Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.692
Filter
1.
Phytopathology ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976643

ABSTRACT

Soybean cyst nematode (SCN, Heterodera glycines) is most effectively managed through planting resistant soybean cultivars, but the repeated use of the same resistance sources has led to a widespread emergence of virulent SCN populations that can overcome soybean resistance. Resistance to SCN HG type 0 (Race 3) in soybean cultivar Forrest is mediated by an epistatic interaction between the soybean resistance genes rhg1-a and Rhg4. We previously developed two SCN inbred populations by mass-selecting SCN HG type 0 (Race 3) on susceptible and resistant recombinant inbred lines, derived from a cross between Forrest and the SCN-susceptible cultivar Essex, which differ for Rhg4. To identify SCN genes potentially involved in overcoming rhg1-a/Rhg4-mediated resistance, we conducted RNA-sequencing on early parasitic juveniles of these two SCN inbred populations infecting their respective hosts, only to discover a handful of differentially expressed genes (DEGs). However, in a comparison to early parasitic juveniles of an avirulent SCN inbred population infecting a resistant host, we discovered 59 and 171 DEGs uniquely up- or down-regulated in virulent parasitic juveniles adapted on the resistant host. Interestingly, the proteins coded by these 59 DEGs included vitamin B-associated proteins (reduced folate carrier, biotin synthase, and thiamine transporter) and nematode effectors known to play roles in plant defense suppression, suggesting that virulent SCN may exert a heightened transcriptional response to cope with enhanced plant defenses and an altered nutritional status of a resistant soybean host.

2.
Aquat Toxicol ; 273: 107012, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38954869

ABSTRACT

This study examined the impact of sertraline, an antidepressant common in treated wastewater, on the host-parasite dynamics between parasitic freshwater mussel (Unio tumidus, Unionidae) larvae (glochidia) and their host fish (Squalius cephalus, Cyprinidae). Employing a full-factorial design, both fish and glochidia were subjected to sertraline at the combinations of 0 µg L-1 (control), 0.2 µg L-1 (environmentally relevant concentration), and 4 µg L-1 (elevated concentration, short-term exposure of the parasite). The results showed that long-term host exposure (involving intensive sertraline accumulation in the fish brain) marginally increased subsequent glochidia attachment success by 2 %, while parasite exposure at the same environmentally relevant concentrations had no detectable effect. There was also no effect of exposure of glochidia to 0.2 µg L-1 of sertraline on their viability and encapsulation success during the initial parasitic stage. However, a significant alteration in attachment behavior, marked by a 3.3 % increase in attachment success and changes in the glochidia spatial distribution on the host body, was noted after 24 h of glochidia exposure to 4 µg L-1 of sertraline. Importantly, this study provides the first evidence of sertraline transfer from exposed glochidia to nonexposed host fish, as indicated by elevated levels of sertraline (12.8 ng g-1) in the brain tissue of nonexposed hosts. These findings highlight the subtle yet significant effects of pharmaceutical pollutants on freshwater ecosystems but also underscore the importance of understanding the unexpected dynamics of such contamination to predict and address future ecological changes.

3.
Sci Total Environ ; 946: 174367, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955267

ABSTRACT

Infectious diseases stem from disrupted interactions among hosts, parasites, and the environment. Both abiotic and biotic factors can influence infection outcomes by shaping the abundance of a parasite's infective stages, as well as the host's ability to fight infection. However, disentangling these mechanisms within natural ecosystems remains challenging. Here, combining environmental DNA analysis and niche modelling at a regional scale, we uncovered the biotic and abiotic drivers of an infectious disease of salmonid fish, triggered by the parasite Tetracapsuloides bryosalmonae. We found that the occurrence and abundance of the parasite in the water-i.e., the propagule pressure- were mainly correlated to the abundances of its two primary hosts, the bryozoan Fredericella sultana and the fish Salmo trutta, but poorly to local abiotic environmental stressors. In contrast, the occurrence and abundance of parasites within fish hosts-i.e., proxies for disease emergence-were closely linked to environmental stressors (water temperature, agricultural activities, dams), and to a lesser extent to parasite propagule pressure. These results suggest that pathogen distribution alone cannot predict the risk of disease in wildlife, and that local anthropogenic stressors may play a pivotal role in disease emergence among wild host populations, likely by modulating the hosts' immune response. Our study sheds light on the intricate interplay between biotic and abiotic factors in shaping pathogen distribution and raises concerns about the effects of global change on pathogen emergence.

4.
Integr Zool ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978458

ABSTRACT

The study of host-parasite co-evolution is a central topic in evolutionary ecology. However, research is still fragmented and the extent to which parasites influence host life history is debated. One reason for this incomplete picture is the frequent omission of environmental conditions in studies analyzing host-parasite dynamics, which may influence the exposure to or effects of parasitism. To contribute to elucidating the largely unresolved question of how environmental conditions are related to the prevalence and intensity of infestation and their impact on hosts, we took advantage of 25 years of monitoring of a breeding population of pied flycatchers, Ficedula hypoleuca, in a Mediterranean area of central Spain. We investigated the influence of temperature and precipitation during the nestling stage at a local scale on the intensity of blowfly (Protocalliphora azurea) parasitism during the nestling stage. In addition, we explored the mediating effect of extrinsic and intrinsic factors and blowfly parasitism on breeding success (production of fledglings) and offspring quality (nestling mass on day 13). The prevalence and intensity of blowfly parasitism were associated with different intrinsic (host breeding date, brood size) and extrinsic (breeding habitat, mean temperature) factors. Specifically, higher average temperatures during the nestling phase were associated with lower intensities of parasitism, which may be explained by changes in blowflies' activity or larval developmental success. In contrast, no relationship was found between the prevalence of parasitism and any of the environmental variables evaluated. Hosts that experienced high parasitism intensities in their broods produced more fledglings as temperature increased, suggesting that physiological responses to severe parasitism during nestling development might be enhanced in warmer conditions. The weight of fledglings was, however, unrelated to the interactive effect of parasitism intensity and environmental conditions. Overall, our results highlight the temperature dependence of parasite-host interactions and the importance of considering multiple fitness indicators and climate-mediated effects to understand their complex implications for avian fitness and population dynamics.

5.
Phytopathology ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970805

ABSTRACT

MicroRNAs (miRNAs) play crucial roles in plant defense responses. However, the underlying mechanism by which miR398b contributes to soybean responses to soybean cyst nematode (SCN, Heterodera glycines) remains elusive. In this study, by using Agrobacterium rhizogenes-mediated transformation of soybean hairy roots, we observed that miR398b and target genes GmCCS and GmCSD1b played vital functions in soybean-H. glycines interaction. The study revealed that the abundance of miR398b was down-regulated by H. glycines infection, and overexpression miR398b enhanced susceptibility of soybean to H. glycines. Conversely, silencing of miR398b improved soybean resistance to H. glycines. Detection assays revealed that miR398b rapidly senses stress-induced ROS, leading to the repression of target genes GmCCS and GmCSD1b, and regulating the accumulation of plant defense genes against nematodes infection. Moreover, exogenous synthetic ds-miR398b enhanced soybean sensitivity to H. glycines by modulating H2O2 and O2- levels. Functional analysis demonstrated that overexpression GmCCS and GmCSD1b in soybean enhanced resistance to H. glycines. RNA interference (RNAi)-mediated repression of GmCCS and GmCSD1b in soybean increased susceptibility to H. glycines. RNA-sequencing revealed that a majority of differentially expressed genes (DEGs) in overexpression GmCCS were associated with oxidative stress. Overall, the results indicate that miR398b targets superoxide dismutase genes, which negatively regulate soybean resistance to H. glycines via modulating ROS levels and defense signal.

6.
Phytopathology ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38870071

ABSTRACT

Gentians (Gentiana spp.) as floriculture crops are constantly exposed to several fungal and viral pathogens in the field. Among the fungal diseases afflicting gentian production, gentian sclerotial flower blight caused by Ciborinia gentianae incurs economic losses as it affects both flowers pre- and post-harvest. Currently, preventive measures for this disease are limited, and no resistant cultivar has been reported. This is partly because of the lack of a reliable infection system that could promote research on this plant-fungus interaction. In this study, Gentiana plant tissue culture material was inoculated with C. gentianiae culture filtrate. We successfully demonstrated non-ascospore mediated infection of C. gentianae. Inoculation of individual hyphal structures present in the culture filtrate suggested that sclerotial primordia are the main agents of this infection. Interestingly, we observe that primary infection of C. gentianae in petals but not leaves potentiates systemic infection resembling the fungus' infection strategy in the field. Moreover, we show that, 1) non-ascospore hyphal structures can also cause disease in flowers grown in the field and, 2) ascosporic infection can also be observed using the in vitro system, opening possibilities for both practical and basic researches aimed to combat gentian sclerotial flower blight disease.

7.
Proc Natl Acad Sci U S A ; 121(24): e2218927121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830094

ABSTRACT

Oomycete protists share phenotypic similarities with fungi, including the ability to cause plant diseases, but branch in a distant region of the tree of life. It has been suggested that multiple horizontal gene transfers (HGTs) from fungi-to-oomycetes contributed to the evolution of plant-pathogenic traits. These HGTs are predicted to include secreted proteins that degrade plant cell walls, a barrier to pathogen invasion and a rich source of carbohydrates. Using a combination of phylogenomics and functional assays, we investigate the diversification of a horizontally transferred xyloglucanase gene family in the model oomycete species Phytophthora sojae. Our analyses detect 11 xyloglucanase paralogs retained in P. sojae. Using heterologous expression in yeast, we show consistent evidence that eight of these paralogs have xyloglucanase function, including variants with distinct protein characteristics, such as a long-disordered C-terminal extension that can increase xyloglucanase activity. The functional variants analyzed subtend a phylogenetic node close to the fungi-to-oomycete transfer, suggesting the horizontally transferred gene was a bona fide xyloglucanase. Expression of three xyloglucanase paralogs in Nicotiana benthamiana triggers high-reactive oxygen species (ROS) generation, while others inhibit ROS responses to bacterial immunogens, demonstrating that the paralogs differentially stimulate pattern-triggered immunity. Mass spectrometry of detectable enzymatic products demonstrates that some paralogs catalyze the production of variant breakdown profiles, suggesting that secretion of variant xyloglucanases increases efficiency of xyloglucan breakdown as well as diversifying the damage-associated molecular patterns released. We suggest that this pattern of neofunctionalization and the variant host responses represent an aspect of the Red Queen host-pathogen coevolutionary dynamic.


Subject(s)
Gene Transfer, Horizontal , Glycoside Hydrolases , Phylogeny , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Phytophthora/pathogenicity , Phytophthora/genetics , Plant Diseases/microbiology , Plant Diseases/parasitology , Evolution, Molecular , Gene Duplication
8.
Vet Parasitol ; 330: 110243, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38944892

ABSTRACT

Gastrointestinal helminth infection, particularly by Haemonchus contortus, poses significant challenges to sheep farming worldwide. While anthelmintic drugs have been traditional control measures, the emergence of resistance calls for alternative strategies. Understanding the interaction between parasites, host, and their microbiome is crucial for management of helminth infection. This study intricately explores the interactions between microbial communities in Kashmir Merino sheep infected with H. contortus, to understand the complex interplay between host, parasite, and their microbiome. Sheep abomasal contents and H. contortus were collected from infected and control groups, processed for DNA extraction, and subjected to metagenomic sequencing of the 16 S rRNA gene. Downstream analysis unveils distinct microbial patterns, where Proteobacteria were dominant in H. contortus, while Bacteroidota and Firmicutes prevailed in the sheep abomasum. The revelation of unique genera and shifts in diversity indices underscored helminth-induced disruptions in the host. Beta diversity analysis further showed significant variations in bacterial profiles, providing insights into the intricate host, parasite, and microbiome dynamics. Additionally, this study elucidated the presence of pathogenic bacteria within H. contortus, accentuating their potential role in exacerbating sheep health issues. This finding underscores the complexity of the host-parasite-microbiome interaction showing helminth-induced microbiome alterations of the host.

9.
Sci Rep ; 14(1): 14258, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902289

ABSTRACT

Seal lice (Echinophthirius horridus) are bloodsucking ectoparasites of phocid seals and vectors of pathogens like the heartworm, Acanthocheilonema spirocauda. Grey and harbour seal populations are recovering in German waters and wildlife health surveillance is crucial for wildlife conservation. A new, high effort sampling protocol for seal lice was applied for grey and harbour seals along the German North- and Baltic Sea coast. Freshly dead seals were systematically sampled within a health monitoring of stranded seals over 12 months. Prevalence, intensity and distribution patterns of seal lice were analysed. 58% of harbour seals (n = 71) and 70% of grey seals (n = 10) were infected with seal lice. A majority of harbour seals displayed mild levels of infection, while three were moderately and two were severely infected. The head was the preferred predilection site, indicating that E. horridus prefers body areas with frequent access to atmospheric oxygen. Nits and different developmental stages were recorded in all age classes in grey and harbour seals in all seasons. For the first time, copulating specimens of E. horridus were recorded on a dead harbour seal, highlighting that E. horridus reproduces throughout the year on seals of all age classes in German waters.


Subject(s)
Seals, Earless , Animals , Prevalence , Seals, Earless/parasitology , Phoca/parasitology , Female , Male , Lice Infestations/epidemiology , Lice Infestations/veterinary , Lice Infestations/parasitology , Germany/epidemiology , Phthiraptera
10.
Parasites Hosts Dis ; 62(2): 243-250, 2024 May.
Article in English | MEDLINE | ID: mdl-38835265

ABSTRACT

We investigated organ specific Toxocara canis larval migration in mice infected with T. canis larvae. We observed the worm burden and systemic immune responses. Three groups of BALB/c mice (n=5 each) were orally administered 1,000 T. canis 2nd stage larvae to induce larva migrans. Mice were sacrificed at 1, 3, and 5 weeks post-infection. Liver, lung, brain, and eye tissues were collected. Tissue from 2 mice per group was digested for larval count, while the remaining 3 mice underwent histological analysis. Blood hematology and serology were evaluated and compared to that in a control uninfected group (n=5) to assess the immune response. Cytokine levels in bronchoalveolar lavage (BAL) fluid were also analyzed. We found that, 1 week post-infection, the mean parasite load in the liver (72±7.1), brain (31±4.2), lungs (20±5.7), and eyes (2±0) peaked and stayed constant until the 3 weeks. By 5-week post-infection, the worm burden in the liver and lungs significantly decreased to 10±4.2 and 9±5.7, respectively, while they remained relatively stable in the brain and eyes (18±4.2 and 1±0, respectively). Interestingly, ocular larvae resided in all retinal layers, without notable inflammation in outer retina. Mice infected with T. canis exhibited elevated levels of neutrophils, monocytes, eosinophils, and immunoglobulin E. At 5 weeks post-infection, interleukin (IL)-5 and IL-13 levels were elevated in BAL fluid. Whereas IL-4, IL-10, IL-17, and interferon-γ levels in BAL fluid were similar to that in controls. Our findings demonstrate that a small portion of T. canis larvae migrate to the eyes and brain within the first week of infection. Minimal tissue inflammation was observed, probably due to increase of anti-inflammatory cytokines. This study contributes to our understanding of the histological and immunological responses to T. canis infection in mice, which may have implications to further understand human toxocariasis.


Subject(s)
Brain , Cytokines , Larva , Liver , Lung , Mice, Inbred BALB C , Toxocara canis , Toxocariasis , Animals , Toxocara canis/immunology , Toxocariasis/immunology , Toxocariasis/pathology , Toxocariasis/parasitology , Larva/immunology , Mice , Cytokines/metabolism , Lung/parasitology , Lung/immunology , Lung/pathology , Liver/parasitology , Liver/pathology , Liver/immunology , Brain/parasitology , Brain/immunology , Brain/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/parasitology , Female , Parasite Load , Eye/parasitology , Eye/immunology , Eye/pathology , Disease Models, Animal
11.
Glob Chang Biol ; 30(6): e17378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923246

ABSTRACT

Understanding and predicting population responses to climate change is a crucial challenge. A key component of population responses to climate change are cases in which focal biological rates (e.g., population growth rates) change in response to climate change due to non-compensatory effects of changes in the underlying components (e.g., birth and death rates) determining the focal rates. We refer to these responses as non-compensatory climate change effects. As differential responses of biological rates to climate change have been documented in a variety of systems and arise at multiple levels of organization within and across species, non-compensatory effects may be nearly ubiquitous. Yet, how non-compensatory climate change responses combine and scale to influence the demographics of populations is often unclear and requires mapping them to the birth and death rates underlying population change. We provide a flexible framework for incorporating non-compensatory changes in upstream rates within and among species and mapping their consequences for additional downstream rates across scales to their eventual effects on population growth rates. Throughout, we provide specific examples and potential applications of the framework. We hope this framework helps to enhance our understanding of and unify research on population responses to climate change.


Subject(s)
Climate Change , Population Dynamics , Animals , Population Growth , Models, Biological
12.
Anim Microbiome ; 6(1): 36, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918824

ABSTRACT

Mounting evidence of the occurrence of direct and indirect interactions between the human blood fluke, Schistosoma mansoni, and the gut microbiota of rodent models raises questions on the potential role(s) of the latter in the pathophysiology of hepatointestinal schistosomiasis. However, substantial differences in both the composition and function between the gut microbiota of laboratory rodents and that of humans hinders an in-depth understanding of the significance of such interactions for human schistosomiasis. Taking advantage of the availability of a human microbiota-associated mouse model (HMA), we have previously highlighted differences in infection-associated changes in gut microbiota composition between HMA and wildtype (WT) mice. To further explore the dynamics of schistosome-microbiota relationships in HMA mice, in this study we (i) characterize qualitative and quantitative changes in gut microbiota composition of a distinct line of HMA mice (D2 HMA) infected with S. mansoni prior to and following the onset of parasite egg production; (ii) profile local and systemic immune responses against the parasite in HMA as well as WT mice and (iii) assess levels of faecal inflammatory markers and occult blood as indirect measures of gut tissue damage. We show that patent S. mansoni infection is associated with reduced bacterial alpha diversity in the gut of D2 HMA mice, alongside expansion of hydrogen sulphide-producing bacteria. Similar systemic humoral responses against S. mansoni in WT and D2 HMA mice, as well as levels of faecal lipocalin and markers of alternatively activated macrophages, suggest that these are independent of baseline gut microbiota composition. Qualitative comparative analyses between faecal microbial profiles of S. mansoni-infected WT and distinct lines of HMA mice reveal that, while infection-induced alterations of the gut microbiota composition are highly dependent on the baseline flora, bile acid composition and metabolism may represent key elements of schistosome-microbiota interactions through the gut-liver axis.

13.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230127, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913065

ABSTRACT

Context-dependent dispersal allows organisms to seek and settle in habitats improving their fitness. Despite the importance of species interactions in determining fitness, a quantitative synthesis of how they affect dispersal is lacking. We present a meta-analysis asking (i) whether the interaction experienced and/or perceived by a focal species (detrimental interaction with predators, competitors, parasites or beneficial interaction with resources, hosts, mutualists) affects its dispersal; and (ii) how the species' ecological and biological background affects the direction and strength of this interaction-dependent dispersal. After a systematic search focusing on actively dispersing species, we extracted 397 effect sizes from 118 empirical studies encompassing 221 species pairs; arthropods were best represented, followed by vertebrates, protists and others. Detrimental species interactions increased the focal species' dispersal (adjusted effect: 0.33 [0.06, 0.60]), while beneficial interactions decreased it (-0.55 [-0.92, -0.17]). The effect depended on the dispersal phase, with detrimental interactors having opposite impacts on emigration and transience. Interaction-dependent dispersal was negatively related to species' interaction strength, and depended on the global community composition, with cues of presence having stronger effects than the presence of the interactor and the ecological complexity of the community. Our work demonstrates the importance of interspecific interactions on dispersal plasticity, with consequences for metacommunity dynamics.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Animal Distribution , Animals , Ecosystem , Vertebrates/physiology
14.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230134, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913057

ABSTRACT

Parasites are known to have direct effects on host dispersal ability and motivation. Yet, parasites have a variety of impacts on host populations, including shaping predation and cannibalism rates, and therefore may also have indirect effects on host dispersal; these indirect pathways have not been studied. We tested the hypothesis that parasites influence host dispersal through effects on cannibalism using backswimmers (Notonecta undulata) and Hydrachnidia freshwater mites. Mite parasitism impedes swimming in backswimmers, which we found increased their vulnerability to cannibalism. We imposed a manipulation that varied cannibalism rates across experimental populations consisting of a mix of backswimmers with and without simulated parasites. Using simulated parasites allowed us to examine the effects of cannibalism without introducing infection risk. We found that the odds of dispersal for infected backswimmers increased by 2.25× with every 10% increase in the risk of being cannibalized, and the odds of dispersal for healthy backswimmers increased by 2.34× for every additional infected backswimmer they consumed. Our results suggest that cannibalism was used as an energy source for dispersal for healthy individuals, while the risk of being eaten motivated dispersal in infected individuals. These results elucidate the complex ways that parasites impact host populations and strengthen our understanding of host-parasite interactions, including host and parasite population stability and spread. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Cannibalism , Host-Parasite Interactions , Mites , Animals , Mites/physiology , Animal Distribution , Heteroptera/physiology , Heteroptera/parasitology
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230130, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913060

ABSTRACT

The spread of parasites and the emergence of disease are currently threatening global biodiversity and human welfare. To address this threat, we need to better understand those factors that determine parasite persistence and prevalence. It is known that dispersal is central to the spatial dynamics of host-parasite systems. Yet past studies have typically assumed that dispersal is a species-level constant, despite a growing body of empirical evidence that dispersal varies with ecological context, including the risk of infection and aspects of host state such as infection status (parasite-dependent dispersal; PDD). Here, we develop a metapopulation model to understand how different forms of PDD shape the prevalence of a directly transmitted parasite. We show that increasing host dispersal rate can increase, decrease or cause a non-monotonic change in regional parasite prevalence, depending on the type of PDD and characteristics of the host-parasite system (transmission rate, virulence, and dispersal mortality). This result contrasts with previous studies with parasite-independent dispersal which concluded that prevalence increases with host dispersal rate. We argue that accounting for host dispersal responses to parasites is necessary for a complete understanding of host-parasite dynamics and for predicting how parasite prevalence will respond to changes such as human alteration of landscape connectivity. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Animal Distribution , Host-Parasite Interactions , Models, Biological , Animals , Prevalence , Humans , Parasites/physiology , Parasitic Diseases/epidemiology , Parasitic Diseases/parasitology , Population Dynamics
16.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230139, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913066

ABSTRACT

One of the fundamental aims of ecological, epidemiological and evolutionary studies of host-parasite interactions is to unravel which factors affect parasite virulence. Theory predicts that virulence and transmission are correlated by a trade-off, as too much virulence is expected to hamper transmission owing to excessive host damage. Coinfections may affect each of these traits and/or their correlation. Here, we used inbred lines of the spider mite Tetranychus urticae to test how coinfection with T. evansi impacted virulence-transmission relationships at different conspecific densities. The presence of T. evansi on a shared host did not change the relationship between virulence (leaf damage) and the number of transmitting stages (i.e. adult daughters). The relationship between these traits was hump-shaped across densities, both in single and coinfections, which corresponds to a trade-off. Moreover, transmission to adjacent hosts increased in coinfection, but only at low T. urticae densities. Finally, we tested whether virulence and the number of daughters were correlated with measures of transmission to adjacent hosts, in single and coinfections at different conspecific densities. Traits were mostly independent, meaning that interspecific competitors may increase transmission without affecting virulence. Thus, coinfections may impact epidemiology and parasite trait evolution, but not necessarily the virulence-transmission trade-off.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Coinfection , Host-Parasite Interactions , Tetranychidae , Animals , Virulence , Tetranychidae/physiology , Coinfection/parasitology , Coinfection/transmission , Female
17.
J Nematol ; 56(1): 20240022, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38846324

ABSTRACT

Mermithidae is a family of nematodes that parasitize a wide range of invertebrates worldwide. Herein, we report nematodes that were unexpectedly found in three of 486 adult stable flies (Stomoxys calcitrans) captured from three farms (F1, F2, and F3) in different regions of Gifu Prefecture, Japan. We aimed to characterize these nematodes both at the morphological and molecular level. Morphological studies revealed that the nematodes were juveniles of Mermithidae. Phylogenetic analysis based on 18S and 28S rDNA indicated that the mermithids from farms F1 and F2 could be categorized into the same cluster as Ovomermis sinensis and Hexamermis sp., whereas the mermithid from farm F3 clustered with Amphimermis sp. Additionally, these mermithids could be categorized within the same clusters as related mermithids detected in Japan that parasitize various arthropod orders. Our findings suggest that these stable flies may have been parasitized by mermithids already present in the region and that genetically distinct species of mermithids occur across Japan. To the best of our knowledge, this is the first report of mermithids parasitizing adult stable flies in Japan.

18.
Proc Biol Sci ; 291(2024): 20240446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835275

ABSTRACT

Many genes and signalling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signalling networks that must faithfully complete a developmental programme while also defending against parasites, and trait signalling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.


Subject(s)
Genetic Pleiotropy , Signal Transduction , Animals , Biological Evolution , Host-Parasite Interactions , Genetic Fitness , Resource Allocation
19.
Front Microbiol ; 15: 1407500, 2024.
Article in English | MEDLINE | ID: mdl-38873166

ABSTRACT

SigE is one of the main regulators of mycobacterial stress response and is characterized by a complex regulatory network based on two pathways, which have been partially characterized in conditions of surface stress. The first pathway is based on the induction of sigE transcription by the two-component system MprAB, while the second is based on the degradation of SigE anti-sigma factor RseA by ClpC1P2, a protease whose structural genes are induced by ClgR. We characterized the dynamics of the SigE network activation in conditions of surface stress and low pH in Mycobacterium tuberculosis. Using a series of mutants in which the main regulatory nodes of the network have been inactivated, we could explore their hierarchy, and we determined that MprAB had a key role in the network activation in both stress conditions through the induction of sigE. However, while in conditions of surface stress the absence of MprAB totally abrogated sigE induction, under low pH conditions it only resulted in a small delay of the induction of sigE. In this case, sigE induction was due to SigH, which acted as a MprAB backup system. The ClgR pathway, leading to the degradation of the SigE anti-sigma factor RseA, was shown to be essential for the activation of the SigE network only following surface stress, where it showed an equal hierarchy with the MprAB pathway.

20.
BMC Infect Dis ; 24(1): 636, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918706

ABSTRACT

BACKGROUND: Schistosomiasis is a parasitic disease caused by trematodes of the genus Schistosoma. The intravascular worms acquire the nutrients necessary for their survival from host blood. Since all animals are auxotrophic for riboflavin (vitamin B2), schistosomes too must import it to survive. Riboflavin is an essential component of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD); these support key functions of dozens of flavoenzymes. METHODS: Here, using a combination of metabolomics, enzyme kinetics and in silico molecular analysis, we focus on the biochemistry of riboflavin and its metabolites in Schistosoma mansoni (Sm). RESULTS: We show that when schistosomes are incubated in murine plasma, levels of FAD decrease over time while levels of FMN increase. We show that live schistosomes cleave exogenous FAD to generate FMN and this ability is significantly blocked when expression of the surface nucleotide pyrophosphatase/phosphodiesterase ectoenzyme SmNPP5 is suppressed using RNAi. Recombinant SmNPP5 cleaves FAD with a Km of 178 ± 5.9 µM and Kcat/Km of 324,734 ± 36,347 M- 1.S- 1. The FAD-dependent enzyme IL-4I1 drives the oxidative deamination of phenylalanine to produce phenylpyruvate and H2O2. Since schistosomes are damaged by H2O2, we determined if SmNPP5 could impede H2O2 production by blocking IL-4I1 action in vitro. We found that this was not the case; covalently bound FAD on IL-4I1 appears inaccessible to SmNPP5. We also report that live schistosomes can cleave exogenous FMN to generate riboflavin and this ability is significantly impeded when expression of a second surface ectoenzyme (alkaline phosphatase, SmAP) is suppressed. Recombinant SmAP cleaves FMN with a Km of 3.82 ± 0.58 mM and Kcat/Km of 1393 ± 347 M- 1.S- 1. CONCLUSIONS: The sequential hydrolysis of FAD by tegumental ecto-enzymes SmNPP5 and SmAP can generate free vitamin B2 around the worms from where it can be conveniently imported by the recently described schistosome riboflavin transporter SmaRT. Finally, we identified in silico schistosome homologs of enzymes that are involved in intracellular vitamin B2 metabolism. These are riboflavin kinase (SmRFK) as well as FAD synthase (SmFADS); cDNAs encoding these two enzymes were cloned and sequenced. SmRFK is predicted to convert riboflavin to FMN while SmFADS could further act on FMN to regenerate FAD in order to facilitate robust vitamin B2-dependent metabolism in schistosomes.


Subject(s)
Flavin Mononucleotide , Flavin-Adenine Dinucleotide , Riboflavin , Schistosoma mansoni , Riboflavin/metabolism , Flavin Mononucleotide/metabolism , Animals , Flavin-Adenine Dinucleotide/metabolism , Schistosoma mansoni/metabolism , Schistosoma mansoni/genetics , Mice , Humans , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...