Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Membranes (Basel) ; 13(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37504979

ABSTRACT

In this study, mixed matrix hollow fiber polymeric membranes were prepared using polyethersulfone (PES) and polyvinylidene fluoride (PVDF) as polymers in their composition. N-methyl-2-pyrrolidone (NMP) was used as a solvent and demineralized water with an electrical conductivity below 3 µS·cm-1 was used as a non-solvent. A new approach to producing enhanced polymeric hollow fiber membranes based on the preparation of a simple blend PVDF/PES solution, and on the conformation of the composite membranes through the extrusion technique followed by the phase inversion process in a non-solvent bath, was applied. The investigation focused on the preparation of polymeric membranes with different polymer ratios and further assessment of the effects of these proportions on the membrane performance and in specific physical properties. The amount of PVDF ranged from 10 to 90% with 10% steps. The presence of PVDF, although it increased the membranes' plasticity, had a negative effect on the overall mechanical properties of the composite membranes. Scanning electron microscopy (SEM) results showed good dispersion of both polymers in the polymeric matrix. Furthermore, the membrane permeability showed a slight negative correlation with contact angle, suggesting that membrane hydrophilicity played an important role in membrane permeability. Finally, it was found that membranes with low ratios of PVDF/PES may have potential for water treatment applications, due to the combined advantageous properties of PES and PVDF.

2.
Environ Sci Pollut Res Int ; 30(22): 62508-62521, 2023 May.
Article in English | MEDLINE | ID: mdl-36944834

ABSTRACT

Heterogenous photocatalysis is a suitable alternative for wastewater treatment. The supporting of the solid catalyst in a porous material is suggested to facilitate catalyst recovery and reuse. Here we propose for the first time the evaluation of supporting silver (Ag)-decorated titanium dioxide (TiO2) catalysts on internal and external surfaces of alumina hollow fibers with asymmetric pore size distribution. The produced catalysts were considered for Cr(VI) photoreductions. The ultrasound-assisted process potentialized the distribution of Ag nanoparticles on the TiO2 surface. The loading of Ag nanoparticles at concentrations greater than 5 wt% was necessary to improve the TiO2 activity for Cr(VI) photoreduction. The loading of Ag nanoparticles at 30 wt% improved the Cr(VI) photoreduction of the single TiO2 catalyst from 40.49 ± 0.98 to 55.00 ± 0.83% after 180 min of reaction. Suspended and supported Ag-decorated TiO2 catalysts achieved total Cr(VI) photoreduction after 21 h of reaction. The adjusted reaction rate constant with the externally supported Ag-TiO2 catalyst was 3.57 × 10-3 ± 0.18 × 10-3 min-1. Similar reaction rate constants were achieved with suspended and internally supported catalysts (approximately 2.70 × 10-3 min-1). After 10 sequential reuses, all catalysts presented similar Cr(VI) photoreductions of approximately 66%. Nevertheless, the use of the externally supported catalyst is suggested for Cr(VI) photoreductions due to its superior catalyst activity at least in the first reuse cycles.


Subject(s)
Metal Nanoparticles , Silver , Titanium , Chromium , Catalysis
3.
Environ Sci Pollut Res Int ; 29(44): 66741-66756, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35508852

ABSTRACT

The photocatalytic degradation of methylene blue (MB) in aqueous solutions and under visible light was investigated with dispersed and supported zinc oxide (ZnO) as catalysts. The ZnO catalyst was successfully impregnated in asymmetric alumina hollow fibers by the simple vacuum-assisted dip-coating method. According to energy-dispersive analyses, the photocatalyst was homogenously distributed in the substrate. A strong correlation was observed between the initial dye concentration and the efficiency of the supported photocatalyst. For the initial MB concentration of 5 mg L-1 and catalyst dosage of 1 g L-1, the photocatalytic system with both dispersed and supported catalysts reached almost 100% of MB degradation. The photocatalytic process followed the pseudo-first-order kinetic model, and, for the initial MB concentration of 5 mg L-1, the apparent constants were 0.05415 and 0.00642 min-1 for suspended and supported catalysts, respectively. The treated MB solutions presented low phytotoxicity to the germination Lactuca sativa seeds with germination indexes greater than 80% after irrigation with the treated MB solutions. The produced supported ZnO catalyst showed suitable photocatalytic stability even after several reuse cycles.


Subject(s)
Nanoparticles , Zinc Oxide , Aluminum Oxide , Catalysis , Methylene Blue
4.
Polymers (Basel) ; 14(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35054670

ABSTRACT

The demand for bromelian and pineapple fruit has been increasing substantially in the world because of their benefits for the human health and use in diverse areas. In this context, this work aimed to study the capacity of higher retention (concentration); bromelain activity underwent ultrafiltration from pineapple juice (Ananas comusus L. Merrill). All assays were carried out at pH 7.0 and 7.5, and at 0.05 and 0.40 bar of transmembrane pressures. Results have shown that at the best operating conditions, between 85 and 87% of bromelain activity was recovered using the plain membrane separation process at 0.05 bar. The ultrafiltration has shown the capacity to retain 100% of proteolytic activity of the bromelain extracted. The samples have kept the same physics properties after ultrafiltration, and the result was verified via electrophoresis. The bromelain enzyme obtained was characterized, and pH 7 and between 30 and 40 °C were the best conditions. Therefore, this work shows that the use of both polymeric membranes has shown high efficiency, and can be used in the purification of bromelain enzymes.

5.
Braz. J. Pharm. Sci. (Online) ; 58: e19049, 2022. tab, graf
Article in English | LILACS | ID: biblio-1374564

ABSTRACT

Abstract Thiazolidinedione, often shortened to TZD or glitazone, helps lower insulin resistance, which is the underlying problem for many people with type 2 diabetes. The two most known glitazones are pioglitazone (PGZ), with the brand name medicine Actos®, and rosiglitazone (RSG), which is Avandia®. This study presented a multivariate optimization in the microextraction procedure employing Fractional Factorial Design (FFD) combined with Desirability Function (DF) to determine TZD and metabolites in biological samples. Microextraction requires several parameters to be optimized; however, most of them still use univariate optimization. Finding optimum conditions by simple response is relatively simple, but the problems, in case of microextractions, are often more complex when it has more responses. For example, changing one factor that promotes one response may suppress the effect of the others. Thus, this multivariate optimization was applied for two bioanalytical methods for determination of TZD and metabolites, one by HPLC and other by CE, both using Hollow Fiber Liquid-Phase Microextraction (HF-LPME). The results establish the optimal values and elucidate how the factors that affect HF-LPME procedure perform in extraction efficiency for TZDs. Additionally, this study demonstrates that DF can be an important tool to optimize microextraction procedures.


Subject(s)
Chromatography, High Pressure Liquid/methods , Thiazolidinediones/adverse effects , Pioglitazone/analogs & derivatives , Methods , Insulin Resistance , Diabetes Mellitus, Type 2/pathology , Rosiglitazone/analogs & derivatives
6.
Anal Bioanal Chem ; 413(9): 2467-2479, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33532915

ABSTRACT

The hollow fiber liquid-phase microextraction allows highly selective concentration of organic compounds that are at trace levels. The determination of those analytes through the supercritical fluid chromatography usage is associated with many analytical benefits, which are significantly increased when it is coupled to a mass spectrometry detector, thus providing an extremely sensitive analytical technique with minimal consumption of organic solvents. On account of this, a hollow fiber liquid-phase microextraction technique in two-phase mode combined with supercritical fluid chromatography coupled to mass spectrometry was developed for quantifying 19 multiclass emerging contaminants in water samples in a total chromatographic time of 5.5 min. The analytical method used 40 µL of 1-octanol placed in the porous-walled polypropylene fiber as the acceptor phase, and 1 L of water sample was the donor phase. After extraction and quantification techniques were optimized in detail, a good determination coefficient (r2 > 0.9905) in the range of 0.1 to 100 µg L-1, for most of the analytes, and an enrichment factor in the range of 7 to 28,985 were obtained. The recovery percentage (%R) and intraday precision (%RSD) were in the range of 80.80-123.40%, and from 0.48 to 16.89%, respectively. Limit of detection and quantification ranged from 1.90 to 35.66 ng L-1, and from 3.41 to 62.11 ng L-1, respectively. Finally, the developed method was successfully used for the determination of the 19 multiclass emerging contaminants in superficial and wastewater samples.

7.
J Hazard Mater ; 379: 120837, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31276920

ABSTRACT

Here we propose an innovative photocatalytic hybrid system for the reduction of hexavalent chromium (Cr(VI)) from aqueous solutions. The hybrid system was composed of titanium dioxide (TiO2) immobilized in the micro-voids of asymmetric alumina hollow fibers and of the green algae Chlorella vulgaris coated on the outer sponge-like layer of the fiber. The photoreduction of Cr(VI) was systematically studied in different systems: single systems with TiO2 or algae; the synergistic system of algae combined with TiO2; and the proposed hybrid system composed of TiO2 and algae supported in ceramic hollow fibers. Morphological and energy dispersive spectroscopy analyses showed that TiO2 and the algae were properly supported in the substrate (alumina hollow fibers). For an initial Cr(VI) concentration of 10 mg L-1 and dosages of 1 g L-1 of TiO2 and algae, the hybrid system resulted in total Cr(VI) reduction after 16 h of process. Additionally, the efficiency of the hybrid system for Cr(VI) reduction was reduced in only 9% after 5 cycles of reuse and in 42% after 10 cycles of reuse. Thus, micro-structured ceramic hollow fibers impregnated with TiO2 and decorated with the green algae C. vulgaris was efficient for Cr(VI) reductions.


Subject(s)
Ceramics/chemistry , Chlorella vulgaris/growth & development , Chromium/analysis , Mineral Fibers , Titanium/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Catalysis , Chromium/radiation effects , Kinetics , Light , Oxidation-Reduction , Photochemistry , Water Pollutants, Chemical/radiation effects
8.
Anal Chim Acta ; 1054: 26-37, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30712591

ABSTRACT

The extensive use of pesticides promotes environmental contamination, mainly in surface and ground waters. However, they remain at very low concentration and present wide degradation level requiring the use of efficient devices for pesticides passive sampling. In this study, a new in situ passive sampling device was developed for monitoring and estimating time-weighted average (TWA) of pesticides in waters. The device was made with simple, recyclable and cheap materials. The sampling system involves the liquid phase microextraction technique with hollow fiber in two-phases mode. Pesticides determination was done by gas chromatography coupled to mass spectrometry. The method was optimized and validated for the determination of 29 pesticides in water, showing good linearity in the range between 0.012 and 40.00 µg L-1 with determination coefficients of R2 > 0,9649. Limit of detection (LOD) ranged from 0.009 to 0.557 µg L-1 and limit of quantification (LOQ) from 0.012 to 0.802 µg L-1. The recoveries of spiked pesticides in water samples were in the range from 96 to 130%. The method was applied to forty environmental water samples collected at São Francisco river basin, Brazil. The highest detection frequency was found for the pesticides 4,4-DDE, 4,4-DDD and propazine. They were detected in more than 20 percent of the samples.

9.
J Sep Sci ; 40(22): 4431-4438, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28940656

ABSTRACT

In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 µL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 µg/L and the limits of quantification were 2-16 µg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%.

10.
Environ Monit Assess ; 189(9): 444, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28795304

ABSTRACT

Liquid phase microextraction (LPME) has been widely used in extraction and preconcentration systems as an excellent alternative to conventional liquid phase extraction. In this work, a critical review is presented on liquid phase microextraction techniques used in the determination of cadmium in environmental samples. LPME techniques are classified into three main groups: single-drop liquid phase microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME). Methods involving these liquid phase microextraction techniques are described, addressing advantages and disadvantages, samples, figures of merit, and trends.


Subject(s)
Cadmium/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Liquid Phase Microextraction/methods , Environment
11.
Anim. Reprod. ; 14(2): 392-399, Apr.-June.2017. tab, ilus
Article in English | VETINDEX | ID: vti-15950

ABSTRACT

A new vitrification device based on hollow fiber vitrification (HFV) was constructed using a glass capillary, which lead to simplified construction process and increased practicality of the device. The hollow fiber was attached to heat-pulled tip of the glass capillary using forceps. A protective sheath fitted on the capillary provided protection for the cellulose triacetate hollow fiber with loaded embryos and allowed safe storage in liquid nitrogen for long periods of time (2-12 month), transfer between tanks with liquid nitrogen and transportation within these tanks. No embryos were lost in the process. The device was tested using seven-day-old and eight-day-old IVP bovine blastocysts and expanded blastocysts as a model. Obtained survival (90% at 24 h post warming) and hatching rates (62% at 72 h post warming) of day 7 blastocysts and expanded blastocysts were comparable to those gained using various vitrification carriers. Vitrified embryos did not show an increase in the number of cells with damaged membrane or a decrease in total cell number per embryos in comparison to their non-vitrified counterparts. Day 7 and 8 expanded blastocysts did not differ significantly in terms of survival at 24 (97.01 vs. 97.50%) and 48 h post warming (95.52 vs. 95%), but showed significantly higher survival and hatching rates than day 7 and 8 blastocysts. These results indicated that high and repeatable survival rates can be obtained by selection of IVP bovine embryos at the developmental stage of expanded blastocyst for HFV. Further modification of the method may be required to achieve high and stable results with different developmental stages of IVP bovine embryo. The vitrification device presented in the current article may contribute to wider application of HFV method in livestock production.(AU)


Subject(s)
Animals , Cattle , Cattle/embryology , Cattle/genetics , Vitrification , Embryonic Development/genetics , Cryopreservation/veterinary
12.
Anim. Reprod. (Online) ; 14(2): 392-399, Apr.-June.2017. tab, ilus
Article in English | VETINDEX | ID: biblio-1461262

ABSTRACT

A new vitrification device based on hollow fiber vitrification (HFV) was constructed using a glass capillary, which lead to simplified construction process and increased practicality of the device. The hollow fiber was attached to heat-pulled tip of the glass capillary using forceps. A protective sheath fitted on the capillary provided protection for the cellulose triacetate hollow fiber with loaded embryos and allowed safe storage in liquid nitrogen for long periods of time (2-12 month), transfer between tanks with liquid nitrogen and transportation within these tanks. No embryos were lost in the process. The device was tested using seven-day-old and eight-day-old IVP bovine blastocysts and expanded blastocysts as a model. Obtained survival (90% at 24 h post warming) and hatching rates (62% at 72 h post warming) of day 7 blastocysts and expanded blastocysts were comparable to those gained using various vitrification carriers. Vitrified embryos did not show an increase in the number of cells with damaged membrane or a decrease in total cell number per embryos in comparison to their non-vitrified counterparts. Day 7 and 8 expanded blastocysts did not differ significantly in terms of survival at 24 (97.01 vs. 97.50%) and 48 h post warming (95.52 vs. 95%), but showed significantly higher survival and hatching rates than day 7 and 8 blastocysts. These results indicated that high and repeatable survival rates can be obtained by selection of IVP bovine embryos at the developmental stage of expanded blastocyst for HFV. Further modification of the method may be required to achieve high and stable results with different developmental stages of IVP bovine embryo. The vitrification device presented in the current article may contribute to wider application of HFV method in livestock production.


Subject(s)
Animals , Cattle , Cattle/embryology , Cattle/genetics , Embryonic Development/genetics , Vitrification , Cryopreservation/veterinary
13.
Environ Sci Pollut Res Int ; 24(18): 15748-15755, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28528501

ABSTRACT

A low-cost methodology using hollow fiber liquid-phase microextraction (HF-LPME) and capillary zone electrophoresis (CZE) with UV-Vis detector was developed to analyze the salicylic acid (SA) in estuarine and riverine waters. The technique is easy-to-use and rapid, and demands little volume of organic solvent. The extraction was carried out using a polypropylene membrane supporting into octan-1-ol. HF-LPME under optimized conditions (donor solution sample pH 2, acceptor solution pH 14, sample volume 25 mL, fiber length 10 cm, acceptor volume 25 µL, extraction time 3 h and stirring speed 350 rpm) presented high enrichment factor (407 times) and good recovery in real water samples (from 88 to 110%). A limit of detection of 2.6 µg L-1 was achieved using CZE with UV-Vis detector as quantification method. The method was applied to direct quantification of SA in environmental complex estuarine and riverine water matrices.


Subject(s)
Electrophoresis, Capillary , Salicylic Acid/analysis , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Liquid Phase Microextraction , Solvents , Water
14.
Appl Microbiol Biotechnol ; 101(10): 4289-4298, 2017 May.
Article in English | MEDLINE | ID: mdl-28357543

ABSTRACT

Enteric viruses are pathogens associated with food- and waterborne outbreaks. The recovery of viruses from food or water samples is affected by the procedures applied to detect and concentrate them. The incorporation of an internal process control virus to the analyses allows monitoring the performance of the methodology. The aim of this study was to produce a recombinant adenovirus (rAdV) and apply it together with bacteriophage PP7 as process controls. The rAdV carries a DNA construction in its genome to differentiate it from wild-type adenovirus by qPCR. The stability of both control viruses was evaluated at different pH conditions. The rAdV was stable at pH 3, 7, and 10 for 18 h. PP7 infectious particles were stable at pH 7 and showed a 2.14 log reduction at pH 10 and total decay at pH 3 after 18 h. Three virus concentration methods were evaluated: hollow-fiber tap water ultrafiltration, wastewater ultracentrifugation, and elution-PEG precipitation from lettuce. Total and infectious viruses were quantified and their recoveries were calculated. Virus recovery for rAdV and PP7 by ultrafiltration showed a wide range (2.10-84.42 and 13.54-84.62%, respectively), whereas that by ultracentrifugation was 5.05-13.71 and 6.98-13.27%, respectively. The performance of ultracentrifugation to concentrate norovirus and enteroviruses present in sewage was not significantly different to the recovery of control viruses. For detection of viruses from lettuce, genomic copies of PP7 were significantly more highly recovered than adenovirus (14.74-18.82 and 0.00-3.44%, respectively). The recovery of infectious virus particles was significantly affected during sewage ultracentrifugation and concentration from lettuce. The simultaneous use of virus controls with dissimilar characteristics and behaviors might resemble different enteric viruses.


Subject(s)
Food Microbiology , Viruses/isolation & purification , Water Microbiology , Adenoviridae/genetics , Adenoviridae/physiology , Enterovirus/genetics , Enterovirus/isolation & purification , Hydrogen-Ion Concentration , Lactuca/virology , Levivirus/genetics , Levivirus/isolation & purification , Norovirus/genetics , Norovirus/isolation & purification , Pseudomonas Phages/genetics , Pseudomonas Phages/physiology , Real-Time Polymerase Chain Reaction , Sewage/virology , Ultracentrifugation , Ultrafiltration , Viruses/genetics
15.
Chemosphere ; 171: 435-445, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28033574

ABSTRACT

The environmental bioavailability of zinc (II), i.e., the uptake of the element by an organism, was determined using two microalgae species, Scenedesmus acutus and Pseudokirchneriella subcapitata, and estimated using hollow fiber supported liquid membrane (HF-SLM) device as the chemical surrogate. Several experimental conditions were studied including the presence of organic matter, inorganic anions and concomitant cations and pH. The results show strong positive correlation coefficients between the responses given by the HF-SLM and the microalgae species (r = 0.900 for S. acutus and r = 0.876 for P. subcapitata) in multivariate environments (changes in pH, calcium, humic and citrate concentrations). The maximum amount of zinc (II) retained by the HF-SLM (4.7 × 10-8 mol/cm2) was higher than those for P. subcapitata and S. acutus (9.4 × 10-11 mol/cm2 and 6.2 × 10-11 mol/cm2, respectively). The variation in pH (pH 5.5-9) was the variable with the greatest effect on zinc internalization in all systems, increasing approximately 2.5 times for P. subcapitata and 5.5 times for S. acutus respect to pH = 5.5, while the presence of humic acids did not affect the response. The species' concentration analysis of the experimental design at pH = 5.5 indicated that the amount of internalized zinc (II) by the HF-SLM and both microalgae species is strongly dependent on the free zinc concentration (r = 0.910 for the HF-SLM, r = 0.922 for S. acutus and r = 0.954 for P. subcapitata); however, at pH = 9.0, the amount of internalized zinc (II) is strongly dependent on the sum of free zinc and labile species (r = 0.912 for the HF-SLM, r = 0.947 for S. acutus and r = 0.900 for P. subcapitata). The presence of inorganic ligands (chloride, sulfate, phosphate, carbonate, and nitrate) and metal ions (cobalt (II), copper (II), nickel (II), chromium (VI), lead (II) and cadmium (II)) produced different behaviors both in the chemical surrogate and the biological references. The results showed that the synthetic device can mimic biological uptake in the presence of humic acids, nitrate, sulfate, and phosphate, and pH within the range 5.5-9 when S. acutus was used as the biological reference, considering the simultaneous contribution of the Zn2+ and ZnOH+ labile species depending on the chemical composition of the medium.


Subject(s)
Chlorophyta/metabolism , Microalgae/metabolism , Zinc/metabolism , Biological Availability , Humic Substances , Hydrogen-Ion Concentration , Nitrates , Phosphates , Sulfates
16.
J Chromatogr A ; 1481: 31-36, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28012587

ABSTRACT

Phthalates and bisphenol A are important environmental pollutants due to their toxicity for humans and animals, including actions in the endocrine system. Their metabolites in urine can be used as biomarkers to assess human exposure. This paper describes the development of a new method to determine bisphenol A and eight phthalate metabolites in urine samples using hollow fiber liquid phase microextraction (HF-LPME) and gas chromatography-mass spectrometry (GC-MS). This method showed linearity, precision, limits of detection, and quantification suitable to analyze these compounds at low concentration levels in urine. Limits of detection ranged from 0.777 to 23.3µgL-1, showing sensitivity for evaluating environmental exposure. Relative standard deviation (RSD) ranged from 11.7 to 19.7%. The developed method presented a good biomarker alternative for evaluating environmental exposure to bisphenol A and phthalates.


Subject(s)
Benzhydryl Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Liquid Phase Microextraction/methods , Metabolome , Phenols/analysis , Plasticizers/analysis , Adolescent , Adult , Benzhydryl Compounds/urine , Creatinine/urine , Environmental Pollutants/analysis , Female , Humans , Middle Aged , Phenols/urine , Solvents , Young Adult
17.
Electrophoresis ; 37(20): 2678-2684, 2016 10.
Article in English | MEDLINE | ID: mdl-27456073

ABSTRACT

A three phase hollow fiber liquid-phase microextraction technique combined with capillary electrophoresis was developed to quantify lamotrigine (LTG) in plasma samples. The analyte was extracted from 4.0 mL of a basic donor phase (composed of 0.5 mL of plasma and 3.5 mL of sodium phosphate solution pH 9.0) through a supported liquid membrane composed of 1-octanol immobilized in the pores of the hollow fiber, and to an acidic acceptor phase (hydrochloric acid solution pH 4.0) placed in the lumen of the fiber. The extraction was carried out for 30 min at 500 rpm. The eletrophoretic analysis was carried out in 130 mmol/L MES buffer, pH 5.0 with a constant voltage of +15 kV and 20°C. Sample injections were performed for 10 s, at a pressure of 0.5 psi. The detection was performed at 214 nm for both LTG and the internal standard lidocaine. Under the optimized conditions, the method showed a limit of quantification of 1.0 µg/mL and was linear over the plasmatic concentration range of 1.0-20.0 µg/mL. Finally, the validated method was applied for the quantification of LTG in plasma samples of epileptic patients.


Subject(s)
Electrophoresis, Capillary/methods , Epilepsy/drug therapy , Liquid Phase Microextraction/methods , Triazines/blood , Humans , Hydrogen-Ion Concentration , Lamotrigine , Limit of Detection , Linear Models , Reproducibility of Results , Triazines/therapeutic use
18.
Food Chem ; 196: 292-300, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26593494

ABSTRACT

This study describes a combination between hollow fiber membrane and dispersive liquid-liquid microextraction for determination of aflatoxins in soybean juice by HPLC. The main advantage of this approach is the use of non-chlorinated solvent and small amounts of organic solvents. The optimum extraction conditions were 1-octanol as immobilized solvent; toluene and acetone at 1:5 ratio as extraction and disperser solvents (100 µL), NaCl at 2% of the sample volume and extraction time of 60 min. The optimal condition for the liquid desorption was 150 µL acetonitrile:water (50:50 v/v) and desorption time of 20 min. The linear range varied from 0.03 to 21 µg L(-1), with R(2) coefficients ranging from 0.9940 to 0.9995. The limits of detection and quantification ranged from 0.01 µg L(-1) to 0.03 µg L(-1) and from 0.03 µg L(-1) to 0.1 µg L(-1), respectively. Recovery tests ranged from 72% to 117% and accuracy between 12% and 18%.


Subject(s)
Aflatoxins/chemistry , Chromatography, High Pressure Liquid/methods , Glycine max/chemistry , Liquid Phase Microextraction/methods , Fluorescence
19.
Environ Pollut ; 206: 712-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26431807

ABSTRACT

The environmental bioavailability of copper was determined using a hollow-fiber supported liquid membrane (HFSLM) device as a chemical surrogate and two microalgae species (Scenedesmus acutus and Pseudokirchneriella subcapitata). Several experimental conditions were studied: pH, the presence of organic matter, inorganic anions, and concomitant cations. The results indicated a strong relationship between the response given by the HFSLM and the microalgae species with free copper concentrations measured by an ion selective electrode (ISE), in accordance with the free-ion activity model (FIAM). A significant positive correlation was evident when comparing the bioavailability results measured by the HFSLM and the S. acutus microalga species, showing that the synthetic device may emulate biological uptake and, consequently, be used as a chemical test for bioavailability measurements using this alga as a biological reference.


Subject(s)
Copper/analysis , Environmental Monitoring/methods , Membranes, Artificial , Microalgae/chemistry , Scenedesmus/chemistry , Water Pollutants, Chemical/analysis , Analysis of Variance , Biological Availability , Copper/metabolism , Ion-Selective Electrodes , Microalgae/metabolism , Models, Theoretical , Scenedesmus/metabolism , Water Pollutants, Chemical/metabolism
20.
Talanta ; 127: 59-67, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24913857

ABSTRACT

Hollow fiber liquid phase microextraction (HFLPME) and solid phase microextraction (SPME) methods for pre-concentration of contaminants (toluene, benzophenone, tetracosane and chloroform) in food simulants were investigated. For HFLPME 1-heptanol, 2-octanone and dibutyl-ether were studied as extracting solvents. Analysis by gas chromatography coupled to mass spectrometry (GC-MS), flame ionization (GC-FID) and electron capture detectors (GC-ECD) were carried out. In addition, the methods were employed to evaluate the safety in use of a PET material after the recycling process (comprising washing, extrusion and solid state polymerization (SSP)) through extractability studies of the contaminants using 10% (v/v) ethanol in deionized water and 3% (w/v) acetic acid in deionized water as food simulants in different conditions: 10 days at 40°C and 2h at 70°C. The HFLPME preconcentration method provided increased sensitivity when compared to the SPME method and allowed to analyze concentration levels below 10 µg surrogate per kg food simulant. The results of the extractability studies showed considerable reductions after the extrusion and SSP processes and indicated the compliance with regulations for using recycled PET in contact with food.


Subject(s)
Food Contamination/analysis , Food Packaging , Liquid Phase Microextraction/methods , Polyethylene Terephthalates/chemistry , Solid Phase Microextraction/methods , Acetic Acid/chemistry , Alkanes/analysis , Benzophenones/analysis , Chloroform/analysis , Ethanol/chemistry , Recycling , Toluene/analysis
SELECTION OF CITATIONS
SEARCH DETAIL