Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Water Sci Technol ; 89(6): 1583-1594, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38557720

ABSTRACT

Low-energy nitrogen removal from ammonium-rich wastewater is crucial in preserving the water environment. A one-stage nitritation/anammox process with two inflows treating ammonium-containing wastewater, supplied from inside and outside the wound filter, is expected to stably remove nitrogen. Laboratory-scale reactors were operated using different start-up strategies; the first involved adding nitritation inoculum after anammox biomass formation in the filter, which presented a relatively low nitrogen removal rate (0.171 kg N/m3 · d), at a nitrogen loading rate of 1.0 kg N/m3 · d. Conversely, the second involved the gradual cultivation of anammox and nitritation microorganisms, which increased the nitrogen removal rate (0.276 kg N/m3 · d). Furthermore, anammox (Candidatus Brocadia) and nitritation bacteria (Nitrosomonadaceae) coexisted in the biofilm formed on the filter surface. The abundance of nitritation bacteria (10.5%) in the reactor biofilm using the second start-up strategy was higher than that using the first (3.7%). Thus, the two-inflow nitritation/anammox process effectively induced habitat segregation using a suitable start-up strategy.


Subject(s)
Ammonium Compounds , Microbiota , Wastewater , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Bioreactors/microbiology , Bacteria , Biofilms , Nitrogen , Sewage , Denitrification
2.
Zoolog Sci ; 40(3): 203-207, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37256567

ABSTRACT

Different crustacean species can differ in their response to light. In Tanaidacea, a small group of aquatic, benthic crustaceans, previous studies suggested that several species may be positively phototactic based on their attraction to nocturnal light traps, but no experimental investigations of phototaxis had been conducted on this group. Here we show experimentally that two species in the genus Zeuxo are phototactic but exhibit opposite reactions to light; Zeuxo ezoensis, which inhabits the blades and stipes of seaweeds, was positively phototactic, whereas Zeuxo molybi, which inhabits muddy sediments overlying bedrock, was negatively phototactic. This differential response may reflect differences in photoenvironment between these species' microhabitats.


Subject(s)
Phototaxis , Water , Animals , Crustacea
3.
J Fish Biol ; 101(6): 1617-1622, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36161466

ABSTRACT

Electrofishing and visual observations revealed contrasting riverine distribution and habitat use of the Japanese eel, Anguilla japonica, and the giant mottled eel, Anguilla marmorata, in a relatively gentle-slope river of Southern Kyushu, Japan. A. japonica was distributed in the lower and upper reaches. A. marmorata inhabited the middle reaches with relatively fast water velocity, heterogeneous water depth, coarse substrata and no adjacent paddy fields. This may have important conservation implications because a decrease in environmental diversity and/or river connectivity could result in the disappearance of A. marmorata habitats.


Subject(s)
Anguilla , Animals , Rivers , Ecosystem , Sympatry , Water
4.
Am Nat ; 199(6): 743-757, 2022 06.
Article in English | MEDLINE | ID: mdl-35580224

ABSTRACT

AbstractSpatial segregation of closely related species is usually attributed to differences in stress tolerance and competitive ability. For both animals and plants, reproductive interactions between close relatives can impose a fitness cost that is more detrimental to the rarer species. Frequency-dependent mating interactions may thus prevent the establishment of immigrants within heterospecific populations, maintaining spatial segregation of species. Despite strong spatial segregation in natural populations, two sympatric California monkeyflowers (Mimulus nudatus and M. guttatus) survive and reproduce in the other's habitat when transplanted reciprocally. We hypothesized that a frequency-dependent mating disadvantage maintains spatial segregation of these monkeyflowers during natural immigration. To evaluate this hypothesis, we performed two field experiments. First, we experimentally added immigrants in varying numbers to sites dominated by heterospecifics. Second, we reciprocally transplanted arrays of varying resident and immigrant frequencies. Immigrant seed viability decreased with conspecific rarity for M. guttatus but not for M. nudatus. We observed immigrant minority disadvantage for both species, but it was driven by different factors-frequency-dependent hybridization for M. guttatus and competition for resources and/or pollinators for M. nudatus. Overall, our results suggest a major role for reproductive interference in spatial segregation that should be evaluated along with stress tolerance and competitive ability.


Subject(s)
Mimulus , Animals , Ecosystem , Hybridization, Genetic , Mimulus/genetics , Seeds , Sympatry
5.
Ecol Evol ; 12(4): e8766, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35386869

ABSTRACT

Niche differentiation between closely related species leads to differentiation of their habitats. Segregation based on slight differences in environmental factors, that is niche differentiation on the microhabitat scale, allows more species to inhabit a certain geographic space. Therefore, such fine scale niche differentiation is an important factor in the support of species diversity. In addition, niche differentiation on the microhabitat scale and/or the differentiation of breeding seasons can be considered typical mechanisms that facilitate multispecies' co-existence. In this study, sister species (Commonly, Ephemera japonica inhabit at upstream region and Ephemera strigata inhabit at middle stream region), which often coexist in the upper to middle reaches of river systems of the Japanese Islands, were targeted and the following aspects were investigated. First, differences in habitat preference and interspecific differences in flow distribution patterns on a geographically fine scale were tracked in detail. Subsequently, the temporal transitions of their distribution patterns were investigated in detail and seasonal changes were investigated. Finally, we thoroughly investigated the disappearance of nymphs of each species from the river due to emergence affected the distribution of each species (by conducting daily emergence surveys). Combining results of these multiple studies also suggested that there may be spatiotemporal interspecial interaction between these two species within/around their overlapping regions. Traditionally, the longitudinal distribution pattern of these two Ephemera mayflies has been thought to be established based on a difference in habitat preferences, but this study revealed that the interspecific interaction between the two species also plays an important role. This study provides new insights into species diversity and distribution pattern formation in river-dwelling species.

6.
Evolution ; 75(4): 832-846, 2021 04.
Article in English | MEDLINE | ID: mdl-33590496

ABSTRACT

Incompletely reproductively isolated species often segregate into different microhabitats, even when they are able to survive and reproduce in both habitats. Longer term evolutionary factors may contribute to this lack of cross-habitat persistence. When reproductive interference reduces immigrant fitness, assortative mating, including self-fertilization, increases immigrants' fitness in a single generation, but longer term, inbreeding depression may reduce the chance of population persistence. Two California monkeyflower species repeatedly segregate into drier and wetter areas in their zone of sympatry. To test whether inbreeding depression may contribute to the maintenance of this segregation pattern, we transplanted outbred and successively inbred Mimulus guttatus and Mimulus nudatus into their native habitats and heterospecific habitats. We measured germination, survival, and seed set and found that recurrent selfing reduced all aspects of fitness in both species, most strongly in foreign habitats. A simulation model, parameterized from the transplant experiment, found that inbreeding reduced fitness to such an extent that sequentially inbred populations of either species would be unable to persist in heterospecific-occupied habitats in the absence of continued gene flow. These results demonstrate that individual immigrants are unlikely to form persistent populations and thus, inbreeding depression contributes to the absence of fine-scale coexistence in this species pair.


Subject(s)
Ecosystem , Inbreeding Depression , Mimulus/genetics , Sympatry , California , Computer Simulation , Gene Flow , Genetic Fitness , Genetics, Population , Mimulus/classification , Models, Genetic , Seeds , Self-Fertilization
7.
Ecol Evol ; 10(19): 10886-10898, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33072303

ABSTRACT

Golden and Blueline Tilefish (Lopholatilus chamaeleonticeps and Caulolatilus microps) are keystone taxa in northwest (NW) Atlantic continental shelf-edge environments due to their biotic (trophic-mediated) and abiotic (ecosystem engineering) functional roles combined with high-value fisheries. Despite this importance, the ecological niche dynamics (i.e., those relating to trophic behavior and food-web interactions) of these sympatric species are poorly understood, knowledge of which may be consequential for maintaining both ecosystem function and fishery sustainability. We used stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) to build realized ecological niche hypervolumes to serve as proxies for diet and production use patterns of L. chamaeleonticeps and C. microps. We hypothesized that: (a) species exhibit ontogenetic shifts in diet and use of production sources; (b) species acquire energy from spatially distinct resource pools that reflect a sedentary life-history and differential use of the continental shelf-edge; and (c) species exhibit differentiation in one or more measured niche axes. We found evidence for ontogenetic shifts in diet (δ15N) but not production source (δ13C) in both species, suggesting a subtle expansion of measured ecological niche axes. Spatial interpolation of stable isotope ratios showed distinct latitudinal gradients; for example, individuals were 13C enriched in northern and 15N enriched in southern regions, supporting the assertion that tilefish species acquire energy from regional resource pools. High isotopic overlap was observed among species (≥82%); however, when hypervolumes included depth and region of capture, overlap among species substantially decreased to overlap estimates of 15%-77%. This suggests that spatial segregation could alleviate potential competition for resources among tilefish species inhabiting continental shelf-edge environments. Importantly, our results question the consensus interpretation of isotopic overlap estimates as representative of direct competition among species for shared resources or habitats, instead identifying habitat segregation as a possible mechanism for coexistence of tilefish species in the NW Atlantic.

8.
J Anim Ecol ; 89(11): 2605-2616, 2020 11.
Article in English | MEDLINE | ID: mdl-32799334

ABSTRACT

Maladaptive hybridization selects for prezygotic isolation, a process known as reinforcement. Reinforcement reduces gene flow and contributes to the final stage of speciation. Ecologically, however, coexistence of the incipient species is difficult if they initially use identical resources. Habitat segregation offers an alternative to species discrimination as a way to reduce gene flow: production of unfit hybrids is reduced if mate encounters become rare due to differing habitat choice. Using a modelling approach, we show that hybridization avoidance alone can select for habitat specialization, even if neither of the species is intrinsically better at using a specific niche. While habitat segregation and species discrimination both reduce the risk of producing unfit hybrids, these two isolation mechanisms differ from each other with respect to their effects on resource competition. Our model shows that, as a consequence of such differences, reinforcement evolves much more easily if hybridization is avoided based on habitat segregation than if the mechanism involves species recognition (mate choice traits). We also examine the outcomes when both isolation mechanisms evolve jointly. The establishment of one isolation mechanism a priori weakens selection for the other. However, an asymmetry persists here too. The net effect of habitat segregation on species discrimination was typically facilitative, but not vice versa. This asymmetry arises because habitat segregation, by enhancing coexistence, secures time for the subsequent evolution of species discrimination in a mate choice context (still relevant if habitat use is not perfectly segregated). Species discrimination does not have such a stabilizing effect on coexistence. Our results emphasize the importance of habitat segregation in reinforcement and offer a way to interpret findings where closely related taxa show similar performance on different resources or in different habitats. Studies of ecological generalization and specialization should therefore take into account that niche differences can be initiated and/or maintained by hybridization avoidance.


Subject(s)
Ecosystem , Hybridization, Genetic , Animals , Gene Flow , Reproduction
9.
Am J Primatol ; 82(8): e23157, 2020 08.
Article in English | MEDLINE | ID: mdl-32515849

ABSTRACT

Knowledge of niche partitioning with respect to habitat is indispensable to understand the mechanism of coexistence of multiple species. Among primates, however, data are still deficient because repeated survey for a sufficiently long time, covering seasonal changes over a large area, is the only way to clarify habitat segregation within a seasonally fluctuating environment. Southeast Asia is particularly interesting because of the supra-annual, highly unpredictable seasonality in fruiting known as mast fruiting. We conducted repeated route census, habitat monitoring, and group tracking for 25 months in two study sites (ca. 10 km apart) in the largely primary lowland dipterocarp forest of the Danum Valley Conservation Area, eastern Sabah, northern Borneo, Malaysia. The five species of diurnal primates (Bornean orangutan Pongo pygmaeus, Müeller's gibbon Hylobates muelleri, red leaf monkey Presbytis rubicunda, long-tailed macaque Macaca fascicularis, and southern pig-tailed macaque M. nemestrina) did not show horizontal spatial segregation. Red leaf monkeys showed preferences for places with short tree height, but their distribution was not confined to such places. In response to the fruiting peak observed once during the study period, orangutans increased their numbers simultaneously in the two study sites. The average tree height used by the five species was different, but their range overlapped substantially. Compared with other primate communities, the lack of horizontal spatial segregation and the suggested long-distance movement of orangutans seem to be unique characteristics in Borneo, although the use of different forest strata is a widespread phenomenon among primate communities throughout the world.


Subject(s)
Catarrhini/physiology , Ecosystem , Animal Distribution , Animals , Borneo , Feeding Behavior , Fruit/growth & development , Malaysia , Trees
11.
Ecology ; 99(12): 2776-2786, 2018 12.
Article in English | MEDLINE | ID: mdl-30365165

ABSTRACT

Closely related, ecologically similar species are often separated at small geographic scales while being broadly sympatric. Both adaptation to abiotic environmental conditions and a variety of biotic interactions may determine small-scale allopatry. In Northern California's coast range, two monkeyflower species, Mimulus guttatus and Mimulus nudatus, can co-occur within local sites but rarely overlap at fine spatial scales, even though they are often separated by less than 1 m. M. guttatus naturally grows in wetter areas and is often submerged for up to four months of the year, while M. nudatus naturally occupies drier sites. We used a combination of observational data, reciprocal transplant, and laboratory experiments to test a series of biotic and abiotic hypotheses for the observed distribution pattern. Although M. guttatus can tolerate dry hillside conditions like those in which M. nudatus occurs, M. nudatus is unable to survive submerged for more than a week, limiting its distribution from seasonal streams inundated for months and dominated by M. guttatus. While herbivores did not differentially damage species, transplants were more likely to be damaged in M. guttatus' seep habitat and M. nudatus was less tolerant to herbivory. Individuals of each species transplanted into populations of heterospecific congeners produced large proportions (up to 80%) of inviable seeds resulting from increased hybridization rates in close sympatry. Mimulus nudatus' inability to tolerate submergence and herbivory establishes some degree of habitat association, and then, hybrid seed inviability reduces the ability of the locally rarer species to persist within the congener's microhabitat and maintains habitat segregation. Together these data show that both environmental filtering and biotic interactions shape the fine-scale distribution of close relatives.


Subject(s)
Mimulus , California , Ecosystem , Hybridization, Genetic , Sympatry
12.
Ecol Evol ; 8(16): 8380-8395, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30250710

ABSTRACT

The abundance and biomass of benthic foraminifera are high in intertidal rocky-shore habitats. However, the availability of food to support their high biomass has been poorly studied in these habitats compared to those at seafloor covered by sediments. Previous field and laboratory observations have suggested that there is diversity in the food preferences and modes of life among rocky-shore benthic foraminifera. In this study, we used the stable nitrogen isotopic composition of amino acids to estimate the trophic position, trophic niche, and feeding strategy of individual foraminifera species. We also characterized the configuration and structure of the endobiotic microalgae in foraminifera using transmission electron microscopy, and we identified the origin of endobionts based on nucleotide sequences. Our results demonstrated a large variation in the trophic positions of different foraminifera from the same habitat, a reflection of endobiotic features and the different modes of life and food preferences of the foraminifera. Foraminifera did not rely solely on exogenous food sources. Some species effectively used organic matter derived from endobionts in the cell cytoplasm. The high biomass and species density of benthic foraminifera found in intertidal rocky-shore habitats are thus probably maintained by the use of multiple nitrogen resources and by microhabitat segregation among species as a consequence.

13.
J Evol Biol ; 31(6): 914-923, 2018 06.
Article in English | MEDLINE | ID: mdl-29603471

ABSTRACT

Interspecific competition is assumed to play an important role in the ecological differentiation of species and speciation. However, empirical evidence for competition's role in speciation remains surprisingly scarce. Here, we studied the role of interspecific competition in the ecological differentiation and speciation of two closely related songbird species, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia). Both species are insectivorous and ecologically very similar. They hybridize in a secondary contact zone, which is a mosaic of sites where both species co-occur (syntopy) and sites where only one species is present (allotopy). We analysed fine-scale habitat data for both species in both syntopic and allotopic sites and looked for associations between habitat use and bill morphology, which have been previously shown to be more divergent in sympatry than in allopatry. We found that the two nightingale species differ in habitat use in allotopic sites, where L. megarhynchos occurred in drier habitats and at slightly higher elevations, but not in syntopic sites. Birds from allotopic sites also showed higher interspecific divergence in relative bill size compared to birds from syntopic sites. Finally, we found an association between bill morphology and elevation. Our results are consistent with the view that interspecific competition in nightingales has resulted in partial habitat segregation in sympatry and that the habitat-specific food supply has in turn very likely led to bill size divergence. Such ecological divergence may enhance prezygotic as well as extrinsic postzygotic isolation and thus accelerate the completion of the speciation process.


Subject(s)
Animal Distribution , Feeding Behavior , Hybridization, Genetic , Songbirds/genetics , Songbirds/physiology , Altitude , Animals , Beak/anatomy & histology , Ecosystem , Genetic Speciation , Genetic Variation , Songbirds/anatomy & histology
14.
Oecologia ; 186(3): 645-654, 2018 03.
Article in English | MEDLINE | ID: mdl-29335795

ABSTRACT

Predation has direct impact on prey populations by reducing prey abundance. In addition, predator presence alone can also have non-consumptive effects on prey species, potentially influencing their interspecific interactions and thus the structure of entire assemblages. The performance of potential prey species may, therefore, depend on both the presence of predators and competitors. We studied habitat use and food consumption of a marine mesograzer, the amphipod Echinogammarus marinus, in the presence/absence of a fish mesopredator and/or an amphipod competitor. The presence of the predator affected both habitat choice and food consumption of the grazer, indicating a trade-off between the use of predator-free space and food acquisition. Without the predator, E. marinus were distributed equally over different microhabitats, whereas in the presence of the predator, most individuals chose a sheltered microhabitat and reduced their food consumption. Furthermore, habitat choice of the amphipods changed in the presence of interspecific competitors, also resulting in reduced feeding rates. The performance of E. marinus is apparently driven by trait-mediated direct and indirect effects caused by the interplay of predator avoidance and competition. This highlights the importance of potential non-consumptive impacts of predators on their prey organisms. The flexible responses of small invertebrate consumers to the combined effects of predation and competition potentially lead to changes in the structure of coastal ecosystems and the multiple species interactions therein.


Subject(s)
Amphipoda , Animals , Cues , Ecosystem , Food Chain , Predatory Behavior
15.
Ecol Evol ; 8(23): 11450-11466, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30598748

ABSTRACT

Identifying how sympatric species belonging to the same guild coexist is a major question of community ecology and conservation. Habitat segregation between two species might help reduce the effects of interspecific competition and apex predators are of special interest in this context, because their interactions can have consequences for lower trophic levels. However, habitat segregation between sympatric large carnivores has seldom been studied. Based on monitoring of 53 brown bears (Ursus arctos) and seven sympatric adult gray wolves (Canis lupus) equipped with GPS collars in Sweden, we analyzed the degree of interspecific segregation in habitat selection within their home ranges in both late winter and spring, when their diets overlap the most. We used the K-select method, a multivariate approach that relies on the concept of ecological niche, and randomization methods to quantify habitat segregation between bears and wolves. Habitat segregation between bears and wolves was greater than expected by chance. Wolves tended to select for moose occurrence, young forests, and rugged terrain more than bears, which likely reflects the different requirements of an omnivore (bear) and an obligate carnivore (wolf). However, both species generally avoided human-related habitats during daytime. Disentangling the mechanisms that can drive interspecific interactions at different spatial scales is essential for understanding how sympatric large carnivores occur and coexist in human-dominated landscapes, and how coexistence may affect lower trophic levels. The individual variation in habitat selection detected in our study may be a relevant mechanism to overcome intraguild competition and facilitate coexistence.

16.
FEMS Microbiol Ecol ; 93(9)2017 09 01.
Article in English | MEDLINE | ID: mdl-28934399

ABSTRACT

Cold seeps are widespread chemosynthetic ecosystems in the deep-sea environment, and cold seep microbial communities of the South China Sea are poorly constrained. Here we report on the archaeal communities, particularly those involved in methane metabolization, in sediments of a newly discovered cold seep (named 'Haima') on the northwest slope of the South China Sea. Archaeal diversity, abundance and distribution were investigated in two piston cores collected from a seep area (QDN-14B) and a non-seep control site (QDN-31B). Geochemical investigation of the QDN-14B core identified an estimated sulfate-methane transition zone (Estimated SMTZ) at 300-400 cm below sea floor (cmbsf), where a high abundance of anaerobic methane-oxidizing archaea (ANME) occurred, as revealed by analysis of the 16S rRNA gene and the gene (mcrA) encoding the α-subunit of the key enzyme methyl-coenzyme M reductase. ANME-2a/b was predominant in the upper and middle layers of the estimated SMTZ, whereas ANME-1b outcompeted ANME-2 in the sulfate-depleted bottom layers of the estimated SMTZ and the methanogenic zone. Fine-scale phylogenetic analysis further divided the ANME-1b group into three subgroups with different distribution patterns: ANME-1bI, ANME-1bII and ANME-1bIII. Multivariate analyses indicated that dissolved inorganic carbon and sulfate may be important factors controlling the composition of the methane-metabolizing community. Our study on ANME niche separation and interactions with other archaeal groups improves our understanding of the metabolic diversity and flexibility of ANME, and the findings further suggest that ANME subgroups may have evolved diversified/specified metabolic capabilities other than syntrophic anaerobic oxidation of methane coupled with sulfate reduction in marine sediments.


Subject(s)
Geologic Sediments/microbiology , Methane/metabolism , Methanosarcinales/classification , Methanosarcinales/metabolism , Seawater/microbiology , Sulfates/metabolism , China , Ecosystem , Methanosarcinales/genetics , Oceans and Seas , Oxidoreductases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
17.
Evolution ; 70(10): 2226-2238, 2016 10.
Article in English | MEDLINE | ID: mdl-27464950

ABSTRACT

Competition-driven evolution of habitat isolation is an important mechanism of ecological speciation but empirical support for this process is often indirect. We examined how an on-going displacement of pied flycatchers from their preferred breeding habitat by collared flycatchers in a young secondary contact zone is associated with (a) access to an important food resource (caterpillar larvae), (b) immigration of pied flycatchers in relation to habitat quality, and (c) the risk of hybridization in relation to habitat quality. Over the past 12 years, the estimated access to caterpillar larvae biomass in the habitat surrounding the nests of pied flycatchers has decreased by a fifth due to shifted establishment possibilities, especially for immigrants. However, breeding in the high quality habitat has become associated with such a high risk of hybridization for pied flycatchers that overall selection currently favors pied flycatchers that were forced to immigrate into the poorer habitats (despite lower access to preferred food items). Our results show that competition-driven habitat segregation can lead to fast habitat isolation, which per se caused an opportunity for selection to act in favor of future "voluntarily" altered immigration patterns and possibly strengthened habitat isolation through reinforcement.


Subject(s)
Animal Distribution , Ecosystem , Reproductive Isolation , Selection, Genetic , Songbirds/genetics , Animals , Biomass , Feeding Behavior , Insecta/growth & development , Models, Genetic , Songbirds/growth & development
18.
Mar Biol ; 163: 68, 2016.
Article in English | MEDLINE | ID: mdl-27069277

ABSTRACT

On the shore of the rocky island of Helgoland (North Sea) two closely related isopod species, Idotea balthicaPallas, 1772, and Idotea granulosaRathke, 1843, share a similar fundamental niche but inhabit well-separated habitats. Idotea balthica inhabits floating algae at the sea surface and accumulations of decaying algae on the seafloor, whereas I. granulosa primarily occurs in intertidal macroalgal belts. In laboratory experiments on individually reared isopods I. balthica outperformed I. granulosa with regard to growth, reproduction, and mortality in both a fully inundated habitat and in a tidal habitat with 5 h of daily emergence. We hypothesized that habitat segregation in the two isopod species is driven by one or multiple types of biotic interactions: (1) no interaction, (2) cannibalism, (3) intraguild predation, and (4) terrestrial predation. In order to evaluate how habitat segregation can be explained by each of these interaction types we employed a size-structured population model to account for the body-size-dependent predation. Net population growth rates were fitted to the simulations as a measure of population fitness. Experimental results served as database for parameter and process identification. As predation rates were unknown, we performed a sensitivity analysis for these. We found that below 5 h of daily tidal emergence either cannibalism or terrestrial predation sufficed to explain habitat segregation. Intraguild predation, in contrast, advantaged I. balthica in any case. From linear extrapolation of the effects occurring under conditions of 5 h of daily tidal emergence, we predict that contrasting physiological responses in I. balthica and I. granulosa would cause segregation even without any interaction if emergence lasted long enough.

19.
Ecol Evol ; 5(19): 4263-76, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26664677

ABSTRACT

Interspecific hybridization, especially when regularly followed by backcrossing (i.e., introgressive hybridization), conveys a substantial risk for many endangered organisms. This is particularly true for narrow endemics occurring within distributional ranges of widespread congeners. An excellent example is provided by the plant genus Knautia (Caprifoliaceae): Locally endemic K. carinthiaca is reported from two isolated populations in southern Austria situated within an area predominantly occupied by widespread K. arvensis. While K. carinthiaca usually inhabits low-competition communities on rocky outcrops, K. arvensis occurs mainly in dry to mesic managed grasslands, yet both species can coexist in marginal environments and were suspected to hybridize. Flow cytometry revealed that diploid K. carinthiaca only occurs at its locus classicus, whereas the second locality is inhabited by the morphologically similar but tetraploid K. norica. In the, therefore, single population of K. carinthiaca, flow cytometry and AFLP fingerprinting showed signs of introgressive hybridization with diploid K. arvensis. Hybridization patterns were also reflected in intermediate habitat preferences and morphology of the hybrids. Environmental barriers to gene flow seem to prevent genetic erosion of K. carinthiaca individuals from the core ecological niches, restricting most introgressed individuals to peripheral habitats. Efficient conservation of K. carinthiaca will require strict protection of its habitat and ban on forest clear cuts in a buffer zone to prevent invasion of K. arvensis. We demonstrate the large potential of multidisciplinary approaches combining molecular, cytometric, and ecological tools for a reliable inventory and threat assessment of rare species.

20.
Evol Appl ; 8(4): 326-45, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25926878

ABSTRACT

Understanding how divergent selection generates adaptive phenotypic and population diversification provides a mechanistic explanation of speciation in recently separated species pairs. Towards this goal, we sought ecological gradients of divergence between the cryptic malaria vectors Anopheles coluzzii and An. gambiae and then looked for a physiological trait that may underlie such divergence. Using a large set of occurrence records and eco-geographic information, we built a distribution model to predict the predominance of the two species across their range of sympatry. Our model predicts two novel gradients along which the species segregate: distance from the coastline and altitude. Anopheles coluzzii showed a 'bimodal' distribution, predominating in xeric West African savannas and along the western coastal fringe of Africa. To test whether differences in salinity tolerance underlie this habitat segregation, we assessed the acute dose-mortality response to salinity of thirty-two larval populations from Central Africa. In agreement with its coastal predominance, Anopheles coluzzii was overall more tolerant than An. gambiae. Salinity tolerance of both species, however, converged in urban localities, presumably reflecting an adaptive response to osmotic stress from anthropogenic pollutants. When comparing degree of tolerance in conjunction with levels of syntopy, we found evidence of character displacement in this trait.

SELECTION OF CITATIONS
SEARCH DETAIL