Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Anal Bioanal Chem ; 416(16): 3821-3833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777876

ABSTRACT

The use of a new nanomaterial in the feed chain requires a risk assessment that involves in vitro gastrointestinal digestions to predict its degradation and oral exposure to nanoparticles. In this study, a nanosilver-based material was incorporated into pig and chicken feed as a growth-promoting additive and subjected to the corresponding in vitro gastrointestinal digestions. An inductively coupled plasma mass spectroscopy (ICP-MS) analytical platform was used to obtain information about the silver released in the different digestion phases. It included conventional ICP-MS for total silver determination, but also single particle ICP-MS and coupling to hydrodynamic chromatography for detection of dissolved and particulate silver. The bioaccessible fraction in the intestinal phase accounted for 8-13% of the total silver, mainly in the form of dissolved Ag(I) species, with less than 0.1% as silver-containing particles. Despite the additive behaving differently in pig and chicken digestions, the feed matrix played a relevant role in the fate of the silver.


Subject(s)
Digestion , Gastrointestinal Tract , Metal Nanoparticles , Swine , Chickens , Animal Feed , Silver/chemistry , Metal Nanoparticles/chemistry , Gastrointestinal Tract/metabolism , Mass Spectrometry , Kaolin/chemistry
2.
Int J Gen Med ; 17: 1937-1948, 2024.
Article in English | MEDLINE | ID: mdl-38736673

ABSTRACT

Purpose: This study was aimed at exploring the use of the acute gastrointestinal injury (AGI) grade and sensitive biomarkers to investigate gastrointestinal (GI) injury in early stage of acute pancreatitis (AP). Patients and Methods: The AGI grade was used to evaluate intestinal function. Any GI injury above grade I (grades II-IV) was considered as severe. An AP rat model was created by retrograde injection of 4% sodium taurocholate. The pancreatic and intestinal histopathology scores were calculated by hematoxylin-eosin staining. Human and rat sera were assessed using ELISA. Tight junction (TJ) proteins were detected by Western blotting. Results: In clinical study, the GI injury rate in mild acute pancreatitis (MAP), moderate severe acute pancreatitis (MSAP), and severe acute pancreatitis (SAP) groups was 26.8%, 78.4%, and 94.8%, respectively (P < 0.05). Diamine oxidase (DAO), histidine decarboxylase (HDC), and matrix metalloproteinase 8 (MMP8) serum levels were higher in AP patients than in healthy people (P < 0.05). Patients with GI injury had higher serum levels of DAO, HDC, and MMP8 than those without GI injury (P < 0.05). In animal experiments, the serum levels of DAO, HDC, and MMP8 were higher in the AP group than in normal and sham-operated (SO) groups (P < 0.05). The expressions of tricellulin, claudin-1, ZO-1, and occludin were significantly lower in the AP group than in normal and SO groups (P < 0.05). Conclusion: The serum levels of DAO, HDC, and MMP8 are novel biomarkers of GI injury in the early stage of AP; their elevation indicates the development of GI injury in AP. The intestinal TJ disruption may be a primary mechanism of GI injury and requires more in-depth research.

4.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373085

ABSTRACT

Inflammatory bowel disease (IBD) is increasingly recognized as a serious, worldwide public health concern. It is generally acknowledged that a variety of factors play a role in the pathogenesis of this group of chronic inflammatory diseases. The diversity of molecular actors involved in IBD does not allow us to fully assess the causal relationships existing in such interactions. Given the high immunomodulatory activity of histamine and the complex immune-mediated nature of inflammatory bowel disease, the role of histamine and its receptors in the gut may be significant. This paper has been prepared to provide a schematic of the most important and possible molecular signaling pathways related to histamine and its receptors and to assess their relevance for the development of therapeutic approaches.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Histamine , Inflammatory Bowel Diseases/metabolism , Cell Physiological Phenomena , Colitis, Ulcerative/metabolism
5.
Pharmaceutics ; 15(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37242581

ABSTRACT

Currently, there are no commercial vaccines or therapeutics against severe fever with thrombocytopenia syndrome (SFTS) virus. This study explored an engineered Salmonella as a vaccine carrier to deliver a eukaryotic self-mRNA replicating vector, pJHL204. This vector expresses multiple SFTS virus antigenic genes for the nucleocapsid protein (NP), glycoprotein precursor (Gn/Gc), and nonstructural protein (NS) to induce host immune responses. The engineered constructs were designed and validated through 3D structure modeling. Western blot and qRT-PCR analyses of transformed HEK293T cells confirmed the delivery and expression of the vaccine antigens. Significantly, mice immunized with these constructs demonstrated a cell-mediated and humoral response as balanced Th1/Th2 immunity. The JOL2424 and JOL2425 delivering NP and Gn/Gc generated strong immunoglobulin IgG and IgM antibodies and high neutralizing titers. To further examine the immunogenicity and protection, we utilized a human DC-SIGN receptor transduced mouse model for SFTS virus infection by an adeno-associated viral vector system. Among the SFTSV antigen constructs, the construct with full-length NP and Gn/Gc and the construct with NP and selected Gn/Gc epitopes induced robust cellular and humoral immune responses. These were followed by adequate protection based on viral titer reduction and reduced histopathological lesions in the spleen and liver. In conclusion, these data indicate that recombinant attenuated Salmonella JOL2424 and JOL2425 delivering NP and Gn/Gc antigens of SFTSV are promising vaccine candidates that induce strong humoral and cellular immune responses and protection against SFTSV. Moreover, the data proved that the hDC-SIGN transduced mice as a worthy tool for immunogenicity study for SFTSV.

6.
J Inflamm Res ; 16: 2007-2020, 2023.
Article in English | MEDLINE | ID: mdl-37193069

ABSTRACT

Aim: Histamine decarboxylase (HDC) catalyzes decarboxylation of histidine to generate histamine. This enzyme affects several biological processes including inflammation, allergy, asthma, and cancer, although the underlying mechanism is not fully understood. The present study provides a novel insight into the relationship between the transcription factor FLI1 and its downstream target HDC, and their effects on inflammation and leukemia progression. Methods: Promoter analysis combined with chromatin immunoprecipitation (ChIp) was used to demonstrate binding of FLI1 to the promoter of HDC in leukemic cells. Western blotting and RT-qPCR were used to determine expression of HDC and allergy response genes, and lentivirus shRNA was used to knock-down target genes. Proliferation, cell cycle, apoptosis assays and molecular docking were used to determine the effect of HDC inhibitors in culture. An animal model of leukemia was employed to test the effect of HDC inhibitory compounds in vivo. Results: Results presented herein demonstrate that FLI1 transcriptionally regulates HDC by direct binding to its promoter. Using genetic and pharmacological inhibition of HDC, or the addition of histamine, the enzymatic product of HDC, we show neither have a discernable effect on leukemic cell proliferation in culture. However, HDC controls several inflammatory genes including IL1B and CXCR2 that may influence leukemia progression in vivo through the tumor microenvironment. Indeed, diacerein, an IL1B inhibitor, strongly blocked Fli-1-induced leukemia in mice. In addition to allergy, FLI1 is shown to regulate genes associated with asthma such as IL1B, CPA3 and CXCR2. Toward treatment of these inflammatory conditions, epigallocatechin (EGC), a tea polyphenolic compound, is found strongly inhibit HDC independently of FLI1 and its downstream effector GATA2. Moreover, the HDC inhibitor, tetrandrine, suppressed HDC transcription by directly binding to and inhibiting the FLI1 DNA binding domain, and like other FLI1 inhibitors, tetrandrine strongly suppressed cell proliferation in culture and leukemia progression in vivo. Conclusion: These results suggest a role for the transcription factor FLI1 in inflammation signaling and leukemia progression through HDC and point to the HDC pathway as potential therapeutics for FLI1-driven leukemia.

7.
Plants (Basel) ; 12(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050198

ABSTRACT

Rosa davurica Pall. exhibits antioxidant, antiviral, and anti-inflammatory properties; however, its pharmacological mechanism in allergy is yet to be understood. This study confirmed the effects of R. davurica Pall. leaf extract (RLE) on allergy as a new promising material. To evaluate the therapeutic potential of RLE against allergy, we investigated the effects of RLE on the regulatory ß-hexosaminidase, histamine, histidine decarboxylase (HDC), Ca2+ influx, nitric oxide (NO), and cytokines induced by lipopolysaccharide (LPS) and DNP-IgE/BSA in Raw 264.7 and RBL-2H3 cells. Furthermore, we examined the effects of RLE on the signaling pathways of mitogen-activated protein kinase (MAPK) and Ca2+ pathways. After stimulating Raw 264.7 cells with LPS, RLE reduced the release of inflammatory mediators, such as NO, cyclooxygenase (COX)-2, inducible nitric oxygen synthase (iNOS), interleukin (IL)-1ß, -6, and tumor necrosis factor (TNF)-α. Also, RLE reduced the ß-hexosaminidase, histamine, HDC, Ca2+ influx, Ca2+ pathways, and phosphorylation of MAPK in DNP-IgE/BSA-stimulated RBL-2H3 cells. Our studies indicated that RLE is a valuable ingredient for treating allergic diseases by regulating cytokine release from macrophages and mast cell degranulation. Consequently, these results suggested that RLE may serve as a possible alternative promising material for treating allergies.

8.
Molecules ; 28(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049769

ABSTRACT

Cheese is a product of animal origin with a high nutritional value, and it is one of the most consumed dairy foods in Mexico. In addition, Chihuahua cheese is the most consumed matured cheese in Mexico. In the production process of Chihuahua cheese, maturation is carried out by adding acid lactic microorganisms, mainly of the Lactococcus genus and, in some cases, also the Streptococcus and Lactobacillus genus. As part of the metabolism of fermenting microorganisms, biogenic amines can develop in matured foods, which result from the activity of amino decarboxylase enzymes. In cheeses, histamine and tyramine are the main amines that are formed, and the consumption of these represents a great risk to the health of consumers. In this work, the presence of biogenic amines (histamine and tyramine) was determined by HPLC at different times of the shelf life of Chihuahua cheeses. In addition, the presence of genes hdc and tdc that code for the enzymes responsible for the synthesis of these compounds (histidine and tyrosine decarboxylase, or HDC and TDC) was determined by molecular techniques. A significant correlation was observed between the presence of both histamine and tyramine at the end of shelf life with the presence of genes that code for the enzymes responsible for their synthesis.


Subject(s)
Cheese , Histamine , Animals , Histamine/metabolism , Tyramine , Biogenic Amines/analysis , Lactobacillus/metabolism
9.
Microb Pathog ; 178: 106079, 2023 May.
Article in English | MEDLINE | ID: mdl-36966885

ABSTRACT

Experimental animal model is indispensable to evaluate the prophylactic and therapeutic candidates against severe fever with thrombocytopenia syndrome virus (SFTSV). To develop a suitable mouse model for SFTSV infection, we delivered human dendritic cell-specific ICAM-3-grabbing non-integrin (hDC-SIGN) by adeno-associated virus (AAV2) and validated its susceptibility for SFTSV infection. Western blot and RT-PCR assays confirmed the expression of hDC-SIGN in transduced cell lines and a significantly increased viral infectivity was observed in cells expressing hDC-SIGN. The C57BL/6 mice transduced with AAV2 exhibited a stable hDC-SIGN expression in the organs for 7 days. Upon SFTSV challenge with 1 × 105 FAID50, the mice transduced with rAAV-hDC-SIGN showed a 12.5% mortality and reduced platelet and white blood cell count in accordance with higher viral titer than control group. Liver and spleen samples collected from the transduced mice had pathological signs similar to the IFNAR-/- mice with severe SFTSV infection. Collectively, the rAAV-hDC-SIGN transduced mouse model can be used as an accessible and promising tool for studying the SFTSV pathogenesis and pre-clinical evaluation of vaccines and therapeutics against the SFTSV infection.


Subject(s)
Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Humans , Animals , Mice , Mice, Inbred C57BL , Phlebovirus/genetics , Phlebovirus/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Disease Models, Animal
10.
Materials (Basel) ; 16(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36984344

ABSTRACT

This study analyzes the mechanical properties of high ductility concrete (HDC) under different ambient temperatures to provide a parameter basis for the design of HDC bridge deck link slabs. Five temperatures (-30, 0, 20, 40, and 60 °C) were designed to investigate the compressive, tensile, and flexural properties of HDC after temperature treatment and analyze the pore structure. The results show that, compared with the HDC performance at room temperature (20 °C), the compressive strength, ultimate tensile strength, and flexural strength decreased after treatment at low temperatures (-30 and 0 °C), while the strength increased after treatment at high temperatures (40 and 60 °C). After experiencing low- and high-temperature treatments, the ultimate tensile strain and ultimate deflection of the HDC increased. The tensile and flexural failures of the HDC exhibited multiple cracking, and the stress-strain/deflection curve showed a strain/deflection hardening stage. The tensile constitutive relationship can be simplified as a bilinear two-stage relationship. As the temperature increased, the porosity of harmless and less harmful pores in HDC gradually increased, while the porosity of harmful and more harmful pores gradually decreased, resulting in an increase in HDC strength. Based on the influence of temperature on HDC properties, design parameters for the HDC bridge deck link slab structure are proposed.

11.
J Allergy Clin Immunol ; 152(1): 195-204.e3, 2023 07.
Article in English | MEDLINE | ID: mdl-36804390

ABSTRACT

BACKGROUND: Histamine is a critical mediator of anaphylaxis, a neurotransmitter, and a regulator of gastric acid secretion. Histidine decarboxylase is a rate-limiting enzyme for histamine synthesis. However, in vivo regulation of Hdc, the gene that encodes histidine decarboxylase, is poorly understood. OBJECTIVE: We sought to investigate how enhancers regulate Hdc gene transcription and histamine synthesis in resting conditions and in a mouse model of anaphylaxis. METHODS: H3K27 acetylation histone modification and chromatin accessibility were used to identify candidate enhancers. The enhancer activity of candidate enhancers was measured in a reporter gene assay, and the function enhancers were validated by CRISPR deletion. RESULTS: Deletion of the GC box, which binds to zinc finger transcription factors, in the proximal Hdc enhancer reduced Hdc gene transcription and histamine synthesis in mouse and human mast cell lines. Mast cells, basophils, brain cells, and stomach cells from GC box-deficient mice transcribed the Hdc gene much less than similar cells from wild-type mice, and Hdc GC box-deficient mice failed to develop anaphylaxis. CONCLUSION: The HDC GC box within the proximal enhancer in the mouse and human HDC gene is essential for Hdc gene transcription, histamine synthesis, and histamine-mediated anaphylaxis in vitro and in vivo.


Subject(s)
Anaphylaxis , Histidine Decarboxylase , Humans , Mice , Animals , Histidine Decarboxylase/genetics , Histamine/metabolism , Anaphylaxis/genetics , Cell Line , Transcription, Genetic
12.
J Gen Appl Microbiol ; 68(5): 213-218, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-35858814

ABSTRACT

Consumption of temperature-abused marine fish containing elevated levels of histamine results in histamine poisoning. Histamine is a biogenic amine produced in fish by the action of certain groups of bacteria which are capable of producing an exogenous enzyme called histidine decarboxylase (HDC). Morganella morganii is one of the major causative organisms of histamine poisoning. In this study, the histamine forming potential of M. morganii (BSS142) was evaluated when it was co-incubated with proteolytic as well as polyamine forming bacteria. This experiment was designed to examine whether biotic factors such as proteolysis and the presence of other amines influenced histamine forming ability of BSS142. The study showed that the proteolytic activity of Aeromonas hydrophila as well as Pseudomonas aeruginosa greatly enhanced the histamine forming ability of M. morganii. Psychrobacter sangunis, a non proteolytic polyamine producer, negatively influenced histamine production by M. morganii.


Subject(s)
Histamine , Morganella morganii , Animals , Histamine/metabolism , Proteolysis , Polyamines , Bacteria/metabolism , Morganella morganii/metabolism
13.
BMC Med Imaging ; 22(1): 199, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36401207

ABSTRACT

BACKGROUND: Automatic segmentation of brain tumours using deep learning algorithms is currently one of the research hotspots in the medical image segmentation field. An improved U-Net network is proposed to segment brain tumours to improve the segmentation effect of brain tumours. METHODS: To solve the problems of other brain tumour segmentation models such as U-Net, including insufficient ability to segment edge details and reuse feature information, poor extraction of location information and the commonly used binary cross-entropy and Dice loss are often ineffective when used as loss functions for brain tumour segmentation models, we propose a serial encoding-decoding structure, which achieves improved segmentation performance by adding hybrid dilated convolution (HDC) modules and concatenation between each module of two serial networks. In addition, we propose a new loss function to focus the model more on samples that are difficult to segment and classify. We compared the results of our proposed model and the commonly used segmentation models under the IOU, PA, Dice, precision, Hausdorf95, and ASD metrics. RESULTS: The performance of the proposed method outperforms other segmentation models in each metric. In addition, the schematic diagram of the segmentation results shows that the segmentation results of our algorithm are closer to the ground truth, showing more brain tumour details, while the segmentation results of other algorithms are smoother. CONCLUSIONS: Our algorithm has better semantic segmentation performance than other commonly used segmentation algorithms. The technology we propose can be used in the brain tumour diagnosis to provide better protection for patients' later treatments.


Subject(s)
Brain Neoplasms , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Algorithms , Brain/pathology
14.
Anal Chim Acta ; 1230: 340247, 2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36192054

ABSTRACT

Mass spectra are an important signature by which compounds can be identified. We recently formulated a mathematical approach for incorporating measurement variability when comparing sets of high-resolution mass spectra. Leveraging replicate mass spectra, we construct high-dimensional consensus mass spectra-representing each of the compared analytes-and compute the similarity between these data structures. In this paper, we present this approach and discuss its applications and limitations when trying to discriminate methamphetamine and phentermine using in-source collision induced dissociation mass spectra collected with direct analysis in real time mass spectrometry.


Subject(s)
Methamphetamine , Phentermine , Mass Spectrometry/methods , Research Design
15.
Genes (Basel) ; 13(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36292569

ABSTRACT

The involvement of the Histaminergic System (HS) in neuropsychiatric disease is not well-documented, and few studies have described patients affected by different neuropsychiatric conditions harbouring disruptions in genes involved in the HS. In humans, histamine is synthetised from histidine by the histidine decarboxylase enzyme encoded by the HDC gene (OMIM*142704). This is the sole enzyme in our organism able to synthetise histamine from histidine. Histamine is also contained in many different food types. We hereby describe a twenty-one-year-old female diagnosed with a borderline intellectual disability with autistic traits and other peculiar neuropsychological features carrying a 175-Kb interstitial deletion on chromosome 15q21.2. The deletion was inherited from the mother, who was affected by a severe anxiety disorder. The deleted region contains entirely the HDC and the SLC27A2 genes and partially the ATP8B4 gene. The HDC gene has been previously associated with Tourette Syndrome (TS). Based on the functional role of the HDC, we propose this gene as the best candidate to explain many traits associated with the clinical phenotype of our patient and of her mother.


Subject(s)
Histidine Decarboxylase , Tourette Syndrome , Humans , Female , Young Adult , Adult , Histidine Decarboxylase/genetics , Histamine , Histidine , Tourette Syndrome/genetics
16.
Acta Pharm Sin B ; 12(4): 1840-1855, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35847488

ABSTRACT

Neutrophils are mobilized and recruited to the injured heart after myocardial infarction, and neutrophil count has been clinically implicated to be associated with coronary disease severity. Histidine decarboxylase (HDC) has been implicated in regulating reactive oxidative species (ROS) and the differentiation of myeloid cells. However, the effect of HDC on neutrophils after myocardial infarction remains unclear. Here, we found that neutrophils were disorderly recruited into the ischemic injured area of the myocardium of Hdc deficiency (Hdc -/-) mice. Moreover, Hdc deficiency led to attenuated adhesion but enhanced migration and augmented ROS/neutrophil extracellular traps (NETs) production in neutrophils. Hdc -/- mouse-derived NETs promoted cardiomyocyte death and cardiac fibroblast proliferation/migration. Furthermore, protein arginine methyltransferase 1 (PRMT1) was increased in Hdc -/- mouse-derived neutrophils but decreased with exogenous histamine treatment. Its expression could be rescued by blocking histamine receptor 1 (H1R), inhibiting ATP synthesis or reducing SWItch/sucrose non fermentable (SWI/SNF) chromatin remodeling complex. Accordingly, histamine or MS023 treatment could decrease ROS and NETs ex vivo, and ameliorated cardiac function and fibrosis, along with the reduced NETs in plasma in vivo. Together, our findings unveil the role of HDC in NETosis by histamine-H1R-ATP-SWI/SNF-PRMT1-ROS signaling and provide new biomarkers and targets for identifying and tuning the detrimental immune state in cardiovascular disease.

17.
Front Neurosci ; 16: 757125, 2022.
Article in English | MEDLINE | ID: mdl-35185456

ABSTRACT

Memorization is an essential functionality that enables today's machine learning algorithms to provide a high quality of learning and reasoning for each prediction. Memorization gives algorithms prior knowledge to keep the context and define confidence for their decision. Unfortunately, the existing deep learning algorithms have a weak and nontransparent notion of memorization. Brain-inspired HyperDimensional Computing (HDC) is introduced as a model of human memory. Therefore, it mimics several important functionalities of the brain memory by operating with a vector that is computationally tractable and mathematically rigorous in describing human cognition. In this manuscript, we introduce a brain-inspired system that represents HDC memorization capability over a graph of relations. We propose GrapHD, hyperdimensional memorization that represents graph-based information in high-dimensional space. GrapHD defines an encoding method representing complex graph structure while supporting both weighted and unweighted graphs. Our encoder spreads the information of all nodes and edges across into a full holistic representation so that no component is more responsible for storing any piece of information than another. Then, GrapHD defines several important cognitive functionalities over the encoded memory graph. These operations include memory reconstruction, information retrieval, graph matching, and shortest path. Our extensive evaluation shows that GrapHD: (1) significantly enhances learning capability by giving the notion of short/long term memorization to learning algorithms, (2) enables cognitive computing and reasoning over memorization graph, and (3) enables holographic brain-like computation with substantial robustness to noise and failure.

18.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055048

ABSTRACT

Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc-/-) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc-/- and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.


Subject(s)
Diet , Dysbiosis , Gastrointestinal Microbiome , Histamine/metabolism , Social Behavior , Stress, Psychological , Animals , Behavior, Animal , Biomarkers , Body Weight , Cytokines/metabolism , Fatty Acids/metabolism , Gene Expression , Hippocampus/metabolism , Hippocampus/physiopathology , Locomotion , Male , Metagenome , Metagenomics , Mice , Mice, Knockout , Models, Animal
19.
Environ Res ; 205: 112425, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34843724

ABSTRACT

As the abuse of antibiotics has led to increasingly serious environmental pollution problems, studies have found that the adsorption method can be used to efficiently and quickly remove residual antibiotics in water with low cost and high efficiency. Metal-organic frameworks and their derived porous carbons have received widespread attention as a new type of adsorption material. In this study, HKUST-1 was synthesized by a hydrothermal method and carbonized to HDC-350 at 350 °C under an oxygen-free atmosphere. Through adsorption experiments, HDC-350 is found to show a superior adsorption effect for tetracycline (TC), with an adsorption capacity that reaches 136.88 mg g-1. The TC adsorption mechanism was studied through characterization and analysis of HDC-350. The adsorption of TC by HDC-350 mainly relies on electrostatic attraction, hydrogen bonding, metal-organic complexation, and intermolecular interactions. This study shows that HKUST-1-derived porous carbon can be used to improve the water stability of HKUST-1, and, at the same time, can effectively adsorb TC in solution, which provides good conditions for practical research applications in the future.


Subject(s)
Metal-Organic Frameworks , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Carbon , Kinetics , Tetracycline , Water Pollutants, Chemical/analysis
20.
J Biochem ; 171(1): 31-40, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34622278

ABSTRACT

Enzymatic amino acid assays are important in physiological research and clinical diagnostics because abnormal amino acid concentrations in biofluids are associated with various diseases. L-histidine decarboxylase from Photobacterium phosphoreum (PpHDC) is a pyridoxal 5'-phosphate-dependent enzyme and a candidate for use in an L-histidine quantitation assay. Previous cysteine substitution experiments demonstrated that the PpHDC C57S mutant displayed improved long-term storage stability and thermostability when compared with those of the wild-type enzyme. In this study, combinational mutation experiments of single cysteine substitution mutants of PpHDC were performed, revealing that the PpHDC C57S/C101V/C282V mutant possessed the highest thermostability. The stabilizing mechanism of these mutations was elucidated by solving the structures of PpHDC C57S and C57S/C101V/C282V mutants by X-ray crystallography. In the crystal structures, two symmetry-related PpHDC molecules form a domain-swapped homodimer. The side chain of S57 is solvent exposed in the structure, indicating that the C57S mutation eliminates chemical oxidation or disulfide bond formation with a free thiol group, thereby providing greater stability. Residues 101 and 282 form hydrophobic interactions with neighboring hydrophobic residues. Mutations C101V and C282V enhanced thermostability of PpHDC by filling a cavity present in the hydrophobic core (C101V) and increasing hydrophobic interactions.


Subject(s)
Cysteine , Histidine Decarboxylase , Histidine/genetics , Photobacterium
SELECTION OF CITATIONS
SEARCH DETAIL