Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 373
Filter
1.
Article in English | MEDLINE | ID: mdl-39247163

ABSTRACT

Purpose: The aim of this study is to investigate, from a dosimetric perspective, whether helical Tomotherapy (HT) during free breathing (FB) can serve as an alternative technique for treating left-sided breast cancer patients who are unable to comply with the deep inspiration breath hold (DIBH) technique. Material and Methods: For this purpose, the CT images of 20 left breast-only cancer patients acquired in both FB and DIBH phases were utilized. The left breast was contoured as the target volume, while the heart, LAD, ipsilateral and contralateral lungs, and contralateral breast were contoured as organs at risk on the CT images obtained in both DIBH and FB. Planning with the volumetric modulated arc therapy (VMAT) technique was performed on the CT scans obtained in the DIBH (VMAT-DIBH), while planning with the HT technique was carried out on the CT scans obtained in the FB (HT-FB). Subsequently, dosimetric comparison of the plans were done in terms of target coverage and preservation of normal tissues. Results: Both techniques achieved the desired target coverage; however, in terms of D2, Vpres values, Conformity Number (CN), and Homogeneity Index (HI), the HT-FB technique was found to be superior. While the mean doses to the heart were similar for both techniques, doses to the LAD and left lung were found to be superior in plans generated with the HT-FB technique. When compared in terms of contralateral breast and right lung protection, VMAT-DIBH technique was found to be significantly superior. Conclusion: The treatment of left breast-only patients with the HT-FB technique has been observed to provide similar heart protection and better LAD and ipsilateral lung protection compared to the VMAT-DIBH technique without compromising target coverage. However, when the HT-FB technique is used, doses to the contralateral lung and contralateral breast should be carefully evaluated.

2.
Strahlenther Onkol ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283345

ABSTRACT

BACKGROUND: The hypothesis of changing network layers to increase the accuracy of dose distribution prediction, instead of expanding their dimensions, which requires complex calculations, has been considered in our study. MATERIALS AND METHODS: A total of 137 prostate cancer patients treated with the tomotherapy technique were categorized as 80% training and validating as well as 20% testing for the nested UNet and UNet architectures. Mean absolute error (MAE) was used to measure the dosimetry indices of dose-volume histograms (DVHs), and geometry indices, including the structural similarity index measure (SSIM), dice similarity coefficient (DSC), and Jaccard similarity coefficient (JSC), were used to evaluate the isodose volume (IV) similarity prediction. To verify a statistically significant difference, the two-way statistical Wilcoxon test was used at a level of 0.05 (p < 0.05). RESULTS: Use of a nested UNet architecture reduced the predicted dose MAE in DVH indices. The MAE for planning target volume (PTV), bladder, rectum, and right and left femur were D98% = 1.11 ± 0.90; D98% = 2.27 ± 2.85, Dmean = 0.84 ± 0.62; D98% = 1.47 ± 12.02, Dmean = 0.77 ± 1.59; D2% = 0.65 ± 0.70, Dmean = 0.96 ± 2.82; and D2% = 1.18 ± 6.65, Dmean = 0.44 ± 1.13, respectively. Additionally, the greatest geometric similarity was observed in the mean SSIM for UNet and nested UNet (0.91 vs. 0.94, respectively). CONCLUSION: The nested UNet network can be considered a suitable network due to its ability to improve the accuracy of dose distribution prediction compared to the UNet network in an acceptable time.

3.
Technol Cancer Res Treat ; 23: 15330338241264847, 2024.
Article in English | MEDLINE | ID: mdl-39043035

ABSTRACT

Background: This retrospective study aimed to investigate the outcomes and adverse events (AEs) associated with adjuvant radiotherapy with helical tomotherapy (hT) after breast-conserving surgery (BCS) for ductal carcinoma in situ (DCIS). Methods: Twenty-eight patients with DCIS underwent postoperative hT between 2011 and 2020. hT was chosen since it provided optimal target coverage and tolerable organ-at-risk doses to the lungs and heart when tangential 3-dimensional conformal radiotherapy (3D-CRT) was presumed to provide unfavorable dosimetry. The median total (single) dose was 50.4 Gy (1.8 Gy). The median time between BCS and the start of hT was 5 weeks (range, 4-38 weeks). Statistical analysis included local recurrence-free survival, overall survival (OS), and secondary cancer-free survival. AEs were classified according to the Common Toxicity Criteria for Adverse Events, version 5. Results: The patients' median age was 58 years. The median follow-up period was 61 months (range, 3-123 months). The 1-, 3-, and 5-year OS rates were 100% each. None of the patients developed secondary cancer, local recurrence, or invasive breast cancer during follow-up. The most common acute AEs were dermatitis (n = 27), fatigue (n = 4), hyperpigmentation (n = 3), and thrombocytopenia (n = 4). The late AE primarily included surgical scars (n = 7) and hyperpigmentation (n = 5). None of the patients experienced acute or late AEs > grade 3. The mean conformity and homogeneity indices were 0.9 (range, 0.86-0.96) and 0.056 (range, 0.05-0.06), respectively. Conclusion: hT after BCS for DCIS is a feasible and safe form of adjuvant radiotherapy for patients in whom 3D-CRT is contraindicated due to unfavorable dosimetry. During follow-up, there were no recurrences, invasive breast cancer diagnoses, or secondary cancers, while the adverse effects were mild.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Mastectomy, Segmental , Radiotherapy, Intensity-Modulated , Humans , Female , Middle Aged , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Aged , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/adverse effects , Carcinoma, Intraductal, Noninfiltrating/radiotherapy , Carcinoma, Intraductal, Noninfiltrating/surgery , Carcinoma, Intraductal, Noninfiltrating/pathology , Adult , Retrospective Studies , Radiotherapy, Adjuvant/adverse effects , Radiotherapy, Adjuvant/methods , Neoplasm Recurrence, Local/radiotherapy , Neoplasm Recurrence, Local/pathology , Treatment Outcome , Radiotherapy Dosage , Follow-Up Studies , Combined Modality Therapy
4.
Phys Eng Sci Med ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080209

ABSTRACT

The stability of dosiomics features (DFs) and dose-volume histogram (DVH) parameters for detecting disparities in helical tomotherapy planned dose distributions was assessed. Treatment plans of 18 prostate patients were recalculated using the followings: field width (WF) (2.5 vs. 5), pitch factor (PF) (0.433 vs. 0.444), and modulation factor (MF) (2.5 vs. 3). From each of the eight plans per patient, ninety-three original and 744 wavelet-based DFs were extracted, using 3D-Slicer software, across six regions including: target volume (PTV), pelvic lymph nodes (PTV-LN), PTV + PTV-LN (PTV-All), one cm rind around PTV-All (PTV-Ring), rectum, and bladder. For the resulting DFs and DVH parameters, the coefficient of variation (CV) was calculated, and using hierarchical clustering, the features were classified into low/high variability. The significance of parameters on instability was analyzed by a three-way analysis of variance. All DF's were stable in PTV, PTV-LN, and PTV-Ring (average CV ( CV ¯ )  ≤ 0.36). Only one feature in the bladder ( CV ¯  = 0.9), rectum ( CV ¯  = 0.4), and PTV-All ( CV ¯  = 0.37) were considered unstable due to change in MF in the bladder and WF in the PTV-All. The value of CV ¯ for the wavelet features was much higher than that for the original features. Out of 225 unstable wavelet features, 84 features had CV ¯  ≥ 1. The CVs for all the DVHs remained very small ( CV ¯ < 0.06). This study highlights that the sensitivity of DFs to changes in tomotherapy planning parameters is influenced by the region and the DFs, particularly wavelet features, surpassing the effectiveness of DVHs.

5.
Radiother Oncol ; 197: 110366, 2024 08.
Article in English | MEDLINE | ID: mdl-38830537

ABSTRACT

As a component of myeloablative conditioning before allogeneic hematopoietic stem cell transplantation (HSCT), Total Body Irradiation (TBI) is employed in radiotherapy centers all over the world. In recent and coming years, many centers are changing their technical setup from a conventional TBI technique to multi-isocenter conformal arc therapy techniques such as Volumetric Modulated Arc Therapy (VMAT) or Helical Tomotherapy (HT). These techniques allow better homogeneity and control of the target prescription dose, and provide more freedom for individualized organ-at-risk sparing. The technical design of multi-isocenter/multi-plan conformal TBI is complex and should be developed carefully. A group of early adopters with conformal TBI experience using different treatment machines and treatment planning systems came together to develop technical recommendations and share experiences, in order to assist departments wishing to implement conformal TBI, and to provide ideas for standardization of practices.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Whole-Body Irradiation , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/standards , Whole-Body Irradiation/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy Dosage , Hematopoietic Stem Cell Transplantation/methods , Organs at Risk/radiation effects
6.
Med Dosim ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38890058

ABSTRACT

This study aimed to investigate whether the RapidPlan (RP) model configured by volumetric modulated arc therapy (VMAT) plans of nasopharyngeal carcinoma (NPC) could be used to assist in the optimization of HT plans and improve their quality. An RP model was trained using 100 clinically accepted VMAT plans of NPC patients. The predicted dose constraints of the VMAT trained RP model were used to reoptimize 25 consecutive clinically accepted HT plans (HT_clinical) and perform new VMAT plans based on the same computed topography (CT). The dosimetric quality of the reoptimized HT plans (HT_reoptimized), HT_clinical, and VMAT group were compared. The minimum dose encompassing 2% target (D2%), the minimum dose encompassing 98% target (D98%), homogeneity index (HI) and conformity index (CI) were similar for most targets between the HT_clinical and HT_reoptimized plans, although certain targets in the HT_reoptimized plans had higher D2% and HI and lower D98%. The HT_reoptimized plans outperformed the HT_clinical plans in the Dmax and D1cc of the spinal cord, V40Gy of the left temporal lobe, Dmean and V30Gy of the oral cavity, Dmean of the larynx and thyroid, and the differences were statistically significant. HT plans had higher CI and HI than VMAT plans. HT plans outperformed VMAT plans in the Dmax of the spinal cord and lenses, V30Gy of the oral cavity and parotids, and V40Gy of the temporal lobes, but underperformed in the Dmax and D1cc of the brainstem, D1cc of the spinal cord and Dmean of the oral cavity. The VMAT-based RP model can be used to assist in the planning of HT plans and improve the dosimetry quality of HT plans.

7.
Strahlenther Onkol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801448

ABSTRACT

BACKGROUND: The immune system has been identified as an organ at risk in esophageal and lung cancers. However, the dosimetric impact of radiotherapy on immune system exposure in patients treated for breast cancer has never been studied. METHODS: A monocentric retrospective dosimetric study included 163 patients treated at the Institut Curie (Paris, France) between 2010 and 2016 with locoregional helical tomotherapy after conservative surgery or total mastectomy. The effective dose to the immune system (EDIC) was calculated based on diverse dosimetric parameters. The clinical and volumetric determinants of EDIC in adjuvant radiotherapy of breast cancer were analyzed. RESULTS: The median EDIC for the population was 4.23 Gy, ranging from 1.82 to 6.19 Gy. Right-sided radiotherapy and regional lymph node irradiation were associated with significantly higher EDIC in univariate (4.38 Gy vs. 3.94 Gy, p < 0.01, and 4.27 Gy vs. 3.44 Gy, p < 0.01, respectively) and multivariate analyses (p < 0.01 and p < 0.01). Liver overexposure was the main contributor to EDIC increase in right-sided breast cancer patients (+0.38 Gy [95%CI: +0.30; +0.46]), while the integral total dose increase was the main contributor to EDIC increase in cases of regional node irradiation (+0.63 Gy [95%CI: +0.42; +0.85]). CONCLUSION: The EDIC score during adjuvant radiotherapy after breast cancer was statistically significantly higher in the case of right-sided radiotherapy and regional lymph node irradiation. Liver irradiation is the main contributor to immune system exposure in adjuvant irradiation of right-sided breast cancer. Populations in which an association between EDIC and survival would exist have yet to be identified but could potentially include patients treated for triple-negative breast cancer with a poor response to neoadjuvant chemoimmunotherapy.

8.
Front Oncol ; 14: 1392313, 2024.
Article in English | MEDLINE | ID: mdl-38741780

ABSTRACT

Introduction: Radiation-induced brachial plexopathy (RIBP) is one of the most concerning late radiation effects after hypofractionated postmastectomy radiotherapy (HF-PMRT) to the chest wall and regional lymph nodes. The purpose of this study was to investigate the RIBP events occurring in breast cancer patients after HF-PMRT using intensity-modulated radiation therapy (IMRT) by helical tomotherapy. Furthermore, the dosimetric parameters of the ipsilateral brachial plexus were reported. Materials and methods: Breast cancer patients who underwent HF-PMRT using the IMRT via HT at our institute were included. In the first cohort, subjective RIBP symptoms were measured using a QuickDASH questionnaire, whereas objective RIBP events were assessed using a comprehensive physical evaluation in the second cohort. The ipsilateral brachial plexus from all eligible patients' treatment plans was contoured, and the dosimetric parameters were explored. Results: From March 2014 to December 2022, 229 patients were enrolled; 107 and 72 individuals were in the first and second cohorts, respectively. The first cohort's median follow-up period was 27 months, and the second cohort was 31 months. In the first cohort, 80 patients (74.77%) had a normal function, 21 (19.63%) had a mild grade, and 6 (5.61%) had a moderate grade; no severe or very severe RIBP was observed. However, the comprehensive physical evaluation of the second cohort indicated no RIBP events. Dosimetric analysis revealed that the median maximum dose was 44.52, 44.52, and 44.60 Gy; the median mean dose was 33.00, 32.23, and 32.33 Gy; and the median dose at 0.03 cc was 44.33, 44.36, and 44.39 Gy for all patients, patients in the first and second cohort, respectively. Each dosimetric parameter was evaluated, and no statistically significant differences were detected. Conclusion: The absence of RIBP events supports the safety of employing HF-PMRT by HT for the chest wall and all regional lymph nodes. We propose that applying the ICRU Report 83 criteria for IMRT planning, which limit the maximum dose (107% of the prescribed dose) to less than 2% of the planning target volume and exclude the brachial plexus region from the maximal dose area, is a practical way to minimize the risk of RIBP from HF-PMRT.

9.
In Vivo ; 38(3): 1412-1420, 2024.
Article in English | MEDLINE | ID: mdl-38688603

ABSTRACT

BACKGROUND/AIM: To compare implant sparing irradiation with conventional radiotherapy (RT) using helical (H) and TomoDirect (TD) techniques in breast cancer patients undergoing immediate breast reconstruction (IBR). PATIENTS AND METHODS: The dosimetric parameters of 40 patients with retropectoral implants receiving 50.4 Gy delivered in 28 fractions were analyzed. Three plans were created: H plan using conventional planning target volume (PTV) that included the chest wall, skin, and implant; TD plan using conventional PTV; and Hs plan using implant-sparing PTV. The H, TD, and Hs plans were compared for PTV doses, organ-at-risk (OAR) doses, and treatment times. RESULTS: Dose distribution in the Hs plan was less homogeneous and uniform than that in the H and TD plans. The TD plan had lower lung, heart, contralateral breast, spinal cord, liver, and esophagus doses than the Hs plan. Compared to the Hs plan, the H plan had lower lung volume receiving 5Gy (V5) (39.1±3.9 vs. 41.2±3.9 Gy; p<0.001), higher V20 (12.3±1.3 vs. 11.5±2.6 Gy; p=0.02), and higher V30 (7.5±1.6 vs. 4.4±1.7 Gy; p<0.001). H plan outperformed Hs plan in heart dosimetric parameters except V20. The Hs plan had significantly lower mean implant doses (43.4±2.1 Gy) than the H plan (51.4±0.5 Gy; p<0.001) and the TD plan (51.9±0.6 Gy; p<0.001). Implementing an implant sparing technique for silicone dose reduction decreases lung doses. CONCLUSION: Conventional H and TD plans outperform the implant sparing helical plan dosimetrically. Because capsular contracture during RT is unpredictable, long-term clinical outcomes are required to determine whether silicon should be spared.


Subject(s)
Breast Neoplasms , Mammaplasty , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Middle Aged , Mammaplasty/methods , Adult , Breast Implants , Radiometry , Aged
10.
Clin Transl Radiat Oncol ; 46: 100777, 2024 May.
Article in English | MEDLINE | ID: mdl-38628594

ABSTRACT

Objective: As craniospinal irradiation (CSI) is delivered more frequently by helical tomotherapy (HT) with few reports about late effects, we analysed all patients treated in our centre over an 11-year period. Methods and materials: Our study included all patients that underwent CSI by HT, between September 2009 and January 2020, in the Department of Radiation Oncology of the Toulouse Cancer Institute. Acute radiotherapy toxicities were reported and medium- to long-term outcomes analysed. Results: Among the 79 patients included, 70.9 % were younger than 18 years at diagnosis, the median age was 13 (range: 1-52) at the time of radiation therapy, 67.1 % of patients had medulloblastoma. Half of them (49.4 %) had a metastatic disease at diagnosis. The median dose of CSI was 36 Gy (range, 18-36). Seventy-seven patients received a radiation boost to the original location of the primary tumour (97.5 %), 32 patients also received a boost to their metastatic sites (40.5 %). Median follow-up was 55.5 months (95 %CI = [41.2; 71.8]). The 3-year event-free survival rate was 66.3 % (95 %CI = [54.2; 75.9]). Most patients presented with acute haematological toxicities during CSI (85.9 %), predominantly severe thrombocytopenia (39.7 %). Among the 64 patients assessed for medium- and long-term outcomes, 52 survived and 47 were alive and disease-free at the latest follow-up visit on record. There were 3.8 % secondary tumours: two meningiomas and one diffuse intrinsic pontine glioma. Adult and paediatric patients respectively presented with secondary cataract (4.3 % vs 22.0 %), persistent hearing disorders (26.1 % vs 29.3 %), pulmonary or cardiac late effects (4.3 % vs 2.4 %), hormonal pituitary gland deficiencies (30.0 % vs 56.8 %) and psycho-cognitive disorders (56.5 % vs 53.7 %). Conclusion: CSI dispensed by HT, did not result in any additional acute or late toxicities when compared to 3D-CSI. There was no increase in the secondary tumour rate compared to that reported in the literature.

11.
Article in English | MEDLINE | ID: mdl-38550657

ABSTRACT

Introduction: The clinical implementation of deep inspiratory breath-hold (DIBH) radiotherapy to reduce cardiac exposure in patients with left-sided breast cancer is challenging with helical tomotherapy(HT) and has received little attention. We describe our novel approach to DIBH irradiation in HT using a specially designed frame and manual gating, and compare cardiac substructure doses with the free-breathing (FB) technique. Material and methods: The workflow incorporates staggered junctions and a frame that provides tactile feedback to the patient and monitoring for manual cut-off. The treatment parameters and clinical outcome of 20 patients with left-sided breast cancer who have undergone DIBH radiotherapy as a part of an ongoing prospective registry are reported. All patients underwent CT scans in Free Breathing (FB) and DIBH using the in-house Respiframe, which incorporates a tactile feedback-based system with an indicator pencil. Plans compared target coverage, cardiac doses, synchronizing treatment with breath-hold and avoiding junction repetition. MVCT scans are used for patient alignment. Results: The mean dose (Dmean) to the heart was reduced by an average of 34 % in DIBH-HT compared to FB-HT plans (3.8 Gy vs 5.7 Gy). Similarly, 32 % and 67.8 % dose reduction were noted in the maximum dose (D0.02 cc) of the left anterior descending artery, mean 12.3 Gy vs 18.1 Gy, and mean left ventricle V5Gy 13.2 % vs 41.1 %, respectively. The mean treatment duration was 451.5 sec with a median 8 breath-holds; 3 % junction locations between successive breath-holds were replicated. No locoregional or distant recurrences were observed in the 9-month median follow-up. Conclusion: Our workflow for DIBH with Helical-Tomotherapy addresses patient safety, treatment precision and challenges specific to this treatment unit. The workflow prevents junction issues by varying daily breath-hold durations and avoiding junction locations, providing a practical solution for left-sided breast cancer treatment with HT.

12.
J Appl Clin Med Phys ; 25(5): e14305, 2024 May.
Article in English | MEDLINE | ID: mdl-38368607

ABSTRACT

PURPOSE: To elucidate the dosimetric errors caused by a model-based algorithm in lung stereotactic body radiation therapy (SBRT) with Helical TomoTherapy (HT) using Monte Carlo (MC)-based dose verification software. METHODS: For 38 plans of lung SBRT, the dose calculation accuracy of a treatment planning system (TPS) of HT was compared with the results of DoseCHECK, the commercial MC-based independent verification software. The following indices were extracted to evaluate the correlation of dosimetric errors: (1) target volume, (2) average computed tomography (CT) value of the planning target volume (PTV) margin, and (3) average CT value of surrounding 2-mm area of the PTV (PTV ring). Receiver operating characteristic (ROC) analyses determined the threshold for 5% of differences in PTV D95%. Then, the 38 plans were classified into two groups using the cutoff values of ROC analysis for these three indices. Dosimetric differences between groups were statistically compared using the Mann-Whitney U test. RESULTS: TPS of HT overestimated by more than 5% in the PTV D95% in 16 of 38 plans. The PTV ring showed the strongest correlation with dosimetric differences. The cutoff value for the target volume, the PTV margin, and the PTV ring was 14.7 cc, -754 HU, and -708 HU, respectively. The area under the curve (AUC) for the target volume, the PTV margin, and the PTV ring were 0.835, 0.878, and 0.932, respectively. Dosimetric errors more than 5% were observed when the PTV volume was less than 15 cc or when the CT value around the target was less than -700 HU. CONCLUSION: The TPS of HT might overestimate the PTV dose by more than 5% if any the three indices in this study were below threshold. Therefore, independent verification with an MC-based algorithm should be strongly recommended for lung SBRT in HT.


Subject(s)
Algorithms , Lung Neoplasms , Monte Carlo Method , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Software , Humans , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Radiosurgery/methods , Organs at Risk/radiation effects , Radiometry/methods
13.
Int J Urol ; 31(4): 379-385, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38193565

ABSTRACT

OBJECTIVES: This study aimed to evaluate the risk of bladder cancer after intensity-modulated radiation therapy (IMRT) using helical tomotherapy for prostate cancer in comparison to the risk post-radical prostatectomy (RP) using propensity score-matched analysis and to assess the risk factors for bladder cancer. METHODS: This retrospective study included 2067 patients with non-metastatic prostate cancer treated at our institution between June 2007 and December 2016. Of these, 1547 patients were treated with IMRT and 520 underwent RP. The propensity scores were calculated using age, National Comprehensive Cancer Network risk classification, prostate volume, Brinkman index, and follow-up time as matched covariates. A propensity score-matched patient cohort (n = 718; IMRT: 359, RP: 359) was created, and the risk of bladder cancer after treatment was compared. RESULTS: In total, bladder cancer was detected in 33 patients. Five patients in the IMRT group and one in the RP group died of bladder cancer. In the propensity score-matched analysis, the 5-year bladder cancer-free survival rate was significantly lower in the IMRT group than in the RP group (91.7% and 96.2%, respectively; p < 0.001). Multivariate analysis revealed that IMRT and the Brinkman index were the risk factors for bladder cancer in this cohort (odds ratio = 5.085, 95% confidence interval = 1.436-18.008, p = 0.012 and odds ratio = 1.001, 95% confidence interval = 1.000-1.001, p = 0.010, respectively). CONCLUSIONS: IMRT for prostate cancer using helical tomotherapy increases the subsequent risk of bladder cancer compared with RP and is an independent risk factor for bladder cancer similar to smoking.


Subject(s)
Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Urinary Bladder Neoplasms , Male , Humans , Radiotherapy, Intensity-Modulated/adverse effects , Propensity Score , Retrospective Studies , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/etiology , Urinary Bladder Neoplasms/radiotherapy
14.
World J Oncol ; 15(1): 136-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38274723

ABSTRACT

Background: The management of laryngeal cancer involves balancing curative treatment with preserving essential functions. This study aimed to evaluate the clinical outcomes of helical tomotherapy, an advanced form of radiation therapy, as a primary treatment modality for laryngeal squamous cell carcinoma (LSCC). Methods: A retrospective analysis of data obtained from a tertiary referral center was performed to assess treatment response rates, survival outcomes, disease control, and treatment-related adverse events. Results: The study included 45 patients with LSCC treated with helical tomotherapy between May 2015 and September 2022. The 5-year overall survival (OS) rate and disease-free survival (DFS) rate were 89.2% and 71.1%, respectively. Local control and laryngeal preservation rates at 5 years were 79.7% and 84.7%, respectively. Subgroup analysis revealed higher DFS rates in early-stage patients (84.2%) compared to advanced-stage patients (58.9%). Conclusions: The results indicate that helical tomotherapy offers effective tumor control and potential for laryngeal preservation in LSCC. Further prospective studies and longer follow-up are needed to validate these findings and optimize treatment strategies for LSCC patients.

15.
Med Phys ; 51(1): 394-406, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37475544

ABSTRACT

BACKGROUND: Due to inconsistent positioning, tumor shrinking, and weight loss during fractionated treatment, the initial plan was no longer appropriate after a few fractional treatments, and the patient will require adaptive helical tomotherapy (HT) to overcome the issue. Patients are scanned with megavoltage computed tomography (MVCT) before each fractional treatment, which is utilized for patient setup and provides information for dose reconstruction. However, the low contrast and high noise of MVCT make it challenging to delineate treatment targets and organs at risk (OAR). PURPOSE: This study developed a deep-learning-based approach to generate high-quality synthetic kilovoltage computed tomography (skVCT) from MVCT and meet clinical dose requirements. METHODS: Data from 41 head and neck cancer patients were collected; 25 (2995 slices) were used for training, and 16 (1898 slices) for testing. A cycle generative adversarial network (cycleGAN) based on attention gate and residual blocks was used to generate MVCT-based skVCT. For the 16 patients, kVCT-based plans were transferred to skVCT images and electron density profile-corrected MVCT images to recalculate the dose. The quantitative indices and clinically relevant dosimetric metrics, including the mean absolute error (MAE), structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), gamma passing rates, and dose-volume-histogram (DVH) parameters (Dmax , Dmean , Dmin ), were used to assess the skVCT images. RESULTS: The MAE, PSNR, and SSIM of MVCT were 109.6 ± 12.3 HU, 27.5 ± 1.1 dB, and 91.9% ± 1.7%, respectively, while those of skVCT were 60.6 ± 9.0 HU, 34.0 ± 1.9 dB, and 96.5% ± 1.1%. The image quality and contrast were enhanced, and the noise was reduced. The gamma passing rates improved from 98.31% ± 1.11% to 99.71% ± 0.20% (2 mm/2%) and 99.77% ± 0.18% to 99.98% ± 0.02% (3 mm/3%). No significant differences (p > 0.05) were observed in DVH parameters between kVCT and skVCT. CONCLUSION: With training on a small data set (2995 slices), the model successfully generated skVCT with improved image quality, and the dose calculation accuracy was similar to that of MVCT. MVCT-based skVCT can increase treatment accuracy and offer the possibility of implementing adaptive radiotherapy.


Subject(s)
Head and Neck Neoplasms , Radiotherapy, Conformal , Humans , Radiotherapy, Conformal/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted
16.
J Hum Nutr Diet ; 37(1): 182-192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37737485

ABSTRACT

BACKGROUND: Helical intensity-modulated radiotherapy (H-IMRT) provides excellent limitation of dose to tissues not requiring treatment, although acute toxicity still occurs. The present study aimed to determine how treatment-related acute toxicities affect nutrition outcomes in patients with head and neck cancer. METHODS: A prospective observational study was conducted in 194 patients undergoing curative intent H-IMRT with or without other treatment modalities. Weight outcomes (kg) and acute toxicity and dysphagia data were collected during treatment using Common Toxicity Criteria for Adverse Effects (CTCAE), version 4.0. RESULTS: Significant weight loss (> 10%) was observed in 30% of high nutritional risk patients and 7% of low nutritional risk patients. Nausea, adjusted for baseline dysphagia, in high nutritional risk patients and nausea, dysphagia and pharyngeal mucositis in low nutritional risk patients were significant factors in explaining the percentage loss in baseline weight to treatment completion. CONCLUSIONS: Significant weight loss remains an issue during treatment, despite improvements in radiotherapy technology and high-level multidisciplinary care.


Subject(s)
Deglutition Disorders , Head and Neck Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/adverse effects , Deglutition Disorders/etiology , Head and Neck Neoplasms/radiotherapy , Weight Loss , Nausea/etiology
17.
Med Phys ; 51(4): 3010-3019, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38055371

ABSTRACT

BACKGROUND: Studies comparing different radiotherapy treatment techniques-such as volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT)-typically compare one treatment plan per technique. Often, some dose metrics favor one plan and others favor the other, so the final plan decision involves subjective preferences. Pareto front comparisons provide a more objective framework for comparing different treatment techniques. A Pareto front is the set of all treatment plans where improvement in one criterion is possible only by worsening another criterion. However, different Pareto fronts can be obtained depending on the chosen machine settings. PURPOSE: To compare VMAT and HT using Pareto fronts and blind expert evaluation, to explain the observed differences, and to illustrate limitations of using Pareto fronts. METHODS: We generated Pareto fronts for twenty-four prostate cancer patients treated at our clinic for VMAT and HT techniques using an in-house script that controlled a commercial treatment planning system. We varied the PTV under-coverage (100% - V95%) and the rectum mean dose, and fixed the mean doses to the bladder and femoral heads. In order to ensure a fair comparison, those fixed mean doses were the same for the two treatment techniques and the sets of objective functions were chosen so that the conformity indexes of the two treatment techniques were also the same. We used the same machine settings as are used in our clinic. Then, we compared the VMAT and HT Pareto fronts using a specific metric (clinical distance measure) and validated the comparison using a blinded expert evaluation of treatment plans on these fronts for all patients in the cohort. Furthermore, we investigated the observed differences between VMAT and HT and pointed out limitations of using Pareto fronts. RESULTS: Both clinical distance and blind treatment plan comparison showed that VMAT Pareto fronts were better than HT fronts. VMAT fronts for 10 and 6 MV beam energy were almost identical. HT fronts improved with different machine settings, but were still inferior to VMAT fronts. CONCLUSIONS: That VMAT Pareto fronts are better than HT fronts may be explained by the fact that the linear accelerator can rapidly vary the dose rate. This is an advantage in simple geometries that might vanish in more complex geometries. Furthermore, one should be cautious when speaking about Pareto optimal plans as the best possible plans, as their calculation depends on many parameters.


Subject(s)
Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Prostatic Neoplasms/radiotherapy , Rectum , Organs at Risk
18.
J Appl Clin Med Phys ; 25(1): e14218, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013656

ABSTRACT

OBJECTIVE: This study aimed to discuss the dosimetric advantages of helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) technology in hippocampal avoidance whole-brain radiotherapy and provide references for clinical selection of ideal radiotherapy technology. METHODS: A total of 20 patients with hippocampal avoidance whole-brain radiotherapy were chosen randomly. Computed tomography (CT) and MRI scanning images were input into the treatment planning system (TPS). After the CT and enhanced magnetic resonance T1 weighted images were fused and registered, the same radiation therapy physician was invited to outline the tumor target volume. PTV-HS refers to the whole brain subtracted by 5 mm outward expansion of the hippocampus (HP). The prescribed dose was 30 Gy/10 fractions. HT and VMAT plans were designed for each patient in accordance with PTV. Under the premise that the 95% isodose curve covers the PTV, dose-volume histogram was applied to evaluate the PTV, conformal index (CI), heterogeneity index (HI), maximum dose (Dmax), mean dose (Dmean), minimum dose (Dmin) and absorbed doses of organs at risk (OARs) in HT and VMAT plans. Paired t-test was performed to compare the differences between two radiation therapy plans, and p  <  0.05 was considered statistically significant. RESULTS: These two plans had no significant difference in PTV-HS (max, min, and mean). However, the HI and CI of the HT plan were significantly better than those of the VMAT plan, showing statistically significant difference (p < 0.05). The HT plan was significantly superior to the VMAT plan in terms of the Dmax, Dmin, and Dmean of HP, left and right eye lens, left and right eye, and spinal cord, showing statistically significant difference (p < 0.05). The HT plan was also better than the VMAT plan in terms of the Dmax of the left optic nerve. However, the two plans showed no obvious differences in terms of the absorbed doses of the right optic nerve and brainstem, without statistical significance. CONCLUSIONS: Compared with the VMAT plan of hippocampal avoidance, HT technology has significant dosimetric advantages. HT plans significantly decreased the radiation dose and radiation volume of OARs surrounding the target area (e.g., surrounding eye lens and eye, especially hippocampal avoidance area) while increasing the CI and HI of PTV dose in whole brain radiotherapy (WBRT) greatly, thus enabling the decrease in the incidence rate of radioactive nerve function impairment.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk , Brain , Hippocampus
19.
In Vivo ; 38(1): 409-417, 2024.
Article in English | MEDLINE | ID: mdl-38148099

ABSTRACT

BACKGROUND/AIM: Interfractional anatomical variations cause considerable differences between planned and actual radiotherapy doses. This study aimed to investigate the efficacy of robust and planning target volume (PTV) margin-based optimizations for the anatomical variations in helical tomotherapy for prostate cancer. PATIENTS AND METHODS: Ten patients underwent treatment-planning kilovolt computed tomography (kVCT) and daily megavolt computed tomography (MVCT). Two types of nominal plans, with a prescription of 60 Gy/20 fractions, were created using robust and PTV margin-based optimizations on kVCT for each patient. Subsequently, the daily estimated doses were recalculated using nominal plans, and all available MVCTs modified the daily patient-setup errors. Due to the difference in dose calculation accuracy between kVCT and MVCT, three scenarios with dose corrections of 1, 2, and 3% were considered in the recalculation process. The dosimetric metrics, including target coverage with the prescription dose, Paddick's conformity index, homogeneity index, and mean dose to the rectum, were analyzed. RESULTS: A dosimetric comparison of the nominal plans demonstrated that the robust plans had better dose conformity, lower target coverage, and dose homogeneity than the PTV plans. In the daily estimated doses of any dose-corrected scenario, the target coverage and dose sparing to the rectum in the robust plans were significantly higher than those in the PTV plans, whereas dose conformity and homogeneity were identical to those of the nominal case. CONCLUSION: Robust optimization is recommended as it accounts for anatomical variations during treatment regarding target coverage in helical tomotherapy plans for prostate cancer.


Subject(s)
Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Prostate/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy
20.
Front Oncol ; 13: 1274290, 2023.
Article in English | MEDLINE | ID: mdl-37916164

ABSTRACT

Objective: The purpose of this scoping review was to explore the top 100 most cited articles in helical tomotherapy (HT) through bibliometric analysis and visualization tools, help researchers comprehensively understand the research hotspots of HT, and provide clear and intuitive network visualization. Methods: The Web of Science Core Collection and the search strategy of "Title (TI)=(tomotherapy)" were used to search for articles related to HT as of 27 May 2023. The top 100 most cited articles were obtained by sorting "citations: highest first". From these top 100 most cited articles, the following information was extracted: journals, years and months, countries, authors, types of tumor treated, and topics. The VOSviewer software was introduced for visualizing all the articles related to HT. Results: The top 100 most cited articles in HT were published between 1999 and 2019. The citation counts of these articles ranges from 326 to 45, with a total of 8,422 citations at the time of searching. The index of citations per year (CPY) ranges from 22.32 to 2.45. These articles originated from 17 countries, with most publications from the United States (n=50), followed by Canada (n=12), Italy (n=10), Germany (n=7) and Belgium (n=5). The International Journal of Radiation Oncology, Biology, Physics published the highest number of articles (n=31), followed by Radiotherapy and Oncology (n=20), Medical Physics (n=13) and Strahlentherapie und Onkologie (n=12). In terms of specific tumor types, head and neck cancer (n=15) is the most common disease, followed by cancers with complex target structures (n=14), breast cancer (n=12), prostate cancer (n=10) and lung cancer (n=8). The most common research topics also include dosimetric comparison (n = 44), quality assurance (n = 12) and Megavoltage CT (n = 8). Conclusion: This scoping review provides a comprehensive list of the 100 most cited articles in HT. This analysis offers valuable insights into the current research directions of HT that can be utilized by researchers, clinicians, and policy-makers.

SELECTION OF CITATIONS
SEARCH DETAIL