Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Trends Pharmacol Sci ; 45(8): 671-677, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043501

ABSTRACT

Numerous non-cardiovascular drugs have a potential to induce life-threatening torsades de pointes (TdP) ventricular cardiac arrhythmias by blocking human ether-à-go-go-related gene (hERG) currents via binding to the channel's inner cavity. Identification of the hERG current-inhibiting properties of candidate drugs is performed focusing on binding sites in the channel pore. It has been suggested that biologicals have a low likelihood of hERG current inhibition, since their poor diffusion across the plasma membrane prevents them from reaching the binding site in the channel pore. However, biologicals could influence hERG channel function by binding to 'unconventional' noncanonical binding sites. This Opinion gives an overview on noncanonical blockers of hERG channels that might be of relevance for the assessment of the possible torsadogenic potential of macromolecular therapeutics.


Subject(s)
Potassium Channel Blockers , Humans , Animals , Potassium Channel Blockers/pharmacology , Macromolecular Substances/metabolism , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Torsades de Pointes/metabolism , Torsades de Pointes/chemically induced , Binding Sites , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism
2.
Expert Opin Drug Metab Toxicol ; 20(7): 665-684, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968091

ABSTRACT

BACKGROUND: Cardiotoxicity is a major cause of drug withdrawal. The hERG channel, regulating ion flow, is pivotal for heart and nervous system function. Its blockade is a concern in drug development. Predicting hERG blockade is essential for identifying cardiac safety issues. Various QSAR models exist, but their performance varies. Ongoing improvements show promise, necessitating continued efforts to enhance accuracy using emerging deep learning algorithms in predicting potential hERG blockade. STUDY DESIGN AND METHOD: Using a large training dataset, six individual QSAR models were developed. Additionally, three ensemble models were constructed. All models were evaluated using 10-fold cross-validations and two external datasets. RESULTS: The 10-fold cross-validations resulted in Mathews correlation coefficient (MCC) values from 0.682 to 0.730, surpassing the best-reported model on the same dataset (0.689). External validations yielded MCC values from 0.520 to 0.715 for the first dataset, exceeding those of previously reported models (0-0.599). For the second dataset, MCC values fell between 0.025 and 0.215, aligning with those of reported models (0.112-0.220). CONCLUSIONS: The developed models can assist the pharmaceutical industry and regulatory agencies in predicting hERG blockage activity, thereby enhancing safety assessments and reducing the risk of adverse cardiac events associated with new drug candidates.


Subject(s)
Deep Learning , Machine Learning , Quantitative Structure-Activity Relationship , Humans , Drug Development/methods , Cardiotoxicity/etiology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/adverse effects , Algorithms
3.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003453

ABSTRACT

Modulation of the human Ether-à-go-go-Related Gene (hERG) channel, a crucial voltage-gated potassium channel in the repolarization of action potentials in ventricular myocytes of the heart, has significant implications on cardiac electrophysiology and can be either antiarrhythmic or proarrhythmic. For example, hERG channel blockade is a leading cause of long QT syndrome and potentially life-threatening arrhythmias, such as torsades de pointes. Conversely, hERG channel blockade is the mechanism of action of Class III antiarrhythmic agents in terminating ventricular tachycardia and fibrillation. In recent years, it has been recognized that less proarrhythmic hERG blockers with clinical potential or Class III antiarrhythmic agents exhibit, in addition to their hERG-blocking activity, a second action that facilitates the voltage-dependent activation of the hERG channel. This facilitation is believed to reduce the proarrhythmic potential by supporting the final repolarizing of action potentials. This review covers the pharmacological characteristics of hERG blockers/facilitators, the molecular mechanisms underlying facilitation, and their clinical significance, as well as unresolved issues and requirements for research in the fields of ion channel pharmacology and drug-induced arrhythmias.


Subject(s)
Ether-A-Go-Go Potassium Channels , Potassium Channel Blockers , Humans , ERG1 Potassium Channel , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use , Anti-Arrhythmia Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/drug therapy , Myocytes, Cardiac , Action Potentials
4.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38004375

ABSTRACT

The hERG potassium channel serves as an annexed target for drug discovery because the associated off-target inhibitory activity may cause serious cardiotoxicity. Quantitative structure-activity relationship (QSAR) models were developed to predict inhibitory activities against the hERG potassium channel, utilizing the three-dimensional (3D) distribution of quantum mechanical electrostatic potential (ESP) as the molecular descriptor. To prepare the optimal atomic coordinates of dataset molecules, pairwise 3D structural alignments were carried out in order for the quantum mechanical cross correlation between the template and other molecules to be maximized. This alignment method stands out from the common atom-by-atom matching technique, as it can handle structurally diverse molecules as effectively as chemical derivatives that share an identical scaffold. The alignment problem prevalent in 3D-QSAR methods was ameliorated substantially by dividing the dataset molecules into seven subsets, each of which contained molecules with similar molecular weights. Using an artificial neural network algorithm to find the functional relationship between the quantum mechanical ESP descriptors and the experimental hERG inhibitory activities, highly predictive 3D-QSAR models were derived for all seven molecular subsets to the extent that the squared correlation coefficients exceeded 0.79. Given their simplicity in model development and strong predictability, the 3D-QSAR models developed in this study are expected to function as an effective virtual screening tool for assessing the potential cardiotoxicity of drug candidate molecules.

5.
Front Pharmacol ; 14: 1244166, 2023.
Article in English | MEDLINE | ID: mdl-38035013

ABSTRACT

The human ether-a-go-go-related gene (hERG) not only encodes a potassium-selective voltage-gated ion channel essential for normal electrical activity in the heart but is also a major drug anti-target. Genetic hERG mutations and blockage of the channel pore by drugs can cause long QT syndrome, which predisposes individuals to potentially deadly arrhythmias. However, not all hERG-blocking drugs are proarrhythmic, and their differential affinities to discrete channel conformational states have been suggested to contribute to arrhythmogenicity. We used Rosetta electron density refinement and homology modeling to build structural models of open-state hERG channel wild-type and mutant variants (Y652A, F656A, and Y652A/F656 A) and a closed-state wild-type channel based on cryo-electron microscopy structures of hERG and EAG1 channels. These models were used as protein targets for molecular docking of charged and neutral forms of amiodarone, nifekalant, dofetilide, d/l-sotalol, flecainide, and moxifloxacin. We selected these drugs based on their different arrhythmogenic potentials and abilities to facilitate hERG current. Our docking studies and clustering provided atomistic structural insights into state-dependent drug-channel interactions that play a key role in differentiating safe and harmful hERG blockers and can explain hERG channel facilitation through drug interactions with its open-state hydrophobic pockets.

6.
Curr Res Toxicol ; 5: 100121, 2023.
Article in English | MEDLINE | ID: mdl-37701072

ABSTRACT

The rise of artificial intelligence (AI) based algorithms has gained a lot of interest in the pharmaceutical development field. Our study demonstrates utilization of traditional machine learning techniques such as random forest (RF), support-vector machine (SVM), extreme gradient boosting (XGBoost), deep neural network (DNN) as well as advanced deep learning techniques like gated recurrent unit-based DNN (GRU-DNN) and graph neural network (GNN), towards predicting human ether-á-go-go related gene (hERG) derived toxicity. Using the largest hERG dataset derived to date, we have utilized 203,853 and 87,366 compounds for training and testing the models, respectively. The results show that GNN, SVM, XGBoost, DNN, RF, and GRU-DNN all performed well, with validation set AUC ROC scores equals 0.96, 0.95, 0.95, 0.94, 0.94 and 0.94, respectively. The GNN was found to be the top performing model based on predictive power and generalizability. The GNN technique is free of any feature engineering steps while having a minimal human intervention. The GNN approach may serve as a basis for comprehensive automation in predictive toxicology. We believe that the models presented here may serve as a promising tool, both for academic institutes as well as pharmaceutical industries, in predicting hERG-liability in new molecular structures.

7.
Biochem Biophys Res Commun ; 681: 90-96, 2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37774574

ABSTRACT

PURPOSE: QT prolongation is one of the main unwanted cardiac effects caused by drugs, such as anti-psychotics and anti-depressants, inducing mainly via hERG channel dysfunction. The precise and underlying mechanism of adverse effects on hERG channel are still indecisive, but these effects limit their use in patients with cardiac risk factors. The aim of this review was studying mechanism of Long-term QT syndrome induction via hERG channel dysfunction by these Drugs. METHOD: Search was performed in PubMed, and Scopus. All human, animals, and cell lines studies, English and full text publications were included. Among 1280 papers, 23 studies were eligible for more assessments. Quality of studies cheeked by two researchers independently. KEY FINDING: most of studies were done on anti-psychotic drugs, especially typical class. Most used investigated method to long-term QT induction was patch clamp. SIGNIFICANCE: results suggests in susceptible cases with heart risk factors, these drugs should be taken with caution and monitored.

8.
Cardiology ; 148(4): 310-323, 2023.
Article in English | MEDLINE | ID: mdl-37231805

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has led to millions of confirmed cases and deaths worldwide and has no approved therapy. Currently, more than 700 drugs are tested in the COVID-19 clinical trials, and full evaluation of their cardiotoxicity risks is in high demand. METHODS: We mainly focused on hydroxychloroquine (HCQ), one of the most concerned drugs for COVID-19 therapy, and investigated the effects and underlying mechanisms of HCQ on hERG channel via molecular docking simulations. We further applied the HEK293 cell line stably expressing hERG-wild-type channel (hERG-HEK) and HEK293 cells transiently expressing hERG-p.Y652A or hERG-p.F656A mutants to validate our predictions. Western blot analysis was used to determine the hERG channel, and the whole-cell patch clamp was utilized to record hERG current (IhERG). RESULTS: HCQ reduced the mature hERG protein in a time- and concentration-dependent manner. Correspondingly, chronic and acute treatment of HCQ decreased the hERG current. Treatment with brefeldin A (BFA) and HCQ combination reduced hERG protein to a greater extent than BFA alone. Moreover, disruption of the typical hERG binding site (hERG-p.Y652A or hERG-p.F656A) rescued HCQ-mediated hERG protein and IhERG reduction. CONCLUSION: HCQ can reduce the mature hERG channel expression and IhERG via enhancing channel degradation. The QT prolongation effect of HCQ is mediated by typical hERG binding sites involving residues Tyr652 and Phe656.


Subject(s)
COVID-19 , Hydroxychloroquine , Humans , COVID-19 Drug Treatment , ERG1 Potassium Channel/genetics , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , HEK293 Cells , Hydroxychloroquine/pharmacology , Ion Channels , Molecular Docking Simulation , Mutation
9.
Front Pharmacol ; 14: 1110555, 2023.
Article in English | MEDLINE | ID: mdl-37021055

ABSTRACT

Reduction of the rapid delayed rectifier potassium current (I Kr) via drug binding to the human Ether-à-go-go-Related Gene (hERG) channel is a well recognised mechanism that can contribute to an increased risk of Torsades de Pointes. Mathematical models have been created to replicate the effects of channel blockers, such as reducing the ionic conductance of the channel. Here, we study the impact of including state-dependent drug binding in a mathematical model of hERG when translating hERG inhibition to action potential changes. We show that the difference in action potential predictions when modelling drug binding of hERG using a state-dependent model versus a conductance scaling model depends not only on the properties of the drug and whether the experiment achieves steady state, but also on the experimental protocols. Furthermore, through exploring the model parameter space, we demonstrate that the state-dependent model and the conductance scaling model generally predict different action potential prolongations and are not interchangeable, while at high binding and unbinding rates, the conductance scaling model tends to predict shorter action potential prolongations. Finally, we observe that the difference in simulated action potentials between the models is determined by the binding and unbinding rate, rather than the trapping mechanism. This study demonstrates the importance of modelling drug binding and highlights the need for improved understanding of drug trapping which can have implications for the uses in drug safety assessment.

10.
Food Chem Toxicol ; 172: 113589, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584932

ABSTRACT

Bisphenol A (BPA) is a common environmental chemical with a range of potential adverse health effects. The impact of environmentally-relevant low dose of BPA on the electrical properties of the hearts of large animals (e.g., dog, human) is poorly defined. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of ventricular repolarization and prolongation of the QT interval of the electrocardiogram is a marker for the risk of malignant arrhythmias. We examined the acute effect of 10-9 M BPA on the electrical properties of female canine ventricular myocytes and tissues. BPA rapidly delayed action potential repolarization and prolonged action potential duration (APD). The dose response curve of BPA on APD was nonmonotonic. BPA rapidly inhibited the IKr K+ current and ICaL Ca2+ current. Computational modeling indicated that the effect of BPA on APD can be accounted for by its suppression of IKr. At the tissue level, BPA acutely prolonged the QT interval in 4 left ventricular wedges. ERß signaling contributed to the acute effects of BPA on ventricular repolarization. Our results demonstrate that BPA has QT prolongation liability in female canine hearts. These findings have implication for the potential proarrhythmic cardiac toxicity of BPA in large animals.


Subject(s)
Arrhythmias, Cardiac , Phenols , Animals , Dogs , Female , Arrhythmias, Cardiac/chemically induced , Benzhydryl Compounds/toxicity , Myocytes, Cardiac , Phenols/toxicity
11.
J Membr Biol ; 256(1): 63-77, 2023 02.
Article in English | MEDLINE | ID: mdl-35763054

ABSTRACT

Most blockers of both hERG (human ether-à-go-go-related gene) channels and pancreatic ß-cell ATP-sensitive K+ (KATP) channels access their binding sites from the cytoplasmic side of the plasma membrane. It is unknown whether binding to intracellular components competes with binding of these substances to K+ channels. The whole-cell configuration of the patch-clamp technique, a laser-scanning confocal microscope, and fluorescence correlation spectroscopy (FCS) were used to study hERG channels expressed in HEK (human embryonic kidney) 293 cells and KATP channels from the clonal insulinoma cell line RINm5F. When applied via the pipette solution in the whole-cell configuration, terfenadine blocked both hERG and KATP currents with much lower potency than after application via the bath solution, which was not due to P-glycoprotein-mediated efflux of terfenadine. Such a difference was not observed with dofetilide and tolbutamide. 37-68% of hERG/EGFP (enhanced green-fluorescent protein) fusion proteins expressed in HEK 293 cells were slowly diffusible as determined by laser-scanning microscopy in the whole-cell configuration and by FCS in intact cells. Bath application of a green-fluorescent sulphonylurea derivative (Bodipy-glibenclamide) induced a diffuse fluorescence in the cytosol of RINm5F cells under whole-cell patch-clamp conditions. These observations demonstrate the presence of intracellular binding sites for hERG and KATP channel blockers not dialyzable by the patch-pipette solution. Intracellular binding of terfenadine was not influenced by a mutated hERG (Y652A) channel. In conclusion, substances with high lipophilicity are not freely diffusible inside the cell but steep concentration gradients might exist within the cell and in the sub-membrane space.


Subject(s)
Ether-A-Go-Go Potassium Channels , Terfenadine , Humans , Terfenadine/pharmacology , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , ERG1 Potassium Channel , HEK293 Cells , Ethers , Adenosine Triphosphate , Potassium Channel Blockers/pharmacology
12.
J Pharm Sci ; 111(12): 3411-3416, 2022 12.
Article in English | MEDLINE | ID: mdl-36181876

ABSTRACT

Pimozide, an antipsychotic drug, is a potent inhibitor of the hERG channel. A case of death due to cardiac arrest has been reported in a boy who received pimozide together with sertraline and aripiprazole. In this study, we focused on drug-drug interactions and investigated the relationships between transporter-mediated intracellular accumulation and the hERG inhibitory effect of pimozide. The accumulation of pimozide in cardiomyocyte-derived AC16 cells was significantly increased by sertraline and aripiprazole, which are thought to have a P-glycoprotein (P-gp) inhibitory effect, and under P-gp siRNA conditions. These results suggest P-gp inhibition increases pimozide accumulation in AC16 cells. We introduced the hERG plasmid into AC16 cells and investigated the concentration-dependent hERG inhibitory effect of pimozide from within AC16 cells. Addition of 10 nM or more pimozide significantly inhibited the hERG current with concentration dependence. These results indicate P-gp-mediated pharmacokinetic interaction increases pimozide accumulation in AC16 cells, and the subsequent elevated pimozide levels within the cells may result in an increased risk of hERG channel inhibition. Our present study calls attention to the risks associated with the combined use of cardiotoxic P-gp substrate(s) and P-gp inhibitory medicines.


Subject(s)
Antipsychotic Agents , Pimozide , Humans , Male , Pimozide/pharmacokinetics , Aripiprazole , Sertraline/pharmacology , Antipsychotic Agents/pharmacology , ATP Binding Cassette Transporter, Subfamily B/genetics , Potassium Channel Blockers
13.
Front Pharmacol ; 13: 966463, 2022.
Article in English | MEDLINE | ID: mdl-36188564

ABSTRACT

The voltage-gated potassium channel, KV11.1, encoded by the human Ether-à-go-go-Related Gene (hERG), is expressed in cardiac myocytes, where it is crucial for the membrane repolarization of the action potential. Gating of the hERG channel is characterized by rapid, voltage-dependent, C-type inactivation, which blocks ion conduction and is suggested to involve constriction of the selectivity filter. Mutations S620T and S641A/T within the selectivity filter region of hERG have been shown to alter the voltage dependence of channel inactivation. Because hERG channel blockade is implicated in drug-induced arrhythmias associated with both the open and inactivated states, we used Rosetta to simulate the effects of hERG S620T and S641A/T mutations to elucidate conformational changes associated with hERG channel inactivation and differences in drug binding between the two states. Rosetta modeling of the S641A fast-inactivating mutation revealed a lateral shift of the F627 side chain in the selectivity filter into the central channel axis along the ion conduction pathway and the formation of four lateral fenestrations in the pore. Rosetta modeling of the non-inactivating mutations S620T and S641T suggested a potential molecular mechanism preventing F627 side chain from shifting into the ion conduction pathway during the proposed inactivation process. Furthermore, we used Rosetta docking to explore the binding mechanism of highly selective and potent hERG blockers - dofetilide, terfenadine, and E4031. Our structural modeling correlates well with much, but not all, existing experimental evidence involving interactions of hERG blockers with key residues in hERG pore and reveals potential molecular mechanisms of ligand interactions with hERG in an inactivated state.

14.
Regul Toxicol Pharmacol ; 134: 105224, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35817210

ABSTRACT

Inhibition of the human ether-à-go-go (hERG) channel may lead to QT prolongation and fatal arrhythmia. While pharmaceutical drug candidates that exhibit potent hERG channel inhibition often fail early in development, many drugs with both cardiac and non-cardiac indications proceed to market. In this study, the relationship between in vitro hERG channel inhibition and published occupational exposure limit (OEL) was evaluated. A total of 23 cardiac drugs and 44 drugs with non-cardiac indications with published hERG channel IC50 and published OELs were identified. There was an apparent relationship between hERG IC50 potency and the OEL for cardiac and non-cardiac drugs. Twenty cardiac and non-cardiac drugs were identified that had a potent hERG IC50 (≤25 µM) and a contrastingly large OEL value (≥100 µg/m3). OELs or hazard banding corresponding to ≤100 µg/m3 should be sufficiently protective of effects following occupational exposure to the majority of APIs with hERG IC50 values ≤ 100 µM. It is important to consider hERG IC50 values and possible cardiac effects when deriving OEL values for drugs, regardless of indication. These considerations may be particularly important early in the drug development process for establishing exposure control bands for drugs that do not yet have full clinical safety data.


Subject(s)
Long QT Syndrome , Occupational Exposure , ERG1 Potassium Channel , Ether , Ether-A-Go-Go Potassium Channels , Humans , Long QT Syndrome/chemically induced , Occupational Exposure/adverse effects , Potassium Channel Blockers
15.
Br J Pharmacol ; 179(18): 4549-4562, 2022 09.
Article in English | MEDLINE | ID: mdl-35751378

ABSTRACT

BACKGROUND AND PURPOSE: HERG blocking drugs known for their propensity to trigger Torsades de Pointes (TdP) were reported to induce a sympatho-vagal coactivation and to enhance High Frequency heart rate (HFHR) and QT oscillations (HFQT) in telemetric data. The present work aimed to characterize the underlying mechanism(s) leading to these autonomic changes. EXPERIMENTAL APPROACH: Effects of 15 torsadogenic hERG blocking drugs (astemizole, chlorpromazine, cisapride, droperidol, ibutilide, dofetilide, haloperidol, moxifloxacin, pimozide, quinidine, risperidone, sotalol, sertindole, terfenadine, and thioridazine) were assessed by telemetry in beagle dogs. Haemodynamic effects on diastolic and systolic arterial pressure were analysed from the first doses causing QTc prolongation and/or HFQT oscillations enhancement. Autonomic control changes were analysed using the high frequency autonomic modulation (HFAM) model. KEY RESULTS: Except for moxifloxacin and quinidine, all torsadogenic hERG blockers induced parasympathetic activation or sympatho-vagal coactivation combined with enhancement of HFQT oscillations. These autonomic effects result from reflex compensatory mechanisms in response to mild haemodynamic side effects. These haemodynamic mechanisms were characterized by transient HR acceleration during HF oscillations. A phenomenon of concealed QT prolongation was unmasked for several torsadogenic hERG blockers under ß-adrenoceptor blockade with atenolol. Resulting enhancement of HFQT oscillations was shown to contribute directly to triggering dofetilide-induced ventricular arrhythmias. CONCLUSION AND IMPLICATIONS: This work supports for the first time a contribution of haemodynamic side properties to ventricular arrhythmias triggered by torsadogenic hERG blocking drugs. These haemodynamic side effects may constitute a second component of their arrhythmic profile, acting as a trigger alongside their intrinsic arrhythmogenic electrophysiological properties.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Long QT Syndrome , Torsades de Pointes , Animals , Arrhythmias, Cardiac/chemically induced , Dogs , Electrocardiography , Ether-A-Go-Go Potassium Channels/physiology , Heart Rate , Long QT Syndrome/chemically induced , Moxifloxacin/adverse effects , Quinidine , Reflex , Torsades de Pointes/chemically induced
16.
Toxicol Lett ; 365: 11-23, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35680041

ABSTRACT

Cardiotoxicity by tyrosine kinase inhibitors remains an important concern. Nilotinib and vandetanib clinically carry high proarrhythmic risk and the exact mechanism underlying arrhythmogenesis is not fully understood. In this study, we investigated the effects of nilotinib and vandetanib on the abundance of human ether-á-go-go-related gene (hERG) K+ channel and assessed the potential role of acute hERG blockage versus chronic effects in arrhythmogenesis. We found that both nilotinib and vandetanib prolonged the field potential duration reflecting the repolarisation process and induced cellrythmias of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in a time-and concentration-dependent manner after, after chronic exposure. Patch-clamp recordings revealed significant reductions of hERG current densities by nilotinib or vandetanib after chronic incubation with hERG-HEK293 cells in addition to the acute inhibition. Western blot analysis showed that nilotinib and vandetanib decreased mature hERG protein (155-kDa) expression, in a greater extent than that of the immature form (135-kDa). A serum and glucocorticoid kinase 1 (SGK1) activator, C4-ceramide, prevented the nilotinib-and vandetanib-induced hERG protein downregulation and thus the incidence of cellrrhythmias. Taken together, our data demonstrated that the downregulation of hERG channel abundance on the cellular membrane predominantly contributed to the proarrhythmic effect of nilotinib and vandetanib.


Subject(s)
Ether-A-Go-Go Potassium Channels , Induced Pluripotent Stem Cells , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Down-Regulation , ERG1 Potassium Channel/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , HEK293 Cells , Humans , Myocytes, Cardiac , Piperidines , Protein Kinase Inhibitors/toxicity , Pyrimidines , Quinazolines
17.
Eur J Med Chem ; 236: 114329, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35397400

ABSTRACT

The incorporation of the fluorine motif is a strategy widely applied in drug design for modulating the activity, physicochemical parameters, and metabolic stability of chemical compounds. In this study, we attempted to reduce the affinity for ether-à-go-go-related gene (hERG) channel by introducing fluorine atoms in a group of 1H-pyrrolo[3,2-c]quinolines that are capable of inhibiting monoamine oxidase type B (MAO-B). A series of structural modifications guided by in vitro evaluation of MAO-B inhibition and antitargeting for hERG channels were performed, which led to the identification of 1-(3-chlorobenzyl)-4-(4,4-difluoropiperidin-1-yl)-1H-pyrrolo[3,2-c]quinoline (26). Compound 26 acted as a reversible MAO-B inhibitor exhibiting selectivity over 45 targets, enzymes, transporters, and ion channels, and showed potent glioprotective properties in cultured astrocytes. In addition, the compound demonstrated good metabolic stability in rat liver microsomes assay, a favorable safety profile, and brain permeability. It also displayed procognitive effects in the novel object recognition test in rats and antidepressant-like activity in forced swim test in mice. The findings of the study suggest that reversible MAO-B inhibitors can have potential therapeutic applications in Alzheimer's disease.


Subject(s)
Monoamine Oxidase Inhibitors , Quinolines , Animals , Brain/metabolism , Fluorine/pharmacology , Mice , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Quinolines/metabolism , Rats
18.
Methods Mol Biol ; 2474: 21-28, 2022.
Article in English | MEDLINE | ID: mdl-35294752

ABSTRACT

Human ether-a-go-go-related gene (hERG) channel plays an essential role in the repolarization of the cardiac action potential. Genetic mutations and some chemicals/drugs interfere with hERG channel activity, which may prolong the QT interval and potentially cause long QT syndrome. The FluxOR™ thallium flux assay performed in two cell lines, U2OS and HEK293, with stable hERG expression can be used to identify compounds that inhibit hERG channel activity. This chapter describes a cell-based hERG channel inhibition assay that has been optimized and performed in a 1536-well plate format. The homogeneous and robust assay can be used to identify compounds that inhibit hERG channel activity.


Subject(s)
Ether-A-Go-Go Potassium Channels , Long QT Syndrome , Action Potentials , Ether-A-Go-Go Potassium Channels/metabolism , HEK293 Cells , Humans , Long QT Syndrome/genetics , Research Design
20.
Bioorg Med Chem ; 59: 116657, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35219181

ABSTRACT

Fibroblast growth factor receptor 3 (FGFR3) is an attractive therapeutic target for the treatment of bladder cancer patients harboring genetic alterations in FGFR3. We identified pyrimidine derivative ASP5878 (27) with improved metabolic stability and suppressed human ether-á-go-go related gene (hERG) channel inhibitory activity by the optimization of lead compound 1. Based on prediction of the metabolites of 1, an ether linker was introduced in place of the ethylene linker to improve metabolic stability. Moreover, conversion of the phenyl moiety into the pyrazole ring resulted in the suppression of hERG channel inhibitory activity, possibly due to the weaker π-π stacking interaction with Phe656 in the hERG channel by a reduction in π-electrical density of the aromatic ring. ASP5878 showed potent in vitro FGFR3 enzyme and cell growth inhibitory activity, and in vivo FGFR3 autophosphorylation inhibitory activity. Moreover, ASP5878 did not affect the hERG current up to 10 µM by in vitro patch-clamp assay, and a single oral dose of ASP5878 at 1, 10, and 100 mg/kg did not induce serious adverse effects on the central nervous, cardiovascular, and respiratory systems in dogs. Furthermore, ASP5878 exhibited lower total clearance than hepatic blood flow and high oral bioavailability in rats and dogs, and moderate brain penetration in rats.


Subject(s)
Pyrazoles , Pyrimidines , Animals , Dogs , ERG1 Potassium Channel/metabolism , Ether-A-Go-Go Potassium Channels , Ethers , Humans , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL