Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792190

ABSTRACT

As a conformationally restricted amino acid, hydroxy-l-proline is a versatile scaffold for the synthesis of diverse multi-functionalized pyrrolidines for probing the ligand binding sites of biological targets. With the goal to develop new inhibitors of the widely expressed amino acid transporters SLC1A4 and SLC1A5 (also known as ASCT1 and ASCT2), we synthesized and functionally screened synthetic hydroxy-l-proline derivatives using electrophysiological and radiolabeled uptake methods against amino acid transporters from the SLC1, SLC7, and SLC38 solute carrier families. We have discovered a novel class of alkoxy hydroxy-pyrrolidine carboxylic acids (AHPCs) that act as selective high-affinity inhibitors of the SLC1 family neutral amino acid transporters SLC1A4 and SLC1A5. AHPCs were computationally docked into a homology model and assessed with respect to predicted molecular orientation and functional activity. The series of hydroxyproline analogs identified here represent promising new agents to pharmacologically modulate SLC1A4 and SLC1A5 amino acid exchangers which are implicated in numerous pathophysiological processes such as cancer and neurological diseases.


Subject(s)
Amino Acid Transport System ASC , Drug Discovery , Minor Histocompatibility Antigens , Animals , Humans , Amino Acid Transport System ASC/antagonists & inhibitors , Amino Acid Transport System ASC/chemistry , HEK293 Cells , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/chemistry , Molecular Docking Simulation , Proline/chemistry , Proline/analogs & derivatives , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Pyrrolidines/chemical synthesis , Structure-Activity Relationship
2.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38467390

ABSTRACT

AIMS: To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS: Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION: Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.


Subject(s)
Asparaginase , Bacillus , Humans , Asparaginase/genetics , Bacillus/genetics , Asparagine , Temperature
3.
Biomolecules ; 14(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38397391

ABSTRACT

Pro-drugs, which ideally release their active compound only at the site of action, i.e., in a cancer cell, are a promising approach towards an increased specificity and hence reduced side effects in chemotherapy. A popular form of pro-drugs is esters, which are activated upon their hydrolysis. Since carboxylesterases that catalyse such a hydrolysis reaction are also abundant in normal tissue, it is of great interest whether a putative pro-drug is a probable substrate of such an enzyme and hence bears the danger of being activated not just in the target environment, i.e., in cancer cells. In this work, we study the binding mode of carboxylesters of the drug molecule camptothecin, which is an inhibitor of topoisomerase I, of varying size to human carboxylesterase 2 (HCE2) by molecular docking and molecular dynamics simulations. A comparison to irinotecan, known to be a substrate of HCE2, shows that all three pro-drugs analysed in this work can bind to the HCE2 protein, but not in a pose that is well suited for subsequent hydrolysis. Our data suggest, moreover, that for the irinotecan substrate, a reactant-competent pose is stabilised once the initial proton transfer from the putative nucleophile Ser202 to the His431 of the catalytic triad has already occurred. Our simulation work also shows that it is important to go beyond the static models obtained from molecular docking and include the flexibility of enzyme-ligand complexes in solvents and at a finite temperature. Under such conditions, the pro-drugs studied in this work are unlikely to be hydrolysed by the HCE2 enzyme, indicating a low risk of undesired drug release in normal tissue.


Subject(s)
Camptothecin , Carboxylesterase , Irinotecan , Prodrugs , Humans , Camptothecin/chemistry , Carboxylesterase/chemistry , Irinotecan/chemistry , Molecular Docking Simulation , Prodrugs/chemistry , Protein Binding
4.
Environ Toxicol Pharmacol ; 106: 104360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176602

ABSTRACT

Anthropogenic activities are increasing fluoride concentration in watercourses. The present study focuses on the sublethal toxicity of sodium fluoride during sub-chronic and chronic time periods in the freshwater fish Anabas testudineus. The 96-hour LC50 value for fluoride was found to be 616.50 mg/L. Excessive mucous production and hyper excitability, followed by loss of balance, were seen in fish under acute fluoride exposure. Significant reduction in yield and specific growth rate of fish were assessed at 15, 30 and 45-days exposure intervals. Different bio-indicators like Hepatosomatic-index, Gonadosomatic-index and fecundity were reduced significantly in fish exposed to 10% (61.6 mg/L) and 20% (123.2 mg/L) of 96 h of LC50 values of fluoride in comparison to control. Toxicant concentrations directly correlated with parameter lowering. Fluoride exposure increased plasma glucose, creatinine, AST, and ALT and reduced total RBC, haemoglobin content, Hct (%), plasma protein, and cholesterol. Moreover, fluoride exposure significantly reduces the mitochondrial membrane potential in liver. This may result in metabolic depression, haematological, biochemical, and enzymological stress. The in-silico structural analysis predicts that fluoride may impede cytochrome c oxidase of the electron transport system, hence inhibiting mitochondrial functionality. These findings collectively highlight the urgent need for stringent regulation and monitoring of fluoride levels in freshwater ecosystems, as the subchronic and chronic effects observed in A. testudineus may have broader implications for aquatic ecosystems.


Subject(s)
Mitochondrial Diseases , Perches , Animals , Sodium Fluoride/toxicity , Fluorides/toxicity , Ecosystem , Liver
5.
Int J Biol Macromol ; 255: 128110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981277

ABSTRACT

Steviol glycoside (SG) is a potential natural sugar substitute. The taste of various SG structures differ significantly, while their mechanism has not been thoroughly investigated. To investigate the taste mechanism, molecular docking simulations of SGs with sweet taste receptor TAS1R2 and bitter taste receptor TAS2R4 were conducted. The result suggested that four flexible coils (regions) in TAS1R2 constructed a geometry open pocket in space responsible for the binding of sweeteners. Amino acids that form hydrogen bonds with sweeteners are located in different receptor regions. In bitterness simulation, fewer hydrogen bonds were formed with the increased size of SG molecules. Particularly, there was no interaction between RM and TAS2R4 due to its size, which explains the non-bitterness of RM. Molecular dynamics simulations further indicated that the number of hydrogen bonds between SGs and TAS1R2 was maintained during a simulation time of 50 ns, while sucrose was gradually released from the binding site, leading to the break of interaction. Conclusively, the high sweetness intensity of SG can be attributed to its durative concurrent interaction with the receptor's binding site, and such behavior was determined by the structure feature of SG.


Subject(s)
Receptors, G-Protein-Coupled , Taste , Molecular Docking Simulation , Receptors, G-Protein-Coupled/metabolism , Sweetening Agents/metabolism , Glycosides/chemistry
6.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37765071

ABSTRACT

Currently, the treatment of Proteus mirabilis infections is considered to be complicated as the organism has become resistant to numerous antibiotic classes. Therefore, new inhibitors should be developed, targeting bacterial molecular functions. Methionine tRNA synthetase (MetRS), a member of the aminoacyl-tRNA synthetase family, is essential for protein biosynthesis offering a promising target for novel antibiotics discovery. In the context of computer-aided drug design (CADD), the current research presents the construction and analysis of a comparative homology model for P. mirabilis MetRS, enabling development of novel inhibitors with greater selectivity. Molecular Operating Environment (MOE) software was used to build a homology model for P. mirabilis MetRS using Escherichia coli MetRS as a template. The model was evaluated, and the active site of the target protein predicted from its sequence using conservation analysis. Molecular dynamic simulations were performed to evaluate the stability of the modeled protein structure. In order to evaluate the predicted active site interactions, methionine (the natural substrate of MetRS) and several inhibitors of bacterial MetRS were docked into the constructed model using MOE. After validation of the model, pharmacophore-based virtual screening for a systemically prepared dataset of compounds was performed to prove the feasibility of the proposed model, identifying possible parent compounds for further development of MetRS inhibitors against P. mirabilis.

7.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685839

ABSTRACT

The inherited disorder oculocutaneous albinism type 1 (OCA1) is caused by mutations in the TYR gene encoding tyrosinase (Tyr), an enzyme essential to producing pigments throughout the human body. The intramelanosomal domain of Tyr consists of the cysteine-rich and tyrosinase catalytic subdomains, which are essential for enzymatic activity. In protein unfolding, the roles of these subdomains are not well established. Here, we performed six molecular dynamics simulations at room temperature for Tyr and OCA1-related mutant variants P406L and R402Q intramelanosomal domains. The proteins were simulated for 1 µs in water and urea to induce unfolding. In urea, we observed increases in surface area, decreases in intramolecular hydrogen bonding, and decreases in hydrophobic interactions, suggesting a 'molten globule' state for each protein. Between all conditions, the cysteine-rich subdomain remains stable, whereas the catalytic subdomain shows increased flexibility. This flexibility is intensified by the P406L mutation, while R402Q increases the catalytic domain's rigidity. The cysteine-rich subdomain is rigid, preventing the protein from unfolding, whereas the flexibility of the catalytic subdomain accommodates mutational changes that could inhibit activity. These findings match the conclusions from our experimental work suggesting the function alteration by the P406L mutation, and the potential role of R402Q as a polymorphism.


Subject(s)
Cysteine , Monophenol Monooxygenase , Humans , Monophenol Monooxygenase/genetics , Cysteine/genetics , Molecular Dynamics Simulation , Urea
8.
Methods Mol Biol ; 2627: 195-210, 2023.
Article in English | MEDLINE | ID: mdl-36959449

ABSTRACT

Evaluation of the structural perturbations introduced by a single amino acid mutation is the main issue for protein structural biology. We propose here to present some recent advances in methods, allowing the splitting of distortion between the actual substitution effect and the contribution of the local flexibility of the position where the mutation occurs. Its main drawback is the need of many structures with a single mutation in each of them. To bypass this difficulty, we propose to use molecular modeling tools, with several software enabling us to build a model from a template, given the sequence. As a proof of concept, we rely on a gold standard, the human lysozyme. Both wild-type and three mutant structures are available in the PDB. Two of these mutations result in amyloid fibril formation, and the last one is neutral. As a conclusion, irrespective of the algorithm used for modeling, side chain conformations at the site of mutation are reliable, although long-range effects are out of reach of these tools.


Subject(s)
Proteins , Software , Humans , Mutation , Proteins/chemistry , Models, Molecular , Algorithms , Protein Conformation
9.
J Biomol Struct Dyn ; 41(23): 13535-13562, 2023.
Article in English | MEDLINE | ID: mdl-36890638

ABSTRACT

Xeroderma pigmentosum C (XPC) is a key initiator in the global genome nucleotide excision repair pathway in mammalian cells. Inherited mutations in the XPC gene can cause xeroderma pigmentosum (XP) cancer predisposition syndrome that dramatically increases the susceptibility to sunlight-induced cancers. Various genetic variants and mutations of the protein have been reported in cancer databases and literature. The current lack of a high-resolution 3-D structure of human XPC makes it difficult to assess the structural impact of the mutations/genetic variations. Using the available high-resolution crystal structure of its yeast ortholog, Rad4, we built a homology model of human XPC protein and compared it with a model generated by AlphaFold. The two models are largely consistent with each other in the structured domains. We have also assessed the degree of conservation for each residue using 966 sequences of XPC orthologs. Our structure- and sequence conservation-based assessments largely agree with the variant's impact on the protein's structural stability, computed by FoldX and SDM. Known XP missense mutations such as Y585C, W690S, and C771Y are consistently predicted to destabilize the protein's structure. Our analyses also reveal several highly conserved hydrophobic regions that are surface-exposed, which may indicate novel intermolecular interfaces that are yet to be characterized.Communicated by Ramaswamy H. Sarma.


Subject(s)
Neoplasms , Xeroderma Pigmentosum , Animals , Humans , Xeroderma Pigmentosum/metabolism , Excision Repair , DNA-Binding Proteins/chemistry , DNA Repair/genetics , Mutation , Nucleotides , Mammals/metabolism
10.
Pharmaceutics ; 15(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36839823

ABSTRACT

Targeting pathogenic mechanisms, rather than essential processes, represents a very attractive approach for the development of new antimycobacterial drugs. In this context, iron acquisition routes have recently emerged as potentially druggable pathways. However, the importance of siderophore biosynthesis in the virulence and pathogenicity of M. abscessus (Mab) is still poorly understood. In this study, we investigated the Salicylate Synthase (SaS) of Mab as an innovative molecular target for the development of inhibitors of siderophore production. Notably, Mab-SaS does not have any counterpart in human cells, making it an interesting candidate for drug discovery. Starting from the analysis of the binding of a series of furan-based derivatives, previously identified by our group as inhibitors of MbtI from M. tuberculosis (Mtb), we successfully selected the lead compound 1, exhibiting a strong activity against Mab-SaS (IC50 ≈ 5 µM). Computational studies characterized the key interactions between 1 and the enzyme, highlighting the important roles of Y387, G421, and K207, the latter being one of the residues involved in the first step of the catalytic reaction. These results support the hypothesis that 5-phenylfuran-2-carboxylic acids are also a promising class of Mab-SaS inhibitors, paving the way for the optimization and rational design of more potent derivatives.

11.
Eur J Med Chem ; 247: 115008, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36543032

ABSTRACT

Muscle myosin inhibition could be used to treat many medical conditions involving hypercontractile states, including muscle spasticity, chronic musculoskeletal pain, and hypertrophic cardiomyopathy. A series of 13 advanced analogs of 3-(N-butylethanimidoyl)ethyl)-4-hydroxy-2H-chromen-2-one (BHC) were synthesized to explore extended imine nitrogen side chains and compare aldimines vs. ketimines. None of the new analogs inhibit nonmuscle myosin in a cytokinesis assay. ATPase structure-activity relationships reveal that selectivity for cardiac vs. skeletal myosin can be tuned with subtle structural changes. None of the compounds inhibited smooth muscle myosin II. Docking the compounds to homology models of cardiac and skeletal myosin II gave rationales for the effects of side arm length on inhibition selectivity and for cardiac vs. skeletal myosin. Properties including solubility, stability and toxicity, suggest that certain BHC analogs may be useful as candidates for preclinical studies or as lead compounds for advanced candidates for drugs with cardiac or skeletal muscle myosin selectivity.


Subject(s)
4-Hydroxycoumarins , Myosin Type II , Myosins , Protein Isoforms , Adenosine Triphosphatases
12.
Biomolecules ; 12(11)2022 10 26.
Article in English | MEDLINE | ID: mdl-36358911

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) poses a significant threat to mankind and as such earned its place on the WHO list of priority pathogens. New antimycobacterials with a mechanism of action different to currently used agents are highly required. This study presents the design, synthesis, and biological evaluation of 3-acylaminopyrazine-2-carboxamides derived from a previously reported inhibitor of human prolyl-tRNA synthetase. Compounds were evaluated in vitro against various strains of mycobacteria, pathogenic bacteria, and fungi of clinical significance. In general, high activity against mycobacteria was noted, while the antibacterial and antifungal activity was minimal. The most active compounds were 4'-substituted 3-(benzamido)pyrazine-2-carboxamides, exerting MIC (Minimum Inhibitory Concentration) from 1.95 to 31.25 µg/mL. Detailed structure-activity relationships were established and rationalized in silico with regard to mycobacterial ProRS as a probable target. The active compounds preserved their activity even against multidrug-resistant strains of Mycobacterium tuberculosis. At the same time, they were non-cytotoxic against HepG2 human hepatocellular carcinoma cells. This project is the first step in the successful repurposing of inhibitors of human ProRS to inhibitors of mycobacterial ProRS with antimycobacterial activity.


Subject(s)
Amino Acyl-tRNA Synthetases , Mycobacterium tuberculosis , Humans , Antitubercular Agents/pharmacology , Adenosine/pharmacology , Microbial Sensitivity Tests
13.
Methods Enzymol ; 675: 83-107, 2022.
Article in English | MEDLINE | ID: mdl-36220282

ABSTRACT

Mutation of p53 is the most common genetic alteration in human cancer. The vast majority of p53 mutations found in cancer are missense mutations, with some single nucleotide point mutations leading to the accumulation of mutant p53 protein with potential gain of oncogenic function. The mechanism for stabilization and accumulation of missense mutant p53 protein in malignant cells is not fully understood. It is thought that DNAJA1 plays a crucial role as a co-chaperone protein by stabilizing mutant p53 and amplifying oncogenic potential. As such, identifying small molecule inhibitors to disrupt the protein-protein interaction between mutant p53 and DNAJA1 may lead to an effective treatment for preventing carcinogenesis. Studying protein-protein interactions and identifying potential druggable hotspots has historically been limited-protein-protein binding sites require more complex characterization than those of single proteins and the crystal structures of many proteins have not been identified. Due to these issues, identifying salient druggable targets in protein-protein interactions through bench research may take years to complete. However, in silico modeling approaches allow for rapid characterization of protein-protein interfaces and the druggable binding sites they contain. In this chapter, we first review the oncogenic potential of mutant p53 and the crucial role of DNAJA1 in stabilizing missense mutant p53. We then detail our methodology for using in silico modeling and molecular biology to identify druggable protein-protein interaction sites/pockets between mutant p53 and DNAJA1. Finally, we discuss screening for and validating the utility of a small molecule inhibitor identified through our in silico framework. Specifically, we describe GY1-22, a unique compound with activity against mutant p53 that demonstrates therapeutic potential to inhibit cancer cell growth both in vivo and in vitro.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Carcinogenesis , Computer Simulation , HSP40 Heat-Shock Proteins/metabolism , Humans , Mutant Proteins/metabolism , Nucleotides/metabolism , Tumor Suppressor Protein p53/chemistry
14.
Eur J Med Chem ; 242: 114676, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35994951

ABSTRACT

Benzoates as toxic intermediate are naturally produced by fungal intracellular metabolism, and CYP53 can specific transform the substrates. In the study, we constructed the CYP53 homology model and analyzed the corresponding active region. At the same time, the molecular docking and the structure-based pharmacophore model (SBP) were performed to explore the bind mode of representative CYP53 inhibitors. On the basis, a series of phenylpyridines derivatives were designed as novel CYP53 inhibitors, and their molecular structures were synthesized and evaluated. Compared with the positive control groups, their antifungal activity showed the obvious upward trend. In particular, target compounds (13a, 15b) possessed the excellent biological activity against pathogenic fungi and drug-resistant fungi in vivo and in vitro. The preliminary action mechanism has confirmed that target compounds could inhibit CYP53 activity, and block the metabolism of toxic intermediates (Benzoates). This further induced the accumulation of reactive oxygen species (ROS) through the pattern of mitochondrial depolarization, which eventually caused fungal lysis and death. In summary, the study provided the reasonable computational models, and effectively guided the generation of novel CYP53 antifungal inhibitors.


Subject(s)
Antifungal Agents , Fungi , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Benzoates , Microbial Sensitivity Tests , Molecular Docking Simulation , Reactive Oxygen Species , Structure-Activity Relationship
15.
ChemMedChem ; 17(12): e202200161, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35403825

ABSTRACT

Deep annotation of a library of 4-anilinoquin(az)olines led to the identification of 7-iodo-N-(3,4,5-trimethoxyphenyl)quinolin-4-amine 16 as a potent inhibitor (IC50 =14 nM) of Protein Kinase Novel 3 (PKN3) with micromolar activity in cells. Compound 16 is a potential tool compound to study the cell biology of PKN3 and its role in pancreatic and prostate cancer and T-cell acute lymphoblastic leukemia. These 4-anilinoquin(az)olines may also be useful tools to uncover the therapeutic potential of PKN3 inhibition in a broad range of diseases.


Subject(s)
Prostatic Neoplasms , Protein Kinase Inhibitors , Humans , Male , Protein Kinase C , Protein Kinase Inhibitors/pharmacology
16.
J Agric Food Chem ; 70(16): 5186-5196, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35416034

ABSTRACT

The electron-transfer capabilities of cytochrome b5 reductase (Cyt b5R) and NADPH supply have been shown to be critical factors in microbial fatty acid synthesis. Unfortunately, Cyt b5R substrate specificity is limited to the coenzyme NADH. In this study, we discovered that a novel Cyt b5R from Mortierella alpina (MaCytb5RII) displays affinity for NADPH and NADH. The enzymatic characteristics of high-purity MaCytb5RII were determined with the Km,NADPH and Km,NADH being 0.42 and 0.07 mM, respectively. MaCytb5RII shows high specific activity at 4 °C and pH 9.0. We anchored the residues that interacted with the coenzymes using the homology models of MaCytb5Rs docking NAD(P)H and FAD. The enzyme activity analysis of the purified mutants MaCytb5RII[S230N], MaCytb5RII[Y242F], and MaCytb5RII[S272A] revealed that Ser230 is essential for MaCytb5RII to have dual NAD(P)H dependence, whereas Tyr242 influences MaCytb5RII's NADPH affinity and Ala272 greatly decreases MaCytb5RII's NADH affinity.


Subject(s)
Cytochrome-B(5) Reductase , NAD , Cytochrome-B(5) Reductase/chemistry , Cytochrome-B(5) Reductase/genetics , Cytochrome-B(5) Reductase/metabolism , Cytochromes b , Kinetics , Mortierella , NAD/metabolism , NADP
17.
Ann Transl Med ; 10(2): 71, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35282126

ABSTRACT

Background: Large conductance calcium-activated potassium channel (BK channel) is gated by both voltage and calcium ions and is widely distributed in excitable and nonexcitable cells. BK channel plays an important role in epilepsy and other diseases, but BK channel subtype-specific drugs are still extremely rare. Martentoxin was previously isolated from the venom of members of Scorpionidae and shown to be composed of 37 amino acids. Research has shown that the pharmacological selectivity of martentoxin to the BK channel is higher than that to other potassium channels. Therefore, it is of great significance to study the mechanism of interaction between martentoxin and BK channels. Methods: The three-dimensional structure of BK channel pore region was constructed by homologous modeling method, and the key amino acid sites of BK channel interaction with martentoxin were analyzed by protein-protein docking, molecular dynamic simulation and virtual alanine mutation. Results: Based on homologous modeling of BK channel pore structure and protein-protein docking analysis, Phe1, Lys28 and Arg35 of martentoxin were found to be key amino acids in toxin BK channel interaction. Conclusions: This study reveals the structural basis of martentoxin interaction with BK channel. These results will contribute to the design of BK channel specific blockers based on the structure of martentoxin.

18.
J Steroid Biochem Mol Biol ; 219: 106082, 2022 05.
Article in English | MEDLINE | ID: mdl-35189329

ABSTRACT

The 7-transmembrane architecture of adiponectin receptors (AdipoRs), determined from their X-ray crystal structures, was used for homology modeling of another progesterone and adipoQ receptor (PAQR) family member, membrane progesterone receptor alpha (mPRα). The mPRα model identified excess positively charged residues on the cytosolic side, suggesting it has the same membrane orientation as AdipoRs with an intracellular N-terminus. The homology model showed identical amino acid residues to those forming the zinc binding pocket in AdipoRs, which strongly implies that zinc is also present in mPRα. The homology model showed a critical H-bond interaction between the glutamine (Q) residue at 206 in the binding pocket and the 20-carbonyl of progesterone. Mutational analysis showed no progesterone binding to the arginine (R) 206 mutant and modeling predicted this was due to the strong positive charge of arginine stabilizing the presence of an oleic acid (C18:1) molecule in the binding pocket, as observed in the X-rays of AdipoRs. High Zn2+ concentrations are predicted to form a salt with the carboxylate group of the oleic acid, thereby eliminating its binding to the free fatty acid (FFA) binding pocket, and allowing progesterone to bind. This is supported by experiments showing 100 µM Zn2+ addition restored [3H]-progesterone binding of the Q206R mutant to levels in WT mPRα and increased [3H]-progesterone binding to mPRγ and AdipoR1 which have arginine residues in this region. The model predicts hydrophobic interactions of progesterone with amino acid residues surrounding the binding pocket, including valine 146 in TM3, which when mutated into a polar serine resulted in a complete loss of [3H]-progesterone binding. The mPRα model showed there is no hydrogen bond donor in the vicinity of the 3-keto group of progesterone and ligand structure-activity studies with 3-deoxy steroids revealed that, unlike the nuclear progesterone receptor, the 3-carbonyl oxygen is not essential for binding to mPRα. Interestingly, the small synthetic AdipoR agonist, AdipoRon, displayed binding affinity for mPRα and mimicked progesterone signaling, whereas D-e-MAPP, a ceramidase inhibitor, blocked progesterone signaling. Thus, critical residues around the binding pocket and steroid structures that bind mPRα, as well as similarities with AdipoRs, can be predicted from the homology model.


Subject(s)
Progesterone , Receptors, Progesterone , Amino Acids , Arginine , Ligands , Molecular Dynamics Simulation , Oleic Acid , Progesterone/metabolism , Receptors, Progesterone/metabolism , Steroids/metabolism , Zinc
19.
Environ Sci Pollut Res Int ; 29(24): 35996-36012, 2022 May.
Article in English | MEDLINE | ID: mdl-35060042

ABSTRACT

In the current work, a novel thermophilic serine protease gene (P3862) from Ornithinibacillus caprae L9T was functionally expressed in Bacillus subtilis SCK6. The monomeric enzyme of about 29 kDa was purified to homogeneity with 43.91% of recovery and 2.81-folds of purification. Characterization of the purified protease revealed the optimum activity at pH 7 and 65 °C. The protease exhibited excellent activity and stability in the presence of Na+, Mg2+, Ca2+, ethanediol, n-hexane, Tween-20, Tween-80 and Triton X-100. P3862 displayed favorable caseinolytic activity, moderate keratinolytic activity but no collagenolytic activity. Besides, the homology model of P3862 possessed a globular configuration and characteristic of α/ß hydrolase fold, and displayed stable interactions with casein, glycoprotein and keratin rather than collagen. Moreover, the crude enzyme could completely dehair goatskin within 6 h, resulting in decrease in BOD5, COD and TSS loads by 72.86, 74.07, and 73.79%, respectively, as compared with Na2S treatment. Biocatalytic applications revealed that it could effectively remove egg-stains from fabrics at 37 °C for 30 min with low supplementation (300 U/mL), and was able to degrade the feathers of duck and chicken. Overall, these outstanding properties make P3862 valuable in the development of environmentally friendly biotechnologies .


Subject(s)
Bacillaceae , Polysorbates , Animals , Bacillaceae/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Ions , Serine Proteases/chemistry , Serine Proteases/metabolism , Substrate Specificity , Temperature
20.
Biomed Pharmacother ; 145: 112380, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34749053

ABSTRACT

BACKGROUND AND PURPOSE: Nematode glutamate-gated chloride channels (GluCls) are targets of ivermectin (IVM) and moxidectin (MOX), structurally dissimilar macrocyclic lactone (ML) anthelmintics. IVM and MOX possess different pharmacokinetics and efficacy profiles but are thought to have the same binding site, through which they allosterically activate GluCls, apart from the GLC-2 receptor, which is antagonized by IVM. Our goal was to determine GLC-2 sensitivity to MOX, investigate residues involved in antagonism of GLC-2, and to identify differences in receptor-level pharmacology between IVM and MOX. EXPERIMENTAL APPROACH: Two-electrode voltage clamp electrophysiology was used to study the pharmacology of Caenorhabditis elegans GLC-2 receptors heterologously expressed in Xenopus laevis oocytes. In silico homology modeling identified Cel-GLC-2 residues Met291 and Gln292 at the IVM binding site that differ from other GluCls; we mutated these residues to those found in ML-sensitive GluCls, and those of filarial nematode GLC-2. KEY RESULTS: We discovered that MOX inhibits wild-type C. elegans GLC-2 receptors roughly 10-fold more potently than IVM, and with greater maximal inhibition of glutamate activation (MOX = 86.9 ± 2.5%; IVM = 57.8 ± 5.9%). IVM was converted into an agonist in the Met291Gln mutant, but MOX remained an antagonist. Glutamate responses were abrogated in a Met291Leu Gln292Thr double mutant (mimicking filarial nematode GLC-2), but MOX and IVM were converted into positive allosteric modulators of glutamate at this construct. CONCLUSIONS AND IMPLICATIONS: Our data provides new insights into differences in receptor-level pharmacology between IVM and MOX and identify residues responsible for ML antagonism of GLC-2.


Subject(s)
Anthelmintics/pharmacology , Chloride Channels/antagonists & inhibitors , Ivermectin/pharmacology , Macrolides/pharmacology , Animals , Binding Sites , Caenorhabditis elegans , Female , Oocytes , Patch-Clamp Techniques , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL