) activity, ascorbate (AsA) and reduced glutathione (GSH) pools increased particularly under the highest dose, suggesting a higher mobilization of the antioxidant system in this dose. The leaf metabolites' profile of this cultivar was analysed by UHPLC-MS. Interestingly, high levels of verbascoside were found, followed by oleuropein and luteolin-7-O-glucoside. Both UV-B treatments affected mostly less abundant flavonoids (decreasing 4'-methoxy luteolin and 4' or 3'-methoxy luteolin glucoside) and hydroxycinnamic acid derivatives (HCAds, increasing ß-hydroxyverbascoside). These changes show not only different mobilization with the UV-intensity, but also reinforce for the first time the protective roles of these minor compounds against UV-B, as reactive oxygen species (ROS) scavengers and UV-B shields, in complement with other antioxidant systems (e.g. AsA/GSH cycle), particularly for high UV-B doses. Secoiridoids also standout in the response to both UV-B doses, with decreases of oleuropein and increases 2''-methoxyoleuropein. Being oleuropein an abundant compound, data suggest that secoiridoids play a more important role than flavonoids and HCAds, in O. europaea protection against UV-B, possibly by acting as signalling molecules and ROS scavengers. This is the first report on the influence of UV-B radiation on the secoiridoid oleuropein, and provides a novel insight to the role of this compound in the O. europaea antioxidant defence mechanisms.


Subject(s)
Antioxidants/metabolism , Flavonoids/metabolism , Iridoids/metabolism , Olea/enzymology , Ultraviolet Rays , Antioxidants/chemistry , Catalase/chemistry , Catalase/metabolism , Flavonoids/chemistry , Iridoids/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Phytochemicals/chemistry , Phytochemicals/metabolism , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism
13.
Protoplasma ; 257(2): 459-473, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31776775

ABSTRACT

Lepidium draba is a weed with the medicinal properties which few researches have been done on it. In this study, some traits, related to the osmotic stress, in 14-day-old L. draba sprouts that were grown 9 days in the presence of various doses of polyethylene glycol 6000 (PEG 6000) including 0, 3, 6, 9, and 12%, with different osmotic potentials (- 0.04, - 0.12, - 0.23, - 0.34, and - 0.48 MPa, respectively) were investigated. Based on our results, germination percentage besides stem and root lengths decreased with increasing the concentrations of PEG. The contents of electrolyte leakage, malondialdehyde, other aldehydes, total protein, free amino acids, total soluble carbohydrate as well as free proline increased with increasing the concentrations of PEG. Also, for the first time, our results have proven that under osmotic stress, there is an adverse relationship between hydrogen peroxide content and the activity of catalase, peroxidase, ascorbate peroxidase, and guaiacol peroxidase enzymes, such that hydrogen peroxide content decreased with induction of PEG up to 6% and after that increased, while the activity of catalase, peroxidase, ascorbate peroxidase, and guaiacol peroxidase enzymes increased up to 6% PEG and after that decreased. The expression levels of catalase, peroxidase, ascorbate peroxidase, and guaiacol peroxidase genes showed the same pattern as was seen for these enzyme activities. According to the results of this study, it can be deduced that decreasing H2O2 content cannot be the main reason for other oxidative stress parameters to decrease. In this study, P5CS and P5CR gene expression levels increased with increasing levels of PEG up to 12% which was completely similar to free proline content. Based on our results, L. draba can be considered as a semi-tolerant plant to osmotic stress.


Subject(s)
Antioxidants/metabolism , Lepidium/chemistry , Oxidative Stress/physiology , Polyethylene Glycols/metabolism , Osmotic Pressure
14.
Toxicol Rep ; 6: 745-758, 2019.
Article in English | MEDLINE | ID: mdl-31406682

ABSTRACT

Alternaria causes pathogenic disease on various economically important crops having saprophytic to endophytic lifecycle. Pathogenic fungi of Alternaria species produce many primary and secondary metabolites (SMs). Alternaria species produce more than 70 mycotoxins. Several species of Alternaria produce various phytotoxins that are host-specific (HSTs) and non-host-specific (nHSTs). These toxins have various negative impacts on cell organelles including chloroplast, mitochondria, plasma membrane, nucleus, Golgi bodies, etc. Non-host-specific toxins such as tentoxin (TEN), Alternaric acid, alternariol (AOH), alternariol 9-monomethyl ether (AME), brefeldin A (dehydro-), Alternuene (ALT), Altertoxin-I, Altertoxin-II, Altertoxin-III, zinniol, tenuazonic acid (TeA), curvularin and alterotoxin (ATX) I, II, III are known toxins produced by Alternaria species. In other hand, Alternaria species produce numerous HSTs such as AK-, AF-, ACT-, AM-, AAL- and ACR-toxin, maculosin, destruxin A, B, etc. are host-specific and classified into different family groups. These mycotoxins are low molecular weight secondary metabolites with various chemical structures. All the HSTs have different mode of actions, biochemical reactions, and signaling mechanisms to causes diseases in the host plants. These HSTs have devastating effects on host plant tissues by affecting biochemical and genetic modifications. Host-specific mycotoxins such as AK-toxin, AF-toxin, and AC-toxin have the devastating effect on plants which causes DNA breakage, cytotoxic, apoptotic cell death, interrupting plant physiology by mitochondrial oxidative phosphorylation and affect membrane permeability. This article will elucidate an understanding of the disease mechanism caused by several Alternaria HSTs on host plants and also the pathways of the toxins and how they caused disease in plants.

15.
Plant Signal Behav ; 14(9): 1633885, 2019.
Article in English | MEDLINE | ID: mdl-31366277

ABSTRACT

Sunflower is a globally important oilseed, food, and ornamental crop. This study seeks to investigate the genotoxic effects of tissue culture parameters in sunflower calli tissues belongs to two genotypes obtained via anther culture. Anthers were pretreated with cold for 24 hours at 4°C and heat for 2 days at 35°C in the dark and plated onto media supplemented with different concentrations and combinations of 6-benzylaminopurine, 2,4-dichlorophenoxyacetic acid, α-naphthalene acetic acid and indole-3-acetic acid. Obtaining calli tissues were used to detect the DNA damage levels by Comet assay, evaluating changes on superoxide dismutase and guaiacol peroxidase activities derived from in vitro culture factors. 0.5 mg/L 2,4-dichlorophenoxyacetic acid and 2 mg/L α-naphthalene acetic acid from plant growth regulators showed acute genotoxic effect while 0.5 mg/L indole-3-acetic acid and 0.5 mg/L α-naphthalene acetic acid showed no genotoxic effect. Total protein content analysis of antioxidant enzymes revealed that although superoxide dismutase activity did not increase, Guaiacol peroxidase (GPOX) activity decreased in comparison to control. The obtained results have indicated that in vitro culture factors apparently lead to genotoxicity and oxidative stress.


Subject(s)
Flowers/growth & development , Helianthus/growth & development , Mutagens/toxicity , Tissue Culture Techniques , Antioxidants/metabolism , Comet Assay , DNA Damage , DNA, Plant/genetics , Flowers/embryology , Genotype , Helianthus/embryology , Helianthus/genetics , Peroxidase/metabolism , Plant Proteins/metabolism , Solubility , Superoxide Dismutase/metabolism
16.
Environ Sci Pollut Res Int ; 26(9): 8609-8622, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30707385

ABSTRACT

The organic toxicants formed in chlorinated water cause potential harm to human beings, and it is extensively concentrated all over the world. Various disinfection by-products (DBPs) occur in chlorinated water are genotoxic and carcinogenic. The toxicity is major concern for chlorinated DBPs which has been present more in potable water. The purpose of the work was to evaluate genotoxic properties of DBPs in Allium cepa as a plant model system. The chromosomal aberration and DNA laddering assays were performed to examine the genotoxic effect of trichloroacetic acid (TCAA), trichloromethane (TCM), and tribromomethane (TBM) in a plant system with distinct concentrations, using ethyl methanesulfonate (EMS) as positive control and tap water as negative control. In Allium cepa root growth inhibition test, the inhibition was concentration dependent, and EC50 values for trichloroacetic acid (TCAA), trichloromethane (TCM), and tribromomethane (TBM) were 100 mg/L, 160 mg/L, and 120 mg/L respectively. In the chromosome aberration assay, root tip cells were investigated after 120 h exposure. The bridge formation, sticky chromosomes, vagrant chromosomes, fragmented chromosome, c-anaphase, and multipolarity chromosomal aberrations were seen in anaphase-telophase cells. It was noticed that with enhanced concentrations of DBPs, the total chromosomal aberrations were more frequent. The DNA damage was analyzed in roots of Allium cepa exposed with DBPs (TCAA, TCM, TBM) by DNA laddering. The biochemical assays such as lipid peroxidation, H2O2 content, ascorbate peroxidase, guaiacol peroxidase, and catalase were concentration dependent. The DNA interaction studies were performed to examine binding mode of TCAA, TCM, and TBM with DNAs. The DNA interaction was evaluated by spectrophotometric and spectrofluorometric studies which revealed that TCAA, TCM, and TBM might interact with Calf thymus DNA (CT- DNA) by non-traditional intercalation manner.


Subject(s)
Disinfectants/toxicity , Environmental Monitoring/methods , Onions/physiology , Ascorbate Peroxidases/genetics , Chloroform/toxicity , Chromosome Aberrations , DNA Damage , Disinfection , Drinking Water , Halogenation , Humans , Hydrogen Peroxide/metabolism , Meristem/drug effects , Mitosis , Onions/drug effects , Peroxidase , Plant Roots/drug effects , Trichloroacetic Acid/toxicity , Trihalomethanes/toxicity
17.
Pest Manag Sci ; 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29532632

ABSTRACT

BACKGROUND: The giant ragweed (Ambrosia trifida L.) rapid-response (RR) biotype exhibits a sacrificial form of glyphosate resistance whereby an oxidative burst in mature leaves results in foliage loss, while juvenile leaves remain uninjured. This work investigated the safening capacity of antioxidant enzymes in RR juvenile leaves following glyphosate treatment and examined cross tolerance to paraquat. RESULTS: Basal antioxidant enzyme activities were similar between glyphosate-susceptible (GS) and RR biotypes. Lipid peroxidation was first detected in RR mature leaves at 8 h after treatment (HAT) and by 32 HAT was 5.3 and 21.1 times greater than that in RR juvenile leaves and GS leaves, respectively. Preceding lipid peroxidation in the RR biotype at 2 and 4 HAT, the only increase in enzymatic activity was observed in ascorbate-glutathione cycle enzymes in RR juvenile leaves, particularly ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Sensitivity to paraquat was similar between biotypes. CONCLUSION: The RR biotype is not inherently more tolerant to oxidative stress. The difference in tissue damage between RR juvenile and mature leaves following glyphosate treatment is attributable at least partially to the transient increase in antioxidant enzyme expression in juvenile leaves (0-8 HAT), but may also be attributable to lower overall RR induction in juvenile leaves compared with mature leaves. © 2018 Society of Chemical Industry.

18.
J Ginseng Res ; 41(3): 307-315, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28701871

ABSTRACT

BACKGROUND: Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). METHODS: To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. RESULTS: Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H2O2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione-S-transferase activity remained constant. CONCLUSION: Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.

19.
Methods Mol Biol ; 1626: 199-204, 2017.
Article in English | MEDLINE | ID: mdl-28608212

ABSTRACT

It is possible to analyze peroxidase (POD) from different vegetable sources by electrophoresis. Zymography, i.e., a SDS-PAGE method to detect enzyme activity, is used to specifically detect POD activity and to visualize the total protein profile. For this purpose, we describe how a radish homogenate is prepared and submitted first to electrophoresis, and then, the POD activity present in the gel is reactivated and selectively stained using guaiacol as substrate. After scanning the gel, the same gel is further stained with Coomassie blue to determine the whole protein profile of the sample.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Enzyme Assays/methods , Peroxidase/analysis , Raphanus/enzymology , Coloring Agents/analysis , Guaiacol/metabolism , Peroxidase/metabolism , Raphanus/metabolism , Rosaniline Dyes/analysis , Staining and Labeling/methods
20.
J Plant Physiol ; 191: 63-72, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26717013

ABSTRACT

The synthesis of IAA-amino acid conjugates is one of the crucial regulatory mechanisms for the control of auxin activity during physiological and pathophysiological responses. Indole-3-acetyl-aspartate (IAA-Asp) is a low molecular weight amide conjugate that predominates in pea (Pisum sativum L.) tissues. IAA-Asp acts as an intermediate during the auxin degradation pathway. However, some recent investigations suggest a direct signaling function of this conjugate in various processes. In this study, we examine the effect of 100 µM IAA-Asp alone and in combination with salt stress (160 mM NaCl) or heavy metal stress (250 µM CdCl2) on H2O2 concentration, protein carbonylation as well as catalase and ascorbate (APX) and guaiacol peroxidase (GPX) activities in 7-day-old pea seedlings. As revealed by spectrophotometric analyses, IAA-Asp increased the carbonylated protein level and reduced the H2O2 concentration. Moreover, IAA-aspartate potentiated the effect of both Cd(2+) ions and NaCl on the H2O2 level. The enzymatic activities (catalase and peroxidases) were examined using spectrophotometric and native-PAGE assays. IAA-Asp alone did not affect catalase activity, whereas the two peroxidases were regulated differently. IAA-Asp reduced the APX activity during 48h cultivation. APX activity was potentiated by IAA-Asp+NaCl after 48h. Guaiacol peroxidase activity was diminished by all tested compounds. Based on these results, we suggest that IAA-Asp can directly and specifically affect the pea responses to abiotic stress.


Subject(s)
Cadmium/toxicity , Indoleacetic Acids/pharmacology , Pisum sativum/physiology , Sodium Chloride/toxicity , Stress, Physiological/drug effects , Catalase/metabolism , Electrophoresis, Polyacrylamide Gel , Hydrogen Peroxide/metabolism , Pisum sativum/drug effects , Pisum sativum/growth & development , Peroxidase/metabolism , Protein Carbonylation/drug effects , Seedlings/drug effects , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...