Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Cytotherapy ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38970611

ABSTRACT

The biological properties of human mesenchymal stromal cells (hMSCs) have been explored in over a thousand clinical trials in the last decade. Although hMSCs can be isolated from multiple sources, the degree of biological similarity between cell populations from these sources remains to be determined. A comparative study was performed investigating the growth kinetics and functionality of hMSCs isolated from adipose tissue (AT), bone marrow (BM) and umbilical cord tissue (UCT) expanded in monolayer over five passages. Adult hMSCs (AT, BM) had a slower proliferation ability than the UCT-hMSCs, with no apparent differences in their glucose consumption profile. BM-hMSCs produced higher concentrations of endogenous vascular endothelial growth factor (VEGF) compared to AT- and UCT-hMSCs. This study also revealed that UCT-hMSCs were more efficiently transduced by a lentiviral vector carrying a VEGF gene than their adult counterparts. Following cellular immunophenotypic characterization, no differences across the sources were found in the expression levels of the typical markers used to identify hMSCs. This work established a systematic approach for cell source selection depending on the hMSC's intended clinical application.

2.
Biofabrication ; 16(4)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39079546

ABSTRACT

The field of bone tissue engineering aims to develop an effective and aesthetical bone graft substitute capable of repairing large mandibular defects. However, graft failure resulting from necrosis and insufficient integration with native tissue due to lack of oxygen and nutrient transportation remains a concern. To overcome these drawbacks, this study aims to develop a 3D printed polycaprolactone layered construct with a LEGO®-inspired interlocking mechanism enabling spatial distribution of biological components. To highlight itsin vitroosteogenic potential, human mesenchymal stromal cells are cultured onto Bio-Gide®Compressed collagen (Col) membranes, which are embedded within the layered construct for 28 d. The osteogenic response is assessed through the measurement of proliferation, relevant markers for osteogenesis including alkaline phosphatase (ALP) activity, expression of transcriptional genes (SP7, RUNX2/SOX9) as well matrix-related genes (COL1A1, ALPL IBSP, SPP1), osteoprotegerin secretion.In vitroosteogenic differentiation results showed increased levels of these osteogenic markers, indicating the layered construct's potential to support osteogenesis. In this study, a novel workflow of 3D printing a patient-specific LEGO®-inspired layered construct that can spatially deliver biological elements was successfully demonstrated. These layered constructs have the potential to be employed as a bone tissue engineering strategy, with particular focus on the repair of large mandibular defects.


Subject(s)
Collagen , Mandible , Mesenchymal Stem Cells , Osteogenesis , Polyesters , Printing, Three-Dimensional , Tissue Scaffolds , Humans , Polyesters/chemistry , Osteogenesis/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Collagen/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Bone Regeneration/drug effects , Cells, Cultured
3.
Cryobiology ; 116: 104943, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39033954

ABSTRACT

The paper discusses the impact of cell size on cytotoxicity and expansion lysis during the osmotic excursions resulting from the contact of hMSCs from UCB with Me2SO. It builds upon the mathematical model recently presented by the authors, which pertains to a population of cells with uniform size. The objective is to enhance the model's relevance by incorporating the more realistic scenario of cell size distribution, utilizing a Population Balance Equations approach. The study compares the capability of the multiple-sized model to the single-sized one to describe system behavior experimentally measured through cytofluorimetry and Coulter counter when, first, suspending hMSCs in hypertonic solutions of Me2SO (at varying osmolality, system temperature, and contact times), and then (at room temperature) pelleting by centrifugation before suspending the cells back to isotonic conditions. Simulations demonstrate that expansion lysis and cytotoxic effect are not affected by cell size for the specific system hMSCs/Me2SO, thus confirming what was found so far by the authors through a single-size model. On the other hand, simulations show that, when varying the adjustable parameters of the model that are expected to change from cell to cell lineages, expansion lysis is sensitive to cell size, while cytotoxicity is not, being mainly influenced by external CPA concentration and contact duration. More specifically, it is found that smaller cells suffer expansion lysis more than larger ones. The findings suggest that different cells from hMSCs may require a multiple-sized model to assess cell damage during osmotic excursions in cryopreservation.


Subject(s)
Cell Size , Humans , Cell Size/drug effects , Osmolar Concentration , Osmotic Pressure , Models, Biological , Hypertonic Solutions/pharmacology , Osmosis
4.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921905

ABSTRACT

Carbon quantum dots (CQDs) have been investigated for biomedical applications in medical imaging due to their fluorescent properties, overall long-term stability, and excellent cytocompatibility and biocompatibility. Lignin is an organic polymer in the tissues of woody plants. It is also considered a byproduct of the wood and pulp industries. Hence, it presents as a renewable source of carbon nanoparticles. In this study, we report the synthesis and material and biological characterization of two colloidal suspensions of CQDs in water derived from lignin-based carbon. One was the native form of CQDs derived from lignin carbon, and the second was doped with nitrogen to evaluate material differences. Material characterization was carried out using various commonly used techniques, including Fourier transform infrared spectroscopy (FTIR), emission and absorbance spectra, zeta potential, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Thin films of CQDs were formed on glass and silicon substrates to assess the in vitro cytocompatibility with human mesenchymal stem cells (hMSCs). Observations suggest that the two forms of CQDs promote cell attachment within 24 h and sustain it for at least 7 days. The overall structure and shape of cells suggest a lack of any adverse or toxic effects of CQDs. The data lay down the novel foundation to support the use of lignin-derived CQDs in tissue engineering applications.

5.
J Cell Biochem ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38440920

ABSTRACT

Obesity is defined as an abnormal accumulation of adipose tissue in the body and is a major global health problem due to increased morbidity and mortality. Adipose tissue is made up of adipocytes, which are fat-storing cells, and the differentiation of these fat cells is known as adipogenesis. Several transcription factors (TFs) such as CEBPß, CEBPα, PPARγ, GATA, and KLF have been reported to play a key role in adipogenesis. In this study, we report one more TF AP-1, which is found to be involved in adipogenesis. Human mesenchymal stem cells  were differentiated into adipocytes, and the expression pattern of different subunits of AP-1 was examined during adipogenesis. It was observed that C-FOS was predominantly expressed at an early stage (Day 2), whereas FRA2 expression peaked at later stages (Days 6 and 8) of adipogenesis. Chromatin immunoprecipitation-sequencing analysis revealed that C-FOS binds mainly to the promoters of WNT1, miR-30a, and ANAPC7 and regulates their expression during mitotic clonal expansion. In contrast, FRA2 binds to the promoters of CIDEA, NOTCH1, ARAF, and MYLK, regulating their expression and lipid metabolism. Data obtained clearly indicate that the differential expression of C-FOS and FRA2 is crucial for different stages of adipogenesis. This also raises the possibility of considering AP-1 as a therapeutic target for treating obesity and related disorders.

6.
Article in English | MEDLINE | ID: mdl-38421273

ABSTRACT

The rapid development of nanotechnology has led to the use of silver nanoparticles (Ag-NPs) in various biomedical fields. However, the effect of Ag-NPs on human mesenchymal stem cells (hMSCs) is not fully understood. Moreover, too frequent an exposure to products containing nanosilver in sublethal amounts raises widespread concerns that it will lead to the development of silver-resistant microorganisms. Therefore, this study aimed to evaluate the mechanism of action of Ag-NPs on hMSCs by analyzing the cellular uptake of Ag-NPs by the cells and its effect on their viability and to assess antimicrobial activity of Ag-NPs against emerging bacterial strains, including multidrug-resistant pathogens. For metabolic activity and viability evaluation, hMSCs were incubated with different concentrations of Ag-NPs (14 µg/mL, 7 µg/mL, and 3.5 µg/mL) for 10 min., 1 h and 24 h and subsequently analyzed for their viability by live-dead staining and metabolic activity by the MTS assay. The effect of Ag-NPs on bacterial pathogens was studied by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In conclusion, it was observed that exposure of hMSCs to Ag-NPs of size <10 nm has no cytotoxic effect on the metabolic activity of the cells at the concentration of 3.5 µg/mL, with minimal cytotoxic effect being observed at the concentration of 14 µg/mL after 24 h of incubation. Our findings also confirmed that Ag-NPs at the concentration of 4 µg/mL are effective broad-spectrum bactericidal agents, regardless of the antibiotic-resistance mechanism present in bacteria.


Subject(s)
Mesenchymal Stem Cells , Metal Nanoparticles , Humans , Silver/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology , Immunologic Factors
7.
Gels ; 10(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38391427

ABSTRACT

The demand for innovative therapeutic interventions to expedite wound healing, particularly in vulnerable populations such as aging and diabetic patients, has prompted the exploration of novel strategies. Mesenchymal stem cell (MSC)-based therapy emerges as a promising avenue for treating acute and chronic wounds. However, its clinical application faces persistent challenges, notably the low survivability and limited retention time of engraftment in wound environments. Addressing this, a strategy to sustain the viability and functionality of human MSCs (hMSCs) in a graft-able format has been identified as crucial for advanced wound care. Hydrogel microparticles (HMPs) emerge as promising entities in the field of wound healing, showcasing versatile capabilities in delivering both cells and bioactive molecules/drugs. In this study, gelatin HMPs (GelMPs) were synthesized via an optimized mild processing method. GelMPs with distinct diameter sizes were sorted and characterized. The growth of hMSCs on GelMPs with various sizes was evaluated. The release of wound healing promoting factors from hMSCs cultured on different GelMPs were assessed using scratch wound assays and gene expression analysis. GelMPs with a size smaller than 100 microns supported better cell growth and cell migration compared to larger sizes (100 microns or 200 microns). While encapsulation of hMSCs in hydrogels has been a common route for delivering viable hMSCs, we hypothesized that hMSCs cultured on GelMPs are more robust than those encapsulated in hydrogels. To test this hypothesis, hMSCs were cultured on GelMPs or in the cross-linked methacrylated gelatin hydrogel (GelMA). Comparative analysis of growth and wound healing effects revealed that hMSCs cultured on GelMPs exhibited higher viability and released more wound healing activities in vitro. This observation highlights the potential of GelMPs, especially those with a size smaller than 100 microns, as a promising carrier for delivering hMSCs in wound healing applications, providing valuable insights for the optimization of advanced therapeutic strategies.

8.
Mol Immunol ; 165: 42-54, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150981

ABSTRACT

OBJECTIVE: Cells can produce stress granules (SGs) to protect itself from damage under stress. The cGAS-STING pathway is one of the important pattern recognition pathways in the natural immune system. This study was investigated whether human mesenchymal stem cells (hMSCs) could protect the liver by inducing M2 macrophages to produce SGs during acute drug induced liver injury (DILI) induced by acetaminophen (APAP). METHODS: After intragastric administration of APAP in vivo to induce DILI mice model, hMSCs were injected into the tail vein. The co-culture system of hMSCs and M2 macrophages was established in vitro. It was further use SGs inhibitor anisomicin to intervene M2 macrophages. The liver histopathology, liver function, reactive oxygen species (ROS) level, apoptosis pathway, endoplasmic reticulum stress (ERS) level, SGs markers (G3BP1/TIA-1), cGAS-STING pathway, TNF-α, IL-6, IL-1ß mRNA levels in liver tissue and M2 macrophages were observed. RESULTS: In vivo experiments, it showed that hMSCs could alleviate liver injury, inhibite the level of ROS, apoptosis and ERS, protect liver function in DILI mice. The mount of M2 was increased in the liver. hMSCs could also induce the production of SGs, inhibit the cGAS-STING pathway and reduce TNF-α, IL-6, IL-1ß mRNA expression. The results in vitro showed that hMSCs could induce the production of SGs in macrophages, inhibit the cGAS-STING pathway, promote the secretion of IL-4 and IL-13, and reduce TNF-α, IL-6, IL-1ß mRNA level in cells. In the process of IL-4 inducing M2 macrophage activation, anisomycin could inhibit the production of SGs, activate the cGAS-STING pathway, and promote the inflammatory factor TNF-α, IL-6, IL-1ß mRNA expression in cells. CONCLUSIONS: HMSCs had a protective effect on acute DILI in mice induced by APAP. Its mechanism might involve in activating M2 type macrophages, promoting the production of SGs, inhibiting the cGAS-STING pathway, and reducing the expression of pro-inflammatory factors in macrophages, to reduce hepatocytes damage.


Subject(s)
Chemical and Drug Induced Liver Injury , Mesenchymal Stem Cells , Humans , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Reactive Oxygen Species/metabolism , Acetaminophen/toxicity , Acetaminophen/metabolism , Interleukin-6/metabolism , DNA Helicases/metabolism , Interleukin-4/metabolism , Stress Granules , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Macrophages/metabolism , Nucleotidyltransferases/metabolism , Chemical and Drug Induced Liver Injury/metabolism , RNA, Messenger/metabolism , Mesenchymal Stem Cells/metabolism
9.
Front Cell Dev Biol ; 11: 1329840, 2023.
Article in English | MEDLINE | ID: mdl-38099293

ABSTRACT

Human mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes. These cells have been extensively employed in the field of cell-based therapies and regenerative medicine due to their inherent attributes of self-renewal and multipotency. Traditional approaches for assessing hMSCs differentiation capacity have relied heavily on labor-intensive techniques, such as RT-PCR, immunostaining, and Western blot, to identify specific biomarkers. However, these methods are not only time-consuming and economically demanding, but also require the fixation of cells, resulting in the loss of temporal data. Consequently, there is an emerging need for a more efficient and precise approach to predict hMSCs differentiation in live cells, particularly for osteogenic and adipogenic differentiation. In response to this need, we developed innovative approaches that combine live-cell imaging with cutting-edge deep learning techniques, specifically employing a convolutional neural network (CNN) to meticulously classify osteogenic and adipogenic differentiation. Specifically, four notable pre-trained CNN models, VGG 19, Inception V3, ResNet 18, and ResNet 50, were developed and tested for identifying adipogenic and osteogenic differentiated cells based on cell morphology changes. We rigorously evaluated the performance of these four models concerning binary and multi-class classification of differentiated cells at various time intervals, focusing on pivotal metrics such as accuracy, the area under the receiver operating characteristic curve (AUC), sensitivity, precision, and F1-score. Among these four different models, ResNet 50 has proven to be the most effective choice with the highest accuracy (0.9572 for binary, 0.9474 for multi-class) and AUC (0.9958 for binary, 0.9836 for multi-class) in both multi-class and binary classification tasks. Although VGG 19 matched the accuracy of ResNet 50 in both tasks, ResNet 50 consistently outperformed it in terms of AUC, underscoring its superior effectiveness in identifying differentiated cells. Overall, our study demonstrated the capability to use a CNN approach to predict stem cell fate based on morphology changes, which will potentially provide insights for the application of cell-based therapy and advance our understanding of regenerative medicine.

10.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003736

ABSTRACT

We previously developed several successful decellularization strategies that yielded porcine cardiac extracellular matrices (pcECMs) exhibiting tissue-specific bioactivity and bioinductive capacity when cultured with various pluripotent and multipotent stem cells. Here, we study the tissue-specific effects of the pcECM on seeded human mesenchymal stem cell (hMSC) phenotypes using reverse transcribed quantitative polymerase chain reaction (RT-qPCR) arrays for cardiovascular related gene expression. We further corroborated interesting findings at the protein level (flow cytometry and immunological stains) as well as bioinformatically using several mRNA sequencing and protein databases of normal and pathologic adult and embryonic (organogenesis stage) tissue expression. We discovered that upon the seeding of hMSCs on the pcECM, they displayed a partial mesenchymal-to-epithelial transition (MET) toward endothelial phenotypes (CD31+) and morphologies, which were preceded by an early spike (~Day 3 onward after seeding) in HAND2 expression at both the mRNA and protein levels compared to that in plate controls. The CRISPR-Cas9 knockout (KO) of HAND2 and its associated antisense long non-coding RNA (HAND2-AS1) regulatory region resulted in proliferation arrest, hypertrophy, and senescent-like morphology. Bioinformatic analyses revealed that HAND2 and HAND2-AS1 are highly correlated in expression and are expressed in many different tissue types albeit at distinct yet tightly regulated expression levels. Deviation (downregulation or upregulation) from these basal tissue expression levels is associated with a long list of pathologies. We thus suggest that HAND2 expression levels may possibly fine-tune hMSCs' plasticity through affecting senescence and mesenchymal-to-epithelial transition states, through yet unknown mechanisms. Targeting this pathway may open up a promising new therapeutic approach for a wide range of diseases, including cancer, degenerative disorders, and aging. Nevertheless, further investigation is required to validate these findings and better understand the molecular players involved, potential inducers and inhibitors of this pathway, and eventually potential therapeutic applications.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , Adult , Humans , Animals , Swine , Cell Line, Tumor , Epithelial Cells/metabolism , Down-Regulation , Transcription Factors/metabolism , RNA, Messenger , Mesenchymal Stem Cells/metabolism , RNA, Long Noncoding/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , MicroRNAs/genetics
11.
J Pharmacol Toxicol Methods ; 124: 107474, 2023.
Article in English | MEDLINE | ID: mdl-37866798

ABSTRACT

For the safety and efficacy of frozen cell therapy products, determination of cellular viability is key. However, results of cell viability measurements do not only depend on the cell line or on the inflicted stress, but also on the assay used, making inter-experimental comparisons difficult. The aim of this study was thus to assess commonly used viability assays in clinically relevant human mesenchymal/stromal stem cells and human A549 lung carcinoma cells. Post freeze-thaw stress viability and proliferation were evaluated under different conditions using trypan blue, acridine orange/DAPI stain, alamarBlue, ATP, and neutral red assays. Significant differences in cell viability between metabolic assays were observed, likely due to their distinct intrinsic detection mechanisms. Membrane-integrity based assays generally overestimated cell viabilities in this study. Furthermore, noticeable differences in inter-assay sensitivities were observed. These differences highlight that cell viability methods should be meticulously selected and their associated results carefully interpreted in a relevant context to ensure reliable conclusions. Indeed, although cell membrane integrity based assays are a popular choice to determine cellular quality attributes after freezing and thawing, we demonstrate that metabolic assays may be more suitable in this context.


Subject(s)
Carcinoma , Stem Cells , Humans , Freezing , Cell Survival , Lung , Cryopreservation/methods
12.
Biomater Res ; 27(1): 107, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37904231

ABSTRACT

BACKGROUND: The secretomes of mesenchymal stem cells (MSCs) have great therapeutic potential and thereby their efficient delivery into the target site is of particular interest. Here, we propose a new strategy of hMSCs-derived secretomes delivery for advanced wound healing upon harnessing the working principle of extracellular matrix (ECM)-growth factors interaction in vivo. METHODS: We prepared an alginate hydrogel based wound patch, where it contains both human MSC-derived secretomes and ECM. The ECM was obtained from the decellularization of in vitro cultured human lung fibroblasts. The alginate solution was blended with ECM suspension, crosslinked, air-dried, then rehydrated with the secretomes contained in the concentrated conditioned media (CCM) as a highly saturated form of conditioned media (CM). We tested four different groups, with or without the ECM to investigate not only the role of ECM but the therapeutic effect of secretomes. RESULTS: The secretomes reserved many, diverse bioactive factors, such as VEGF, HGF, IGFBPs, IL-6, and IL-8. Alginate/ECM/CCM (AEC) patch could hold significantly larger amount of secretomes and release them longer than the other groups. Our AEC patch was the most effective in stimulating not only cell migration and proliferation but the collagen synthesis of dermal fibroblasts in vitro. Moreover, the AEC patch-treated full-thickness skin wounds disclosed significantly better wound healing indications: cell recruitment, neovascularization, epidermis thickness, keratinocyte migration, and mature collagen deposition, as assessed via histology (H&E, Herovici staining) and immunofluorescence, respectively. In particular, our AEC patch enabled a phenotype shift of myofibroblast into fibroblast over time and led to mature blood vessel formation at 14 day. CONCLUSIONS: We believe that ECM certainly contributed to generate a secretomes-enriched milieu via ECM-secretomes interactions and thereby such secretomes could be delivered more efficiently, exerting significant therapeutic impact either individually or collectively during wound healing process.

13.
Bioengineering (Basel) ; 10(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37508786

ABSTRACT

Immobilization using external or internal splints is a standard and effective procedure to treat minor skeletal fractures. In the case of major skeletal defects caused by extreme trauma, infectious diseases or tumors, the surgical implantation of a bone graft from external sources is required for a complete cure. Practical disadvantages, such as the risk of immune rejection and infection at the implant site, are high in xenografts and allografts. Currently, an autograft from the iliac crest of a patient is considered the "gold standard" method for treating large-scale skeletal defects. However, this method is not an ideal solution due to its limited availability and significant reports of morbidity in the harvest site (30%) as well as the implanted site (5-35%). Tissue-engineered bone grafts aim to create a mechanically strong, biologically viable and degradable bone graft by combining a three-dimensional porous scaffold with osteoblast or progenitor cells. The materials used for such tissue-engineered bone grafts can be broadly divided into ceramic materials (calcium phosphates) and biocompatible/bioactive synthetic polymers. This review summarizes the types of materials used to make scaffolds for cryo-preservable tissue-engineered bone grafts as well as the distinct methods adopted to create the scaffolds, including traditional scaffold fabrication methods (solvent-casting, gas-foaming, electrospinning, thermally induced phase separation) and more recent fabrication methods (fused deposition molding, stereolithography, selective laser sintering, Inkjet 3D printing, laser-assisted bioprinting and 3D bioprinting). This is followed by a short summation of the current osteochondrogenic models along with the required scaffold mechanical properties for in vivo applications. We then present a few results of the effects of freezing and thawing on the structural and mechanical integrity of PLLA scaffolds prepared by the thermally induced phase separation method and conclude this review article by summarizing the current regulatory requirements for tissue-engineered products.

14.
EMBO Rep ; 24(8): e56439, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37306027

ABSTRACT

Oxidative protein folding occurs in the endoplasmic reticulum (ER) to generate disulfide bonds, and the by-product is hydrogen peroxide (H2 O2 ). However, the relationship between oxidative protein folding and senescence remains uncharacterized. Here, we find that the protein disulfide isomerase (PDI), a key oxidoreductase that catalyzes oxidative protein folding, accumulated in aged human mesenchymal stem cells (hMSCs) and deletion of PDI alleviated hMSCs senescence. Mechanistically, knocking out PDI slows the rate of oxidative protein folding and decreases the leakage of ER-derived H2 O2 into the nucleus, thereby decreasing the expression of SERPINE1, which was identified as a key driver of cell senescence. Furthermore, we show that depletion of PDI alleviated senescence in various cell models of aging. Our findings reveal a previously unrecognized role of oxidative protein folding in promoting cell aging, providing a potential target for aging and aging-related disease intervention.


Subject(s)
Protein Disulfide-Isomerases , Protein Folding , Humans , Aged , Oxidation-Reduction , Protein Disulfide-Isomerases/genetics , Endoplasmic Reticulum/metabolism , Oxidative Stress
15.
Med Arch ; 77(2): 90-96, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37260802

ABSTRACT

Background: Lower limb peripheral artery disease (PAD) is the main risk of diabetes mellitus which result to high mortality rate. Approximately, 50% of patients who receive several treatments have passed away or lost limbs at a year's follow-up. Secretome of hypoxia mesenchymal stem cells (S-MSCs) contains several active soluble molecules from hypoxia MSCs (H-MSCs) that capable inducing anti-inflammatory and vascular regeneration in PAD. Objective: In this study, we investigated the therapeutic potential of S-MSCs in improving dynamic function and angiogenesis of PAD diabetic rats. Methods: The PAD was established by the incision from the groin to the inner thigh and distal ligation of femoral arteries in rats with diabetes. Rats were administered with 200 µL and 400 µL S-MSCs that successfully filtrated using tangential flow filtration (TFF) system based on various molecular weight cut-off categories intravenously. ELISA assay was used to analyze the cytokines and growth factors contained in S-MSCs. Tarlov score were examined at day 1, 3, 5, 7, 10 and 14. The rats were sacrificed at day 14 and muscle tissues were collected for immunohistochemistry (IHC) and gene expression analysis. Results: ELISA assay showed that S-MSCs provides abundant level of VEGF, PDGF, bFGF, IL-10 and TGFß. In vivo administration of S-MSCs remarkably enhanced the Tarlov score. S-MSCs improved angiogenesis through enhancing VEGF gene expression and significantly increasing CD31 positive area in muscle tissue of PAD diabetic rats. Conclusion: Our findings suggest that S-MSCs could improves dynamic function and angiogenesis in PAD diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Mesenchymal Stem Cells , Peripheral Arterial Disease , Rats , Animals , Diabetes Mellitus, Experimental/complications , Vascular Endothelial Growth Factor A , Secretome , Hypoxia , Peripheral Arterial Disease/therapy , Mesenchymal Stem Cells/metabolism
16.
Biomedicines ; 11(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36979893

ABSTRACT

The angiogenic potential of mesenchymal stem cells (MSCs) is critical for adult vascular regeneration and repair, which is regulated by various growth factors and cytokines. In the current study, we report that knockdown SUMO-specific peptidase 1 (SENP1) stimulated the SUMOylation of MRTF-A and prevented its translocation into the nucleus, leading to downregulation of the cytokine and angiogenic factor CCN1, which significantly impacted MSC-mediated angiogenesis and cell migration. Further studies showed that SENP1 knockdown also suppressed the expression of a chemokine receptor CXCR4, and overexpression of CXCR4 could partially abrogate MRTF-A SUMOylation and reestablish the CCN1 level. Mutation analysis confirmed that SUMOylation occurred on three lysine residues (Lys-499, Lys-576, and Lys-624) of MRTF-A. In addition, SENP1 knockdown abolished the synergistic co-activation of CCN1 between MRTF-A and histone acetyltransferase p300 by suppressing acetylation on histone3K9, histone3K14, and histone4. These results revealed an important signaling pathway to regulate MSC differentiation and angiogenesis by MRTF-A SUMOylation involving cytokine/chemokine activities mediated by CCN1 and CXCR4, which may potentially impact a variety of cellular processes such as revascularization, wound healing, and progression of cancer.

17.
Mol Biotechnol ; 65(12): 2108-2118, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36964437

ABSTRACT

Non-coding RNAs, including long-chain non-coding RNA (lncRNA) and micro-RNA (miRNA), have been implicated in osteoporosis (OP) progression by regulating osteoblast-dependent bone metabolism. Herein, we investigated whether LINC01234, miR-513a-5p, and AOX1 regulate osteogenic differentiation and proliferation of human bone marrow mesenchymal stem cells (hMSCs). The expression of LINC01234, miR-513a-5p, and AOX1 was monitored using RT-qPCR or western blotting. Cell proliferation was assessed using a CCK8 assay. Alkaline phosphatase activity (ALP) and alizarin red dye staining were performed to determine osteogenic differentiation. Furthermore, the expression of osteoblast differentiation markers, such as ALP, BMP1 (bone morphogenetic protein 1), osteocalcin (OCN), and osteopontin (OPN), was determined by RT-qPCR. Luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the interplay between miR-513a-5p and LINC01234 or AOX1. Compared with the plasma of healthy controls, LINC01234 and AOX1 were highly expressed in the plasma of patients with OP, whereas miR-513a-5p showed low expression. In contrast, LINC01234 and AOX1 expression displayed a gradual decrease in induced differentiated hMSCs, while miR-513a-5p expression was upregulated with induction time. The predicted binding sites between miR-513a-5p and LINC01234 or AOX1 were verified by luciferase reporter and RIP assays. LINC01234 silencing induced osteogenic differentiation and proliferation in vitro, and miR-513a-5p silencing blunted osteogenic differentiation and proliferation modulated by LINC01234. AOX1 silencing caused by miR-513a-5p enhances osteogenic proliferation and differentiation. LINC01234 sponging of the miR-513a-5p/AOX1 axis impeded the osteogenic differentiation of hMSCs, favoring OP progression.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , RNA, Long Noncoding , Humans , Osteogenesis/genetics , MicroRNAs/metabolism , Cell Differentiation/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cells, Cultured , Bone Marrow Cells/metabolism , Luciferases/metabolism , Aldehyde Oxidase/metabolism
18.
J Pharm Sci ; 112(6): 1681-1686, 2023 06.
Article in English | MEDLINE | ID: mdl-36754231

ABSTRACT

Standard freezing protocols of clinically relevant cell lines commonly employ agents such as fetal bovine serum and dimethyl sulfoxide, which are a potential concern from both a regulatory and a patient safety perspective. The aim of this work was to develop formulations with safe and well tolerated excipients for the (cryo-) preservation of cell therapy products. We evaluated the cryoprotective capabilities of urea and glucose through measurements of cell metabolic activity. Freezing of clinically relevant human mesenchymal stromal/stem cells and human dermal fibroblasts at ≤ - 65°C at equimolar ratios of urea and glucose resulted in comparable viabilities to established dimethyl sulfoxide. Pre-incubation of human mesenchymal stromal/stem cells in trehalose and addition of mannitol and sucrose to the formulation further enhanced cell viability after freeze-thaw stress. Other cell types assessed (A549 and SK-N-AS) could not satisfactorily be preserved with urea and glucose, highlighting the need for tailored formulations to sustain acceptable cryopreservation.


Subject(s)
Cryoprotective Agents , Dimethyl Sulfoxide , Humans , Cryoprotective Agents/pharmacology , Glucose , Urea , Freezing , Cryopreservation/methods , Immunologic Factors , Stem Cells/metabolism , Cell Survival
19.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674547

ABSTRACT

Sjögren's syndrome (SS) is a systemic autoimmune disease delineated by chronic lymphocytic infiltrates into the lacrimal or salivary glands, leading to severe dry eye and dry mouth. Mesenchymal stem cells have been shown to be effective in treating numerous autoimmune diseases. This study aimed to illustrate the effects of mesenchymal stem cells on the attenuation of dry eyes (DE) through the inhibition of autophagy markers in a SS mouse model. NOD/ShiLtJ female mice with developed DE were treated with either subconjunctival or lacrimal gland injections of hMSCs (Catholic MASTER Cells). After maintenance for 14 days, clinical DE markers such as tear secretion and corneal staining were observed, as well as goblet cell counts in the conjunctiva, infiltration of inflammatory foci, B and T cells, and autophagy markers in the lacrimal glands. Proinflammatory cytokine expressions of the cornea and conjunctiva, as well as the lacrimal glands, were examined. Clinical markers, such as tear secretion and corneal stain scores, goblet cell counts in the conjunctiva, and foci infiltrations in the lacrimal glands were attenuated in mice treated with subconjunctival or lacrimal gland injections of hMSCs compared to the PBS-treated control group. B cell marker B220 decreased in the lacrimal glands of hMSCs-treated mice, as well as reduced proinflammatory cytokine expressions in the lacrimal glands and cornea. Notably, expression of autophagy markers ATG5 and LC3B-II, as well as HIF-1α and mTOR which play roles in the pathways of autophagy modulation, were shown to be attenuated in the lacrimal glands of hMSCs-treated mice compared to the PBS-treated control mice. Treatment with hMSCs by lacrimal gland or subconjunctival injection demonstrated the alleviation of DE through the repression of autophagy markers, suggesting the therapeutic potentials of hMSCs in a SS mouse model.


Subject(s)
Dry Eye Syndromes , Lacrimal Apparatus , Mesenchymal Stem Cells , Sjogren's Syndrome , Female , Animals , Mice , Tears/metabolism , Mice, Inbred NOD , Dry Eye Syndromes/etiology , Dry Eye Syndromes/therapy , Dry Eye Syndromes/metabolism , Lacrimal Apparatus/metabolism , Mesenchymal Stem Cells/metabolism , Biomarkers/metabolism , Cytokines/metabolism , Disease Models, Animal
20.
ACS Biomater Sci Eng ; 9(2): 671-679, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36598843

ABSTRACT

Interferon-gamma (IFN-γ) plays a vital role in modulating the immunosuppressive properties of human mesenchymal stem/stromal cells (hMSCs) used in cell therapies. However, IFN-γ suffers from low bioavailability and degrades in media, creating a challenge when using IFN-γ during the manufacturing of hMSCs. Metal-organic frameworks (MOFs), with their porous interiors, biocompatibility, high loading capacity, and ability to be functionalized for targeting, have become an increasingly suitable platform for protein delivery. In this work, we synthesize the MOF PCN-333(Fe) and show that it can be utilized to immobilize and deliver IFN-γ to the local extracellular environment of hMSCs. In doing so, the cells proliferate and differentiate appropriately with no observed side effects. We demonstrate that PCN-333(Fe) MOFs containing IFN-γ are not cytotoxic to hMSCs, can promote the expression of proteins that play a role in immune response, and are capable of inducing indoleamine 2,3-dioxygenase (IDO) production similar to that of soluble IFN-γ at lower concentrations. Overall, using MOFs to deliver IFN-γ may be leveraged in the future in the manufacturing of therapeutically relevant hMSCs.


Subject(s)
Interferon-gamma , Mesenchymal Stem Cells , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Mesenchymal Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL