Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.892
Filter
1.
Plant J ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969341

ABSTRACT

HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region. Our phylogenetic analyses revealed that this intrinsically disordered region contains a highly conserved DPW motif in the green lineages. With biochemical assays, we showed that the CTE is required for the chaperone to effectively interact with client proteins PsbO1 and LHCB2 to regulate ATP-independent chaperone activity and to effectuate its ATP hydrolysis. The CTE truncation mutants could support plant growth and development reminiscing the wild type under normal conditions except for a minor phenotype in cotyledon when expressed at a level comparable to wild type. However, higher HSP90C expression was observed to correlate with a stronger response to specific photosystem II inhibitor DCMU, and CTE truncations dampened the response. Additionally, when treated with lincomycin to inhibit chloroplast protein translation, CTE truncation mutants showed a delayed response to PsbO1 expression repression, suggesting its role in chloroplast retrograde signaling. Our study therefore provides insights into the mechanism of HSP90C in client protein binding and the regulation of green chloroplast maturation and function, especially under stress conditions.

2.
Genes Cells ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977420

ABSTRACT

Appropriate responses to environmental challenges are imperative for the survival of all living organisms. Exposure to low-dose stresses is recognized to yield increased cellular fitness, a phenomenon termed hormesis. However, our molecular understanding of how cells respond to low-dose stress remains profoundly limited. Here we report that histone variant H3.3-specific chaperone, HIRA, is required for acquired tolerance, where low-dose heat stress exposure confers resistance to subsequent lethal heat stress. We found that human HIRA activates stress-responsive genes, including HSP70, by depositing histone H3.3 following low-dose stresses. These genes are also marked with histone H3 Lys-4 trimethylation and H3 Lys-9 acetylation, both active chromatin markers. Moreover, depletion of HIRA greatly diminished acquired tolerance, both in normal diploid fibroblasts and in HeLa cells. Collectively, our study revealed that HIRA is required for eliciting adaptive stress responses under environmental fluctuations and is a master regulator of stress tolerance.

3.
Int J Cancer ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985144

ABSTRACT

The precise delivery of drugs to tumor sites and the thermoresistance of tumors remain major challenges in photothermal therapy (PTT). Somatostatin receptor 2 (SSTR2) is proposed as an ideal target for the precise treatment of SCLC. We developed a targeting nano-drug delivery system comprising anti-SSTR2 monoclonal antibody (MAb) surface-modified nanoparticles co-encapsulating Cypate and gambogic acid (GA). The formed SGCPNs demonstrated excellent monodispersity, physiological stability, preferable biocompatibility, and resultant efficient photothermal conversion efficacy. SGCPNs were quickly internalized by SSTR2-overexpressing SCLC cells, triggering the release of GA under acidic and near-infrared (NIR) laser irradiation environments, leading to their escape from lysosomes to the cytosol and then diffusion into the nucleus. SGCPNs can not only decrease the cell survival rate but also inhibit the activity of heat shock protein 90 (HSP90). SGCPNs can be precisely delivered to xenograft tumors of SSTR2-positive SCLC in vivo. Upon NIR laser irradiation, therapy of SGCPNs showed significant tumor regression. In conclusion, SGCPNs provide a new chemo-photothermal synergistic treatment strategy for targeting SCLC.

4.
Cell Host Microbe ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39013472

ABSTRACT

Mitochondrial dysfunction is associated with inflammatory bowel diseases (IBDs). To understand how microbial-metabolic circuits contribute to intestinal injury, we disrupt mitochondrial function in the epithelium by deleting the mitochondrial chaperone, heat shock protein 60 (Hsp60Δ/ΔIEC). This metabolic perturbation causes self-resolving tissue injury. Regeneration is disrupted in the absence of the aryl hydrocarbon receptor (Hsp60Δ/ΔIEC;AhR-/-) involved in intestinal homeostasis or inflammatory regulator interleukin (IL)-10 (Hsp60Δ/ΔIEC;Il10-/-), causing IBD-like pathology. Injury is absent in the distal colon of germ-free (GF) Hsp60Δ/ΔIEC mice, highlighting bacterial control of metabolic injury. Colonizing GF Hsp60Δ/ΔIEC mice with the synthetic community OMM12 reveals expansion of metabolically flexible Bacteroides, and B. caecimuris mono-colonization recapitulates the injury. Transcriptional profiling of the metabolically impaired epithelium reveals gene signatures involved in oxidative stress (Ido1, Nos2, Duox2). These signatures are observed in samples from Crohn's disease patients, distinguishing active from inactive inflammation. Thus, mitochondrial perturbation of the epithelium causes microbiota-dependent injury with discriminative inflammatory gene profiles relevant for IBD.

5.
Indian J Clin Biochem ; 39(3): 365-372, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005869

ABSTRACT

Heat Shock Protein 27 (HSP27), an anti-HBV factor, exists in the intracellular and extracellular spaces. As an inflammatory modulator, serum HSP27 (sHSP27) is associated with elevated pro-inflammatory cytokines and a higher likelihood of hepatocellular carcinoma in chronic hepatitis. SHSP27 results in natural antibody production (anti-HSP27-Ab) that is more stable and easily detectable compared to sHSP27. We aimed to investigate any potential association between anti-HSP27-Ab level and chronic hepatitis B (CHB) progression and inflammation indicated by liver cell injury and HBV replication. This cross-sectional study was conducted on 91 patients with CHB and 92 individuals without CHB. Following demographic data collection, anti-HSP27-Ab, serum lipids including total cholesterol, triglyceride, LDL-C, HDL-C, and aminotransferase levels were measured using enzymatic assays in participants' serum samples. HBV DNA was also measured by quantitative PCR in CHB patients. Bivariate and multivariate analyses showed a significantly higher mean level of anti-HSP27-Ab in CHB than in healthy individuals (0.304 vs. 0.256AU/ml, P value = 0.015). These levels held significant differences in the CHB subgroups of male patients, at the age of 50 years and above, with non-smoking status, elevated aminotransferase levels, and hypotriglyceridemia (P value < 0.05). However, no difference was found between the antibody levels and HBV DNA copies (P value > 0.05). This study provides evidence that anti-HSP27 antibody levels can reflect the degree of liver necrosis indicated by aminotransferase levels. Regarding the higher incidence rate of HBV-associated complications in 50 to 60-year-old men, monitoring the antibody can be beneficial in managing this group of CHB patients, which deserves further investigation.

6.
Adv Healthc Mater ; : e2400766, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007249

ABSTRACT

Mild photothermal therapy (PTT) has attracted attention for effectively avoiding the severe side effects associated with high-temperature tumor ablation. However, its progress is hindered by the limited availability of high-performance photothermal agents (PTAs) and the thermoresistance of cancer cells induced by heat shock reactions. Herein, this work proposes a new strategy to expand the library of high-performance organic small-molecule PTAs and utilize it to construct a multifunctional nano-theranostic platform. By incorporating additional acceptors and appropriate π-bridges, a diketopyrrolopyrrole-based dye BDB is developed, which exhibits strong absorption and bright fluorescence emission in the near-infrared (NIR) region. Subsequently, BDB is co-coated with the heat shock protein (HSP) inhibitor tanespimycin (17-AAG) using the functional amphiphilic polymers DSPE-Hyd-PEG2000-cRGD to form an all-in-one nanoplatform BAG NPs. As a result, BAG NPs can precisely target tumor tissue, guide the treatment process in real-time through NIR-II fluorescence/photoacoustic/photothermal imaging, and release 17-AAG on demand to enhance mild PTT. Additionally, the mild PTT has been demonstrated to induce immunogenic cell death (ICD) and activate a systemic anti-tumor immune response, thereby suppressing both primary and distant tumors. Overall, this study presents a multifunctional nanoplatform designed for precise mild PTT combined with immunotherapy for effective tumor treatment.

7.
J Clin Med ; 13(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38999417

ABSTRACT

Heat shock proteins (HSPs) have been attracting the attention of researchers for many years. HSPs are a family of ubiquitous, well-characterised proteins that are generally regarded as protective multifunctional molecules that are expressed in response to different types of cell stress. Their activity in many organs has been reported, including the heart, brain, and retina. By acting as chaperone proteins, HSPs help to refold denatured proteins. Moreover, HSPs elicit inhibitory activity in apoptotic pathways and inflammation. Heat shock proteins were originally classified into several subfamilies, including the HSP70 family. The aim of this paper is to systematise information from the available literature about the presence of HSP70 in the human eye and its role in the pathogenesis of ocular diseases. HSP70 has been identified in the cornea, lens, and retina of a normal eye. The increased expression and synthesis of HSP70 induced by cell stress has also been demonstrated in eyes with pathologies such as glaucoma, eye cancers, cataracts, scarring of the cornea, ocular toxpoplasmosis, PEX, AMD, RPE, and diabetic retinopathy. Most of the studies cited in this paper confirm the protective role of HSP70. However, little is known about these molecules in the human eye and their role in the pathogenesis of eye diseases. Therefore, understanding the role of HSP70 in the pathophysiology of injuries to the cornea, lens, and retina is essential for the development of new therapies aimed at limiting and/or reversing the processes that cause damage to the eye.

8.
Cell Biol Int ; 48(8): 1212-1222, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946594

ABSTRACT

JRK is a DNA-binding protein of the pogo superfamily of transposons, which includes the well-known centromere binding protein B (CENP-B). Jrk null mice exhibit epilepsy, and growth and reproductive disorders, consistent with its relatively high expression in the brain and reproductive tissues. Human JRK DNA variants and gene expression levels are implicated in cancers and neuropsychiatric disorders. JRK protein modulates ß-catenin-TCF activity but little is known of its cellular functions. Based on its homology to CENP-B, we determined whether JRK binds centromeric or other satellite DNAs. We show that human JRK binds satellite III DNA, which is abundant at the chromosome 9q12 juxtacentromeric region and on Yq12, both sites of nuclear stress body assembly. Human JRK-GFP overexpressed in HeLa cells strongly localises to 9q12. Using an anti-JRK antiserum we show that endogenous JRK co-localises with a subset of centromeres in non-stressed cells, and with heat shock factor 1 following heat shock. Knockdown of JRK in HeLa cells proportionately reduces heat shock protein gene expression in heat-shocked cells. A role for JRK in regulating the heat shock response is consistent with the mouse Jrk null phenotype and suggests that human JRK may act as a modifier of diseases with a cellular stress component.


Subject(s)
DNA, Satellite , DNA-Binding Proteins , Heat-Shock Response , Humans , DNA, Satellite/genetics , DNA, Satellite/metabolism , HeLa Cells , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Centromere/metabolism , Protein Binding , Centromere Protein B/metabolism , Centromere Protein B/genetics
9.
Eur J Med Chem ; 276: 116620, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38971048

ABSTRACT

A series of indazole analogs, derived from the B,C-ring-truncated scaffold of deguelin, were designed to function as C-terminal inhibitors of heat shock protein 90 (HSP90) and investigated as novel antitumor agents against HER2-positive breast cancer. Among the synthesized compounds, compound 12d exhibited substantial inhibitory effects in trastuzumab-sensitive (BT474) and trastuzumab-resistant (JIMT-1) breast cancer cells, with IC50 values of 6.86 and 4.42 µM, respectively. Notably, compound 12d exhibited no cytotoxicity in normal cells. Compound 12d markedly downregulated the expression of the major HSP90 client proteins in both cell types, attributing its cytotoxicity to the destabilization and inactivation of HSP90 client proteins. Molecular docking studies using the homology model of an HSP90 homodimer demonstrated that inhibitor 12d fit nicely into the C-terminal domain, boasting a higher electrostatic complementary score than ATP. In vivo pharmacokinetic study indicated the high oral bioavailability of compound 12 d at F = 66.9 %, while toxicological studies indicated its negligible impact on hERG channels and CYP isozymes. Genotoxicity tests further confirmed its safety profile. The findings collectively position compound 12d as a promising candidate for further development as an antitumor agent against HER2-positive breast cancer.

10.
Protein J ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980537

ABSTRACT

HSPB8 is a heat shock protein belonging to a family of ATP-independent stress proteins called HSPB which are present far and wide in the cells of various organisms. They are committed to protein quality control (PQC) and strive to avert protein aggregation and to procreate a pool of non-native proteins that can be swiftly folded. Their fundamental expression or stress inducibility is regulated by various cis-elements localized in the HSPB regulatory regions. In the current study we have predicted and confirmed two alternatively spliced novel transcripts of HSPB8 gene in liver, brain, and heart. These spliced variants have smaller sizes owing to smaller N terminal regions and showed remarkable changes in their cellular localization. Novel isoform (HSPB8-N1) was predicted to be majorly localized to nuclear region while the reported isoform (HSPB8) and one of the novel isoforms (HSPB8-N2) were predicted to be cytoplasmic in nature. There were many changes observed in the phosphorylation sites of the novel isoforms as well. The newly reported isoforms lack several structural motifs that are essential for various functional endeavors of the HSPB8 protein. In silico analysis of the conceptually translated protein was carried out using various bioinformatics tools to gain an understanding of their properties in order to explore their possible potential in therapeutics.

11.
Cancer ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985885

ABSTRACT

BACKGROUND: Pimitespib (TAS-116), a first-in-class, oral, selective heat-shock protein 90 inhibitor, is approved as fourth-line treatment for gastrointestinal stromal tumors in Japan. This phase 1 study evaluated the cardiac safety of pimitespib. METHODS: In this open-label, nonrandomized, multicenter study, Japanese patients (aged ≥20 years) with refractory, advanced solid tumors received placebo on day -1, then pimitespib 160 mg daily on days 1-5 of the cardiac safety evaluation period. Electrocardiograms were conducted at baseline, and on days -2, -1, 1, and 5; and blood samples were collected on days 1 and 5. Patients then received once-daily pimitespib for 5 days every 3 weeks. The primary end point was the time-matched difference in QT interval corrected for heart rate using the Fridericia correction (QTcF) between pimitespib and placebo. Pharmacokinetics, safety, and preliminary efficacy were also assessed. RESULTS: Of the 22 patients in the cardiac safety-evaluable population, no clinically relevant QTc prolongation was observed; the upper bound of the one-sided 95% confidence interval for the time-matched difference in change from baseline in QTcF was <20 msec at all time points on days 1 and 5. Pimitespib pharmacokinetic parameters were consistent with previous data, and the time-matched difference in change from baseline in QTcF showed no marked increase as plasma concentrations increased. The safety profile was acceptable; 40% of patients experienced grade 3 or greater adverse drug reactions, mostly diarrhea (20%). The median progression-free survival was 3.1 months. CONCLUSIONS: In Japanese patients with refractory, advanced solid tumors, pimitespib was not associated with clinically relevant QTc prolongation, and there were no cardiovascular safety concerns. PLAIN LANGUAGE SUMMARY: Pimitespib is a new anticancer drug that is being used to treat cancer in the stomach or intestines (gastrointestinal stromal tumors). This study demonstrated that pimitespib had no marked effect on heart rhythm or negative effects on the heart or blood vessels and had promising anticancer effects in Japanese patients with advanced solid tumors who were unable to tolerate or benefit from standard treatment.

12.
Inflammation ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874810

ABSTRACT

Previous studies have verified that celastrol (Cel) protects against rheumatoid arthritis (RA) by inhibiting the NLRP3 inflammasome signaling pathway, but the molecular mechanism by which Cel regulates NLRP3 has not been clarified. This study explored the specific mechanisms of Cel in vitro and in vivo. A type II collagen-induced arthritis (CIA) mouse model was used to study the antiarthritic activity of Cel; analysis of paw swelling, determination of the arthritis score, and pathological examinations were performed. The antiproliferative and antimigratory effects of Cel on TNF-α induced fibroblast-like synoviocytes (FLSs) were tested. Proinflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression of NF-κB/NLRP3 pathway components was determined by western blotting and immunofluorescence staining in vitro and in vivo. The putative binding sites between Cel and Hsp90 were predicted through molecular docking, and the binding interactions were determined using the Octet RED96 system and coimmunoprecipitation. Cel decreased arthritis severity and reduced TNF-α-induced FLSs migration and proliferation. Additionally, Cel inhibited NF-κB/NLRP3 signaling pathway activation, reactive oxygen species (ROS) production, and proinflammatory cytokine secretion. Furthermore, Cel interacted directly with Hsp90 and blocked the interaction between Hsp90 and NLRP3 in FLSs. Our findings revealed that Cel regulates NLRP3 inflammasome signaling pathways both in vivo and in vitro. These effects are induced through FLSs inhibition of the proliferation and migration by blocking the interaction between Hsp90 and NLRP3.

13.
Chem Biol Interact ; 398: 111112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38901789

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Life-threatening medical conditions characterized by high morbidity and mortality rates, where the inflammatory process plays a crucial role in lung tissue damage, especially in models induced by lipopolysaccharide (LPS). Heat shock protein A12B (HSPA12B) has strong anti-infammatory properties However, it is unknown whether increased HSPA12B is protective against LPS-induced ALI. And Dexmedetomidine (DEX) is a potent α2-adrenergic receptor (α2-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood. This study utilized bioinformatics analysis and an LPS-induced ALI model to explore how DEX alleviates lung injury by modulating HSPA12B and inhibiting the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. Results indicate that HSPA12B overexpression and DEX pre-treatment markedly mitigated LPS-induced lung injury, which was evaluated by the deterioration of histopathology, histologic scores, the W/D weight ratio, and total protein expression, tumor necrosis factor-alpha (TNF-α), and interleukin-1ß (IL-1ß) in the BALF, and the levels of NO, MDA,SOD and MPO in the lung. Moreover, HSPA12B overexpression and DEX pre-treatment significantly reduces lung injury and inflammation levels by upregulating HSPA12B and inhibiting the activation of the TLR4/NF-κB signaling pathway. On the contrary, when the expression of HSPA12B is inhibited, the protective effect of DEX pre-treatment on lung tissue is significantly weakened.In summary, our research demonstrated that the increased expression of AAV-mediated HSPA12B in the lungs of mice inhibits acute inflammation and suppresses the activation of TLR4/NF-κB pathway in a murine model of LPS-induced ALI. DEX could enhance HSPA12B and inhibit the initiation and development of inflammation through down-regulating TLR4/NF-κB pathway.These findings highlight the potential of DEX as a therapeutic agent for treating ALI and ARDS, offering new strategies for clinical intervention.


Subject(s)
Acute Lung Injury , Dexmedetomidine , HSP70 Heat-Shock Proteins , Lipopolysaccharides , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Animals , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , HSP70 Heat-Shock Proteins/metabolism , Mice , Male , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Lung/metabolism , Interleukin-1beta/metabolism
14.
Cell Stress Chaperones ; 29(4): 589-602, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908469

ABSTRACT

Heat shock protein 70 (HSP70), the most prominent and well-characterized stress protein in animals, plays an important role in assisting animals in responding to various adverse conditions. In the present study, a total of 113 HSP70 gene family members were identified in the updated genome of Magallana gigas (designated MgHSP70) (previously known as Crassostrea gigas). There were 75, 12, 11, and 8 HSP70s located in the cytoplasm, nucleus, mitochondria, and endoplasmic reticulum, respectively, and 7 HSP70s were located in both the nucleus and cytoplasm. Among 113 MgHSP70 genes, 107 were unevenly distributed in 8 chromosomes of M. gigas with the greatest number in chromosome 07 (61 genes, 57.01%). The MgHSP70 gene family members were mainly assigned into five clusters, among which the HSPa12 subfamily underwent lineage-specific expansion, consisting of 89 members. A total of 68 MgHSP70 genes (60.18%) were tandemly duplicated and formed 30 gene pairs, among which 14 gene pairs were under strong positive selection. In general, the expression of MgHSP70s was tissue-specific, with the highest expression in labial palp and gill and the lowest expression in adductor muscle and hemocytes. There were 35, 31, and 47 significantly upregulated genes at 6, 12, and 24 h after heat shock treatment (28 °C), respectively. The expression patterns of different tandemly duplicated genes exhibited distinct characteristics after shock treatment, indicating that these genes may have different functions. Nevertheless, genes within the same tandemly duplicated group exhibit similar expression patterns. Most of the tandemly duplicated HSP70 gene pairs showed the highest expression levels at 24 h. This study provides a comprehensive description of the MgHSP70 gene family in M. gigas and offers valuable insights into the functions of HSP70 in the mollusc adaptation of oysters to environmental stress.

15.
Cell Stress Chaperones ; 29(4): 552-566, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909654

ABSTRACT

Heat shock proteins (HSPs) play a crucial role in antioxidant systems, immune responses, and enzyme activation during stress conditions. Salinity changes can cause stress and energy expenditure in fish, resulting in mortality, especially in fingerlings. The purpose of this study was to examine the relationship between salinity and HSPs in stressed fish by assessing the effects of various HSP inducers (HSPis), including Pro-Tex® (800 mM), amygdalin (80 mM), and a novel synthetic compound derived from pirano piranazole (80 µM), on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) exposed to 13 ‰ salinity (S13). After liver, kidney, and gill cells were cultured, the HSPi compounds were treated in vitro in the presence and absence of salinity. The expression patterns of HSP27, HSP70, and HSP90 were assessed by Western blotting. Biochemical enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase), cortisol levels, and immune parameters (component 3, immunoglobulin M, and lysozyme) were measured before and after treatment with HSPis and HSPi + S13. According to these findings, HSPis positively modulate HSP expression, immune responses, and antioxidant levels. Furthermore, they increased in vitro cell survival by maintaining cortisol levels and biochemical enzyme activities in A. ruthenus under saline conditions (P < 0.0001). In conclusion, HSPis can increase A. ruthenus resistance to salinity stress. However, the results also indicated that these compounds can reverse the adverse effects of salinity. The effectiveness of this approach depends on further research into the effects of these ecological factors on the health status of the species, especially in vivo and in combination with other stresses.

16.
Exp Brain Res ; 242(8): 1983-1998, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38935089

ABSTRACT

The aim of this study was to investigate histone deacetylase 6 (HDAC6) modifies the heat shock protein 90 (HSP90) and heat shock transcription factor 1 (HSF1) affect the levels of pathological markers such as Aß oligomers (Aßo) and Tau phosphorylation (p-Tau) in APP/PS1 double transgenic mice hippocampal tissues or HT22 neurons as well as the changes in cognitive behavioral functions of mice. (1) APP/PS1 transgenic mice (6 months old, 25 ~ 30 g) were randomly assigned to 5 experimental groups, C57BL/6J mice (6 months old, 25 ~ 30 g) were used as 4 control groups, with 8 mice in each group. All mice underwent intracerebroventricular (i.c.v.) cannulation, and the experimental groups were administered with normal saline (APP + NS group), HDAC6 agonist tubastatin A hydrochloride (TSA) (APP + TSA group) or HDAC6 agonist theophylline (Theo) (APP + Theo group), HSP90 inhibitor Ganetespib (Gane) (APP + Gane group), or a combination of pre-injected Gane by TSA (APP + Gane + TSA group); the control group received i.c.v. injections of Gane (Gane group), TSA (TSA group), Theo (Theo group) or NS (NS group), respectively. (2) Mouse hippocampal neurons HT22 were randomly divided into a control group (Control) and an Aß1-42 intervention group (Aß). Within the Aß group, further divisions were made for knockdown HSP90 (Aß + siHSP90 group), overexpression HSP90 (Aß + OE-HSP90 group), knockdown HSF1(Aß + siHSF1 group) and knockdown HSF1 followed by overexpression HSP90 (Aß + siHSF1 + OE-HSP90 group), resulting in a total of 6 groups. Morris water maze test was used to evaluate the cognitive behavior of the mice. Western blot and immunohistochemistry or immunofluorescence were performed to detect the levels of HDAC6, HSP90, HSF1, Aß1-42, Tau protein, and p-Tau in the hippocampal tissue or HT22 cells. qRT-PCR was used to measure the levels of hdac6, hsp90, and hsf1 mRNA in the hippocampus or nerve cells. (1) The levels of HDAC6, Aß1-42 and p-Tau were elevated, while HSP90 and HSF1 were decreased in the hippocampal tissue of APP/PS1 transgenic mice (all P < 0.01). Inhibiting HDAC6 upregulated the expressions of HSP90 and HSF1 in the hippocampal tissue of APP/PS1 mice, while decreasing the levels of Aß1-42 and p-Tau as well as improving the spatial cognitive behavior in mice (P < 0.05 or P < 0.01). The opposite effects were observed upon HDAC6 activation. However, inhibiting HSP90 reduced the expression of HSF1 (P < 0.01) and increased the levels of Aß1-42 and p-Tau (P < 0.05 or P < 0.01) but did not significantly affect the expression of HDAC6 (P > 0.05). No significant changes were observed in the aforementioned indicators in the 4 control groups (P > 0.05). (2) In the Aß1-42 intervention group, HDAC6 and Aß1-42, p-Tau expression levels were elevated, while HSP90 and HSF1 expressions were all decreased, and cell viability was reduced (P < 0.05 or P < 0.01). Overexpression of HSP90 upregulated HSF1 expression, decreased the levels of Aß1-42 and p-Tau, and increased cell viability (P < 0.05 or P < 0.01). Knocking down HSP90 had the opposite effect; and knocking down HSF1 increased the levels of Aß1-42 and p-Tau and decreased cells viability (all P < 0.01), but did not result in significant changes in the expression levels of HSP90 (P > 0.05). Inhibiting HDAC6 can upregulate the expressions of HSP90 and HSF1 but reduce the levels of Aß1-42 and p-Tau in the hippocampus of APP/PS1 mice and improvement of cognitive behavioral function in mice; Overexpression of HSP90 can increase HSF1 but decrease Aß1-42 and p-Tau levels in the hippocampal neurons and increase cell activity. It is suggested that HDAC6 may affect the formation of Aß oligomers and the changes in Tau protein phosphorylation levels in the hippocampus of AD transgenic mouse as well as the alterations in cognitive behavioral functions by regulating the HSP90-HSF1 pathway.


Subject(s)
HSP90 Heat-Shock Proteins , Heat Shock Transcription Factors , Hippocampus , Histone Deacetylase 6 , Mice, Inbred C57BL , Mice, Transgenic , Animals , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Mice , Heat Shock Transcription Factors/metabolism , Signal Transduction/physiology , Signal Transduction/drug effects , Amyloid beta-Peptides/metabolism , Cognition/physiology , Cognition/drug effects , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , tau Proteins/metabolism , Male , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
17.
Int J Pharm ; 660: 124335, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38897488

ABSTRACT

Nanoparticle-mediated thermotherapeutic research strives innovative, multifunctional, efficient, and safe treatments. Our study introduces a novel nanoplatform: the hollow magnetic vortex nanorings within a polydopamine layer (HMVNp), which exhibit dual functionality as magnetic and photothermal agents. Utilizing a "Dual-mode" approach, combining an alternating magnetic field (AMF) with near-infrared (NIR) laser irradiation, HMVNp demonstrated a significant enhancement in heating efficacy (58 ± 8 %, SAR = 1441 vs 1032 W/g) over traditional solid magnetite nanoparticles coated with polydopamine (SMNp). The unique geometry larger surface area to volume ratio facilitates efficient magnetic vortex dynamics and enhanced heat transfer. Addressing the challenge of heat resistant heat shock protein (Hsp) expression, encapsulated quercetin (Q) within HMVNp leverages tumor acidity and dual-mode thermal therapy to enhance release, showing a 28.8 ± 6.81 % increase in Q loading capacity compared to traditional SMNp. Moreover, HMVNp significantly improves contrast for both magnetic resonance imaging (MRI) and photoacoustic imaging (PAI), with an approximately 62 % transverse relaxation (R2 = 81.5 vs 31.6 mM-1s-1 [Fe]). In vivo studies showed that while single treatments slowed tumor growth, dual-mode therapy with quercetin significantly reduced tumors and effectively prevented metastases. Our study highlights the potential of HMVNp/Q as a versatile agent in thermotherapeutic interventions, offering improved diagnostic imaging capabilities.


Subject(s)
Hyperthermia, Induced , Indoles , Magnetic Resonance Imaging , Polymers , Quercetin , Quercetin/administration & dosage , Quercetin/chemistry , Quercetin/pharmacology , Indoles/chemistry , Indoles/administration & dosage , Polymers/chemistry , Animals , Magnetic Resonance Imaging/methods , Hyperthermia, Induced/methods , Mice , Theranostic Nanomedicine/methods , Cell Line, Tumor , Photoacoustic Techniques/methods , Magnetite Nanoparticles/chemistry , Humans , Female , Mice, Nude , Mice, Inbred BALB C , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Photothermal Therapy/methods , Nanoparticles/chemistry
18.
J Zhejiang Univ Sci B ; 25(6): 485-498, 2024 May 15.
Article in English, Chinese | MEDLINE | ID: mdl-38910494

ABSTRACT

End-stage liver diseases, such as cirrhosis and liver cancer caused by hepatitis B, are often combined with hepatic encephalopathy (HE); ammonia poisoning is posited as one of its main pathogenesis mechanisms. Ammonia is closely related to autophagy, but the molecular mechanism of ammonia's regulatory effect on autophagy in HE remains unclear. Sialylation is an essential form of glycosylation. In the nervous system, abnormal sialylation affects various physiological processes, such as neural development and synapse formation. ST3 ß|-galactoside α2,|3-sialyltransferase 6 (ST3GAL6) is one of the significant glycosyltransferases responsible for adding α2,3-linked sialic acid to substrates and generating glycan structures. We found that the expression of ST3GAL6 was upregulated in the brains of mice with HE and in astrocytes after ammonia induction, and the expression levels of α2,3-sialylated glycans and autophagy-related proteins microtubule-associated protein light chain 3 (LC3) and Beclin-1 were upregulated in ammonia-induced astrocytes. These findings suggest that ST3GAL6 is related to autophagy in HE. Therefore, we aimed to determine the regulatory relationship between ST3GAL6 and autophagy. We found that silencing ST3GAL6 and blocking or degrading α2,3-sialylated glycans by way of Maackia amurensis lectin-II (MAL-II) and neuraminidase can inhibit autophagy. In addition, silencing the expression of ST3GAL6 can downregulate the expression of heat shock protein ß8 (HSPB8) and Bcl2-associated athanogene 3 (BAG3). Notably, the overexpression of HSPB8 partially restored the reduced autophagy levels caused by silencing ST3GAL6 expression. Our results indicate that ST3GAL6 regulates autophagy through the HSPB8-BAG3 complex.


Subject(s)
Apoptosis Regulatory Proteins , Autophagy , Brain , Hepatic Encephalopathy , Polysaccharides , Sialyltransferases , Sialyltransferases/metabolism , Sialyltransferases/genetics , Animals , Mice , Polysaccharides/metabolism , Hepatic Encephalopathy/metabolism , Apoptosis Regulatory Proteins/metabolism , Brain/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Ammonia/metabolism , Astrocytes/metabolism , Male , beta-Galactoside alpha-2,3-Sialyltransferase , Molecular Chaperones/metabolism , Heat-Shock Proteins/metabolism , Humans , Gene Silencing , Microtubule-Associated Proteins/metabolism , Mice, Inbred C57BL
19.
Sci Rep ; 14(1): 14715, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926482

ABSTRACT

Opioids are the gold standard for the treatment of chronic pain but are limited by adverse side effects. In our earlier work, we showed that Heat shock protein 90 (Hsp90) has a crucial role in regulating opioid signaling in spinal cord; Hsp90 inhibition in spinal cord enhances opioid anti-nociception. Building on these findings, we injected the non-selective Hsp90 inhibitor KU-32 by the intrathecal route into male and female CD-1 mice, showing that morphine anti-nociceptive potency was boosted by 1.9-3.5-fold in acute and chronic pain models. At the same time, tolerance was reduced from 21-fold to 2.9 fold and established tolerance was rescued, while the potency of constipation and reward was unchanged. These results demonstrate that spinal Hsp90 inhibition can improve the therapeutic index of morphine. However, we also found that systemic non-selective Hsp90 inhibition blocked opioid pain relief. To avoid this effect, we used selective small molecule inhibitors and CRISPR gene editing to identify 3 Hsp90 isoforms active in spinal cord (Hsp90α, Hsp90ß, and Grp94) while only Hsp90α was active in brain. We thus hypothesized that a systemically delivered selective inhibitor to Hsp90ß or Grp94 could selectively inhibit spinal cord Hsp90 activity, resulting in enhanced opioid therapy. We tested this hypothesis using intravenous delivery of KUNB106 (Hsp90ß) and KUNG65 (Grp94), showing that both drugs enhanced morphine anti-nociceptive potency while rescuing tolerance. Together, these results suggest that selective inhibition of spinal cord Hsp90 isoforms is a novel, translationally feasible strategy to improve the therapeutic index of opioids.


Subject(s)
Analgesics, Opioid , HSP90 Heat-Shock Proteins , Morphine , Spinal Cord , Animals , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Spinal Cord/metabolism , Spinal Cord/drug effects , Mice , Analgesics, Opioid/pharmacology , Male , Female , Morphine/pharmacology , Protein Isoforms/metabolism , Drug Tolerance , Chronic Pain/drug therapy , Chronic Pain/metabolism , Disease Models, Animal , Injections, Spinal
20.
Int J Biol Macromol ; 274(Pt 2): 133436, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936572

ABSTRACT

Legume-rhizobia symbiosis offers a unique approach to increase leguminous crop yields. Previous studies have indicated that the number of soybean nodules are increased under elevated CO2 concentration. However, the underlying mechanism behind this phenomenon remains elusive. In this study, transcriptome analysis was applied to identify candidate genes involved in regulating soybean nodulation mediated by elevated CO2 concentration. Among the different expression genes (DEGs), we identified a gene encoding small heat shock protein (sHSP) called GmHSP23.9, which mainly expressed in soybean roots and nodules, and its expression was significantly induced by rhizobium USDA110 infection at 14 days after inoculation (DAI) under elevated CO2 conditions. We further investigated the role of GmHSP23.9 by generating transgenic composite plants carrying GmHSP23.9 overexpression (GmHSP23.9-OE), RNA interference (GmHSP23.9-RNAi), and CRISPR-Cas9 (GmHSP23.9-KO), and these modifications resulted in notable changes in nodule number and the root hairs deformation and suggesting that GmHSP23.9 function as an important positive regulator in soybean. Moreover, we found that altering the expression of GmHSP23.9 influenced the expression of genes involved in the Nod factor signaling pathway and AON signaling pathway to modulate soybean nodulation. Interestingly, we found that knocking down of GmHSP23.9 prevented the increase in the nodule number of soybean in response to elevated CO2 concentration. This research has successfully identified a crucial regulator that influences soybean nodulation under elevated CO2 level and shedding new light on the role of sHSPs in legume nodulation.

SELECTION OF CITATIONS
SEARCH DETAIL